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Lecture — 27
Supernova explosions and blast waves 11
Hello, and welcome to another session of introduction to Astrophysical Fluids. Previously we
discussed the evolution of the blast wave which appear in general during a supernova
explosion and we also said that interestingly this type of blast wave also appears when atom
bomb explodes. Now, in this lecture we will talk about a bit more formally using some

mathematics about the structure of the blast wave.

What is inside? So, starting from the center of explosion directly up to the blast wave front,
how different fluid variables change that we will mostly discuss in this lecture. One simple
thing is that we will use some mathematics some basic concepts of dimensional analysis and

the self-similar solutions.

So, some parts or some steps of the mathematics may lo like non evident however, during this
lecture I will not explain everything 100 percent in detail. Later | will communicate you some
elements of calculation, so that these parts can be much clearer.
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So, here for example, you can see that in the previous discussion, we actually found that just
by using very simplistic dimensional analysis along with the self-similarity condition. We

obtained for the blast wave front, that the size of the blast wave which is given by lambda.

2 1/5
This is an explicit function of time that should be equal to (b;i) where E' is the energy at
1

the initial phase of the explosion just when the explosion takes place is the energy released, t

is the time elapsed and p, is the density of the environment or the ambient medium.

. . 1/5
Now, v; was the velocity of this blast wave front and that was exactly equal to %(pﬁ) t=3/3,
1

when we said that the velocity is actually changing with, 1 mean decreasing with time,

whereas A increases with time.

But, now, in today’s discussion, it will be much more useful, if we write this expression in an

alternative form equivalent form, which should be written as v, is equal to %% Simply if you

. R . . 2 FE 1/5 _3/5 R . 2/5 .

just write this expression as E(p_) ,then t you just write as t“/> by t and then you just
1

extract this whole part over here as your A and this will be then t simple and but this form

will be very much useful for us.
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Now, in the current discussion, today we try to understand the structure of the blast wave,

more precisely, we try to determine the variation of velocity pressure and density from the



center of the explosion to the blast wave surface. That means, exactly what is happening to
the exploded material. So, that is the part which we will study today and we will be using our

previous knowledge of shocks.

Now, let us first study the whole phenomena in the frame of the explosion that means, where
explosion to placed. That means it is mostly right I mean for example, if white dwarf
explodes. Then you see the whole phenomena being placed on the center of the white dwarf
this type of thing. So, in this frame of reference, the shock is moving so, this is not the shock

frame.
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Now, in the frame of study which we are now talking the shock moves radially outward with

a velocity v,, which is a function of t.
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Now you can easily see here, this shock front and this is actually moving in outward direction
with the velocity v;. So, v, is radially outward direction. Now, let us designate v, p, and p,
as the fluid variables just inside the shock front. Now, that is completely we have

characterized the medium.

But now we have to place ourself in the rest frame of the shocks, because if you remember
the Rankine-Hugoniot conditions were only valid in the rest frame of the shocks. Then what
happens there in the shock frame how the system is started in the shock frame, well when you

place yourself on this shock now you are here.

Then, the shock is at rest for you and you will see that the shock is actually expanding
outwards radially with respect to the center of explosion, with respect to the shock the

ambient would appear to approach the shock with a velocity —v; as simple as that.

So, in general, why it is, because in general, with respect to the center of explosion the
ambient is almost at rest and so that was the story for the ambience with respect to the shock.
What happens that the everything which is inside that had some velocity v, with respect to

the center of explosion and shock had some velocity v;.
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Now, with respect to the shock the relative velocity of this part will be simply v, — v;. So,
with someone who is sitting on the shock, we will see the whole system as that some material
from the ambient would actually stream in the shock and behind this, some material actually
is flowing and is flowing farther from the shock that means, away of the shock with a

velocity v, — v;.

So, if we just make a comparison with our previous v; and v,, if you remember then v, was
the velocity just in front of the shock and v, was the velocity just behind the shock. So, here
simply you can say that —v, is equivalent to v; and v, — v, that is equivalent to v,. Now,

with this thing we are all set for using Rankine Hugoniot conditions.
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Now, in blast waves, the velocity is so large with respect to the sound speed of the medium,
you can actually do some estimate and you can check, and just you can remember that if you
can correctly remember the velocity. The velocity was 10* kilometers per second and that

means 10* meters per second.

So, well, this is not very, very far from the relativistic domain however, for simplicity here
we are taking non relativistic cases. But we are considering the system to have a very strong
shock that means, the Mach number can easily be or reasonably be approximated to be very
large as infinity, then this condition is known as a strong shock condition.

Now, we can use the Rankine Hugoniot condition for the strong shock, if you remember we

said that even if the Mach number tends to infinity, the density jump will be simply finite and

it will be given by ’;—j the density jump between the material behind the shock to the

material in front of the shock, and just by the continuity equation you know that p, v, is equal

to P1V1, SO P2 by P1 will be V1 by U,.

