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Lecture — 25
Effect of nonlinearity: shocks

Hello. Welcome to another lecture of Introduction to Astrophysical Fluids. Previously, we
discussed that in a fluid if the fluid velocity is greater than the sound speed then any weak
perturbation which is caused in that fluid, I mean of course, the fluid should be compressible,
and for our convenience we also assumed that the fluid is polytropic then actually we showed
that for the case where fluid velocity is greater than the sound speed that is the Mach number

exceeds 1.

Any weak perturbation, which is applied to the flow field, in general cannot be repaired and
eventually it gets aggravated by the fluid flow, and in the same context in this discussion we
will now introduce the concept of shock, and we will see that how mathematically this thing

can be treated.

One thing is, of course, true that as | said that the perturbation is no longer weak. So, we can
no longer treat the perturbation part in the linear framework. So, how including the non-linear
effects we can handle this type of case of aggravated perturbation that we will see in this

lecture.
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Once again v > C, simply says that the fluid velocity is much more important than the sound
speed. So, any weak perturbation caused inside the fluid will be actually aggravated by the
fluid flow before the sound speed reaches to the point of damage in order to repair the

damage. What is the meaning of that?

That means, the Mach number is greater than 1, and at that point it is no longer adequate to
keep only the first order terms in the perturbed equation. So, that means, the linear
approximation is holding no longer. So, in the momentum equation as we just neglected

previously the term relating to (v;. V)Ef, now, it cannot be neglected any longer. We must

include this.
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So, the question is that we must include this (7;. V)7, but what is the role of this non-linear
terms finally. That means, what is the physics which is brought by these non-linear terms? To
understand that it is true that analytically it is not evident. That means, you cannot do the

general treatment in pen and paper, but we can do some simplified approach.

So, for example, we can simply now for instance to understand roughly what is the role of the

non-linear equations I mean non-linear terms in the perturbation equation, we will simply

write again the perturbed equation now, but including the non-linear term. So, %+

(V1. V)v_{ = —% and this one (7;.V)7; is no longer neglected. Of course, here in this case

we neglect again as we neglected last time the forcing term and the viscosity term.



Just to mention, in the physics of turbulence or in the physics of fluid I mean non-linearities,
and so, the non-linear phenomena in normal fluids and in plasmas very often we treat the
shocks in an equation called the Burger’s equation. The Burger’s equation is something
where it is the total equation is written in one dimension, and the term corresponding to this
term and this term they survive, we neglect this pressure term, but then the dissipation term is

no longer neglected there.

If you do that if you solve that Burger’s equation, it is possible to solve analytically or even
you solve it numerically. In both cases you can see that something like | mean a discontinuity
in the velocity profile of the fluid should appear and that is the case of traditional shock, and

we say that the Burger’s equation contains or entertains a shock type of solution. Now,

coming to our case where viscosity is throughout neglected, we have this equation % +

(. V)7, = — VP%
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Again, we will do two more simplification. So, we will omit the pressure gradient term and

we will write the whole thing in one dimension. So, finally, it simply gives us this form. So,

this is a trivial form of Euler’s equation. No viscosity, no pressure just the inertia term, % +

6171
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Now, one needs to realize that in an x — t plane, where t is along the horizontal direction and
x is along the vertical direction. So, this is the x — t plane. What will be the trajectory of a
fluid particle? Now, remember the concept of fluid particle, which we introduced in the

framework of Lagrangian approach.

Now a fluid particle, of course, in this case will follow a curve for which % is equal to the

velocity of the fluid particle and that is the fluid velocity itself at that point and that is v;. So,
this is the curve followed by a fluid particle and in other ways this defines a flow line. But

you know that if we write this expression now, we know this expression.

. d . . dvq - ad .
Now, we just try to express ﬂ, how does it look like. So, —* is equal to %, because v, is a

function of x and ¢t, plus 222

P = We are in one dimension. So, only space coordinate is the x

coordinate. And what is E? It is nothing but v;. So, if we consider the % along the
trajectory of the fluid particle that means, along the flow lines real flow lines. Then we can

simply say that this term %% is nothing but this term v, %

Otherwise, this is a general statement, but at the step where we are writing that % is equal to

v;. Then we are actually constraining to check or to study the i) along our trajectory of a
dt

fluid particle. That means, the following fluid particle trajectory and if we can write this from

this one d”tl = % +v 1 —. we know by definition this one is equal to 0. So, & js equal to 0

along a flow line.

So, along the flow line, there is no change in velocity of a fluid particle and that is very true.
You can easily understand because in this total equation this is the momentum evolution
equation. The right-hand side is identically 0. So, there is no net force. So, all the fluid

particles are moving freely right.
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Of course, once again, this is a very simplified case, but as you will see that this will already
help to understand how the non-linear terms play a role in steepening the different flow field.

Now, this one what we concluded. A fluid particle always moves with constant velocity when

we are talking in terms of this equation.
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Now, the question is that how to get the essence of steepening using this concept. So, let us
now concentrate on the velocity profile in a space which is v as a function of x in the figure.
Now, remember there is only one space coordinate and only one velocity coordinate in the

problem because this is 1-D flow. Now, this is the velocity profile as a function of space and

let us take one smooth curve.



Let us say some sinusoidal type of curve and two fluid particles on it at p and q. This is
taken. Now, p and g has certain distance and the velocity of the fluid particle which is
situated initially at point p, has a greater velocity than that of the fluid particle which is
situated at q. Now, since it has the greater velocity then it will traverse a greater distance in

some given time.

So, after some given time p comes to p’. So, it traverses a greater distance, but the fluid
particle which was at g having a smaller velocity. It cannot go equal amount of distance. So,
it can go a distance which is smaller in compared to with the distance traversed by the fluid

particle which was initially at p, and then new positions are given by p’ and q’, respectively.

So, you see as a result what happens when their distances decrease, so, now, the two fluid
particles they are situated at p’ and q'. So, they are coming closer, but the problem is that and

this is exactly what it is written. So, | am just try to concentrate on the figure now.
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So, now the important thing is that as we have just shown that for a fluid particle along its
trajectory v will be unchanged. So, the v at p and v at p’ will be the same. So, for example,

the value of v over here and now the value of v over here is the same.

In the similar way value of v at g and value of v at q' they are also same. So, you see that
these two things and what happens then? That this velocity discrepancy is now constrained in

a shorter region in space, and what is the meaning of that? That means, for example this wave



type of shape gets steepened like that and it will continue steepening until you have

something totally perpendicular.

This is the traditional picture of a shock. So, this is the known as the steepening of the wave
front, and actually it is possible that for any smooth velocity field. But of course, we have to
understand that this is not the whole picture. For obtaining the true picture one can go back to
the original equation that means, again considering this pressure term and actually you can

consider the dissipation term.

You have to go to more than one dimension and then you have to do treat the problem
numerically. Then also people have done this. For example, people who work in the domain
of turbulence, let us say compressible turbulence, astrophysical turbulence, supersonic
turbulence, they actually see very evidently that shock fronts appear. So that means, the very
localized steepened wave fronts | mean steepen this type of things, they are like how to say
that?

A very steep velocity profile basically that appears, if you see the spatial profile of the
velocity. So, that is something generalization of a traditional shock. So, traditional shock this
is actually always discussed in one dimension. In three dimension that is a generalized shock.
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Now, it is observed that usually for fluid flows with Mach number greater than 1, the velocity

field is no longer continuous that is why that is what | just mentioned and mathematical



discontinuities appear. Now, in 1D this is possible to treat analytically and so, this type of
discontinuities we call them shocks. So, once again the concept of shock is not constrained in
one dimension, but as far as we are talking about the analytical approach for shocks, very

frequently we talk in one dimension.

So, now we have to define. So, once again, shock is nothing but a steepened wave front or a
steepened velocity profile basically, let us say like that velocity profile due to the non-linear

effect. Now, we have to define somehow formally what a shock is.

So, a shock is a region of small thickness over which the fluid variables let us say p, v and p,
change very rapidly across this surface. So, if you want, for example, here the velocity and
here the velocity, here the density, here the density, here the pressure, here the pressure they

are finitely apart from each other.

Now, mathematically this type of case can be handled using a jump condition across a
discontinuity. | hope you are aware of this type of jump across a discontinuity. In case you
are not aware just you can search over internet. So, normally how we can treat analytically

shocks and discontinuities in fluids and plasmas and you will come across these things.
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But, here for this course even if you do not know that very in detail that is not a problem. Just
think that its jump means that roughly the difference of these two values. So, let us say this

green color surface is the so-called shock front, the shock surface, and just the value of the



density of the fluid which is very near to this surface, but to the left of the surface and very
near to the surface and, but to the right of the surface they are different, and the difference

between them is called the jump.

So, a jump is actually designated by a symbol like this. So, let us say jump in p or density is
nothing but equal to p, — p,, S0, this type of things. Now, for convenience in understanding
we use this figure and we consider the shock. So, a shock is nothing but a region in flow field
with very small thickness, but for our analytical convenience we consider shock as a surface

with actually zero thickness here.