. . . . +1
Now, writing the new expressions for v; and v,, we can write v:v is equal to ]]:—1 If you
X —

do the simplification, you will see :—2 = So, once again, if you remember v, is nothing
A

but the velocity of the shock front or the blast wave front with respect to the center of

explosion, and v, is the velocity of the matter, which is just inside the shock front with



respect to the center of explosion. Now, just check if your y is 5 by 3 that is a very good
approximation for mono atomic gases.
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So, this one has a velocity which is greater than the v,, that you have to understand always.

That the matter which is just inside the blast wave actually has a less velocity with respect to



the velocity of the blast wave itself | mean blast wave front itself. Now, if you remember the

ratio of Z—z , for again the case where u tends to infinity you can write.
1

So, of course, u goes to infinity, but now we are taking not infinity but very large then this
ratio, you can just refer to your previous lectures, becomes simply % almost will be equal to
1

2 2
%, and this u? is the Mach number of the ambient and then this is nothing but Z—Q

s1

2
So, v2 is nothing but v2. So, this ratio 22 is ——24 Now, €2 is nothing but X2, if we are
P1 (r+1) Cs; P

talking about a polytrophic gas, actually we will take it later we will see the adiabatic simply.
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So, then p is nothing but %.
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So, €2 will be equal to ypﬂ, if this is true then you just put it here and you will see that p,
1
2
will be then equal to 22:%
(r+1)

So, this expression finally, gets rid of p,; and this is completely very good because p; is
negligibly small. So, something which is negatively small p,, this is the pressure of the

ambient medium. So, if that is small then actually there is no concrete interest to include this
in.

(Refer Slide Time: 13:45)

* U;'ma e RE condiims, one cam dbtaurny,
St_;(ﬁ'_)

S\ ¥-1
-V f+ Y, 2
= e [T 4 .
—Uy+Vy -1 = ¥, Al ) o ﬁmq”“f
EL_ N 2'{‘1"17— — 2'(13}1— — Zf|U)’L

b1 3+ (341) ¢& 5+ b,
= PL: 28 uF (TRLL&O‘DJM P‘—30>

* Acweu% to Sedovs prestiphion, We new indwduce
dimang iomlea, Varable, -



Now, we follow the Sedov’s prescription and we first introduce dimensionless variables. We
are doing this thing because at the end we will try to see that how much or how long we can

use the self-similarity conditions in order to analytically treat the whole problem.
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So finally, we will try to solve the equations of dynamics, there is nothing new. So, if v
which is a function of r and t, and p, p all are functions of r and t which are the fluid
variables inside the blast wave, then one can directly write p(r, t) is equal to p,(r, t)p, this p

is a dimensionless quantity. So that means that the g is constructed just by dividing p by p,.
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Similarly, p is also constructed by dividing v by v,, but there is one quantity % which comes

into play.
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So, if you remember what% is this is nothing but the ¢,..
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&, is a quantity which is a constant over time if you choose 2 shells. For example, with r and
A, this &, will be constant over time. So, if your system is self similar then the &, will be
totally uncoupled or independent of time. So, that is something very important and this is a

famous trick of writing self-similar solutions. So, just by thinking, now, if you just follow this

writing for p(r, t), we write p, (/51)2;5.
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So, p basically is constructed by ( )2 Now, why it is (5 2)2 they came though. So, for

clarifying this part | will communicate some steps of calculations, but you can also check
over internet or in very good books. For example, one of the books Clark and Creswell which

I recommended in the reference you can go through that.

But very roughly speaking here, you can see that if you just try to be convinced roughly. p
has the order of moments of these macroscopic quantities, p is the 0" order moment of
velocity v, which is the first order moment of velocity, p is the second order moment of

velocity.
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So, exactly, their order of moment, if it is m then there will be a multiplication of (%)m. So,

this is the 0t" order that is why there is nothing.
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So, (g)2 is multiplied and here this is second order. So, this is a good trick to remember, of

course, the basic reason which comes that | will give you in an element of calculation by

which it will be much clearer.
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So, if you admit for the time being this type of solutions where g, 7, p they are dimensionless

quantities and they are not only that they are functions of &,., | am coming to that point.



So, they are dimensionless quantities. Then using Rankine Hugoniot conditions, we finally

can write
— o (N5
p(r,t) = p1 (P
4 r o~
U(T, t) - 5()""1)? ’

— 8,1 (Ty25
p(r,t) = 25 (P

So, this part | recommend you to check at home, maybe | am not sure but maybe | have also
can communicate this part of calculation as well. But this is highly recommended that you
can do it at home, you start from this and then you use all these relations over here and

finally, you should reach to that.

This type of elementary calculations, | expect that you can do at home. Now finally, this is
very interesting and important point that due to self-similarity now we can expect that this g,

7, p are functions of &, only.

So, if we can write the equations of dynamics in terms of these variables and which are
functions of &, only, that is the best way to check that whether the system dynamics is self-

similar in nature or not.
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Now, boundary conditions are given as this, all these 3 things p, 7, p , they are giving 1 at &,
what is &;, it is also 1. According to our definition, if you remember, we are studying this

quantity at the blast wave surface, then v will be equal to v,.

So, 7 will be 1, same thing you can do here and same thing you can do here, p will be simply
equal to p,, and of course, p will be not exactly equal to p,, but for instance we can write
this. So, there is something to say p will be equal to p at the surface when we are just moving

to the surface.
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So, of course, you know that because this is a shock surface there is a discontinuity. So,
proper limit cannot be achieved like that. So, what | was just saying one second ago is not a
mathematically correct statement. That means, just by using these relations, you cannot check
this, but if you put these things then in the reverse way you can check the consistency, that is

the best thing you can do.
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Now, it is also true that the process is very fast, that is why an adiabatic equation of state for
the gas or the fluid inside the blast wave is not a bad assumption. Now, finally, we are writing

the equations of dynamics of the fluid inside the blast wave. So, spherical symmetry is there,

adiabatic equation of state will be there.

We have this continuity equation, this is the Navier stokes equation, of course, forcing and
viscosity are neglected once again for simplicity and this is the fancy way of writing that pp¥
is equal to constant. So, if you use these 3 things and we write the all these 3 equations in

terms of this (~) quantities that means, dimensionless quantities not only dimensionless they

are functions of ¢&,.
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—, this is very, very easy, this is basic calculations of

calculus and you please check it carefully, and if you are stuck, please refer to any simple

book of calculus with partial derivatives and functions of multiple variables and partial

derivatives total derivative this type of thing.

So, if you replace this thing then flnally -, = both are now translated to — and that is

r

exactly the method by which one can cross check whether the system is reaIIy self-similar or

not.



(Refer Slide Time: 24:24)

_zdf 2 |3fva+td Fﬁ}z
E"Ej’ ﬁ‘&;f YS'IE,( )|=0
~¥ -2y oV L4 (74 5pd0
g 5T, s(w)( WLTEY)
= 2=\ T
=-3 —ﬁ—.)—;[ﬁ“a
d Ak; _ 5(v+1) - 4w
z*é&(%%)— =
2V — (1’+1)

Now finally, although these equations look like a bit bulky, but you see this is the continuity

equation just you do not have to go through each and every part of the equation, but just to

check that only we have %. Here as well, we have the differentiations are only with respect

T

t0¢,.

The same thing over here the only thing is

~variables. Finally, this is true for this one as well again %. So, finally, we are convinced

da

like T

T

that the system is reasonably well approximated by self similarity.

and

and all the quantities variables are
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But what that gives to the structure of the system, can we have some interesting information
about the structure of the system?
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So, here we have plotted g—r along x and y axis. So, this quantity g, ¥, p along y axis we have
A
plotted 3 different things for 3 different plots one is g, ¥, p. So, you see, this is done, so this

one is done for y is equal to i. So, which is not a very practical case for astrophysics,



however but this is a very practical case for atom bomb because this was done for air. But

this type of behavior actually is very much similar for that of a supernova.

Now, the first thing one can see that the radial variation of velocity is much smoother than
that of the pressure and density. So, this one basically changes gradually, whereas pressure

and density both they do not change up to this and suddenly they change very sharply. Not

only that if you just notice this attentively a very small amount of matter is between this g—r
A

from 0 to 0.5.

So, the amount of matter very near to the center of explosion is very, very small. So that
means, if you think that this is the center of explosion and just the center of explosion you
have almost homogenous type of matters spherical shell totally is like a solid spherical type

of thing. So, | mean full of fluid that is not a very good picture.
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Actually, what happens after the explosion, most of the thing it basically gets detached very,
very quickly from the center of explosion and goes to a certain distance and this part you
have very, very small density. However, the velocity is somehow reasonable, that is only
because the very small amount of matter which is also there, they have a considerable
velocity.

So, in terms of velocity, the change is very, very gradual. So, this is something, we can infer

for the structure of the blast wave. So, it basically gets detached like an envelope plop and



then it gets off. So, one last thing is that it is true that in our whole analysis we somehow
discussed the thing using self-similarity and we actually saw that this was quite a good

approximation.

But it is true that please remember the self-similarity thing is no longer valid for a system,
where the explosion finally expands in a medium with considerable pressure. So, for
example, some supernova explodes in the neighborhood of much denser astrophysical
medium. Then, this type of problem cannot be handled using self-similarity. So, that was all
about a brief overview of supernova and blast waves, which are nothing but a very good

application of shock waves.

Here we also discussed two important concepts, first of all dimension analysis which is very
simplified, but yet very useful and another is self-similarity. Although, for some tricks of
self-similarity, I did not go into the detail, because in the scope of this course, we cannot do
everything. But I will try to give you some elements of material, so, the style of writing self-

similar solutions gets much clearer.

Thank you very much.