For example, it is simply a straight line. There is no width, for example now. This is idealized
shock for mathematical treatments, and this one is considered to be normal to the direction of
the fluid flow. So, if the fluid is flowing in this direction horizontal direction, then the shock
is in the vertical direction, and the values of p, v, p for example, just to the left and right of
the surface are finitely apart. So, once again just to tell you clearly what this is. This means,
that two points which are infinitesimally close, but situated to the two sides of a shock
surface have finite difference in fluid variable values and this difference is known as the

jump.
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Now, let us consider a shock is propagating in an undisturbed medium. Now, let us do
something mathematical and to see analytically how much we can go. So, again | have given

the same picture.



So, a shock is propagating in an undisturbed medium let us say the media had nothing, so no
perturbation. So, let us say we can just see. So, someone is in the frame of the undisturbed
medium and let us say some fluid, and we see that the shock basically moves with —v;

velocity.

So, we see that this surface of discontinuity perpendicular to the fluid flow propagates along
this negative direction with the velocity v,. So, its velocity will be —v; then, if the original

v, is in this direction.

Now, if this is the case, we can see from the frame of the undisturbed medium that the

medium is at rest. It is the surface of discontinuity which is moving in this direction.

Now, we have to think that we place ourselves on the shock that means, we are now here in
the frame of the shock. Then what we will see? The person will see that which is in front of
the person. So, this is the fluid which is in front of the person and that is the front part of the
shock and this is the back part of the shock.

So, for the person who is sitting on the shock we will see the fluid here is coming towards
him or her with velocity v;, density p;, p;, of course, when we are talking about these values
ideally. So, they are just the general quantities, but their values can change from every point
in this fluid.

So, but in general what | am saying that these are general names of those variables in the
front part of the shock, and the general symbols for the p, p and v for the back part of the

shock is known as they are known as p,, p, and v,.

Of course, as | said that the for the fluid which is very, very close to this shock front but
being inside the front part of the shock and in the back part of the shock they have a finite

difference in values although they are very, very close. Now, this is true for all p, p and v.

Now, it is also true that in the rest frame of the shock what we will see that the front part fluid
is coming in this direction with velocity v,, and the back part of the fluid is going farther

from the shock surface, with the velocity v,. You can simply imagine that.
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Then it can be shown by the virtue of all three basic equations of hydrodynamics that is the
continuity equation, the momentum evolution equation and the internal energy evolution
equation. One can actually show that at steady state if we consider that the whole system the
flow is steady. If it is not steady then these conditions are no longer true, but at steady state

these three conditions are true.

That means, although p, p and v they have jumps across the surface of shock there are some
quantities which are continuous across the shocks. One is the pv that is p; v, will be equal to
p2V,. S0, although p, is not equal to p,, v, is not equal to v,, but their products will be the

Same.

Again, p, is not equal to p,, but p; + p;v? is equal to p, + p,v2. This is the equality, and

finally, although we know that v, is not equal to v,, p, is not equal to p,, p, is not equal to

YP1
¥r-Dp1

YD2

his is another lity.
G, this is another equality

p,, but finally, %vf + is equal to %v% +

So, these three quantities, they are continuous and these conditions are known as Rankine
Hugoniot conditions, RH conditions. But my question to you is that can you completely

recognize these quantities?

So, these quantities are nothing but the quantities which appear. Now, you remember when

we discussed about the conservative form these quantities appear.
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So, 3—’;. So, p is the density of some quantity is equal to somehow you can show that plus or

minus divergence of some flux term.
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Then you can show the conservation for the quantity pdt that means, in volume this quantity

is conserved in time.
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If you integrate this p in the volume then this quantity is a constant of motion. So, these
quantities are nothing but those quantities which appear inside the divergence and what are
they? So, this is known as mass flux right or mass current as | said. This one is nothing but
momentum flux you remember and this one should be the energy flux.

So, this term ﬁ comes due to the polytropic term and this term is called the enthalpic
- 1

contribution. Maybe you can relate it to your knowledge of thermodynamics.
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But if you just can see what how they look like there, so, 3 equations and we have 6

unknowns; pq, p2, V1, V4, P1, P2. SO, We cannot solve for individual variables, but what we

can do? We can find the jump ratios; ZZ o P2 and 22 ” in terms of the variables of one side of the
1 1

shock.

For example, if you eliminate p, and v, and you do some steps of straight forward algebra

(y+1)ui

although. Then you can show, that |s nothing but Yo

So, although this is a ratio of two things, but this ratio is now expressed only in terms of the

variables of the first medium. What is the meaning of first medium? First medium just means

that the part of the which is in front of the shock. Because p, is nothing but Z—l and this Cyy
Ss1

contains the information about p, and p,. Because this is a polytropic medium.
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We also assume that for the both sides of the shock which is completely intuitive that
polytropic index is actually same because they are the same fluid finally. So, as we discussed
that for shock formation the primary requirement is that Mach number should be greater than

1. Otherwise, there will be no accumulation of disturbances or perturbation.

So, this is the supersonic case. For subsonic case, there is no provision of having a shock

because every damage is sufficiently repaired by sound waves. Now, alternatively, in this



from of equation we can write % is equal to just by dividing both sides | mean numerator and
1

(y+1D)u?

- 2 - - -
the denominator by ui. You can write this is equal to Pyt

Now, there are two or three very interesting inferences. The first one is you see that this one
is somehow some quantity which is u, greater than 1. Now, if u, is greater than 1, so, this is

true that you can easily see that as y,. So, | mean it does not have to be u, increase.

But if , is greater than 1, one simple thing you can see that y; can go to some values | mean
let us say large enough values like infinity, and if u, tends to infinity, then the interesting

thing is that sometimes we can think that if x; goes to infinity maybe, from this type of

expression it may happen that some of us can think that 22 will also be infinity, but that is not

P1

the case.

Then you have to actually come to this expression because there is an u? here and here as
well. So, we have to make divide both the numerator and denominator by this so that you

have only u? over there, and when p, is tending towards infinity this term will be getting

(r+1)
-1

smaller and smaller approaching 0, and then this limiting jump will be simply given by

So, this is finite.

So, now, if you have some mono atomic gases and when we are considering that the idea of
the system of the total flow field is now in an adiabatic process, and then what is y? y is g it

simply says that.

Now, there is another thing. If u; increases this term will decrease and if this term will

decrease the whole fraction will increase. So, with u, this jump is also increased.
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Now, you see that is also another important point. It is easy to see that for u, greater than 1,

% is actually greater than 1. Why is that? If u, is greater than 1, actually one can show that.

1

So, just have a look. You can see that this % that will be less than 2, and when p; is exactly 1
1

then this % is exactly equal to 1.
1

So, when p; is greater than 1 this fraction is less than 2 and that means that this will be less
than (y + 1). So, something divided by less than this will always be greater than 1. So, that is

the reason.

So, p, will be then greater than p,, and it means that the medium behind the shock is much

denser or compressed and the compression is higher if the shock moves faster. Because once

again, so, % increases as p, increases, and what is the meaning of u, increases? That means,

1

the w,; means this is Z—l of course, and the shock speed from the undisturbed medium is

S1

nothing but —v;. So, the magnitude is v;. So, that is the thing that x; increases means v,
increases. So, in other ways, u, can increase due to various reasons, but if shock moves faster

then u, increases. Because v, increases and then you can say that this ratio increases as well.

Now, it is my question to you that when the density jumps get smoothed? | have already said
that the density jumps get smoothed when this ratio is simply 1 and that is the case where u,

is nothing but equal to 1, and when g is less than 1 this formula is not at all valid then that is



actually not possible, and that is what | am saying that means, p; greater than 1 is the

physically possible case.

So, it is never possible that p, should be smaller than p,. Once you have p, is equal to p;
then the shock is vanishing, and there is no way to go to the possibility that p, is less than p;.
Because once the shock is vanishing then the fluid flow is smooth then there is no need for

the fluid to make any again a discontinuity in the reverse sense.
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Now, similarly as above, there is one very striking result. Similarly, as above by eliminating

p, and v, from Rankine Hugoniot conditions one can obtain

P2 _ 2yui-(r—-1)

P1 r+1)

This exercise 1 somehow suggest you to do at least try at home. | will send you the
calculations later, but before that try at home. These are very | mean two elegant exercises.

But if you do that now, you see that when u, tends to infinity, what happens to %? Now, you
1

can see that y, tends to infinity simply says that this ratio will go to infinity.

Whereas, for infinite Mach number, the density has jumps have a finite value, the pressure

jumps become infinity. Why? Please think at that point. What is happening? Why pressure

jump is infinity and what is the meaning of that?



Now, for our case, for our astrophysical fluid context, it is much more important rather than

deriving all these conditions, and it is much more important to apply these conditions.

Also, you will see that to apply this type of things for analyzing different interesting
astrophysical phenomena, and in the scope of our course one such phenomena we will
discussed. We will discuss in the next lecture that will be the analysis of the spherical blast
waves, which are observed during the explosion of very much energetic supernova. Because

you will see that the shocks and discontinuities will be very much prominent there.

So, even using this one dimensional elementary analysis, you can have very interesting result
and very interesting analytical advancement in explaining the splendid phenomena of

supernova explosion . So, that I will do in the next session.

Thank you very much.



