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Hello. Welcome to another lecture of Introduction to Astrophysical Fluids. Previously, we 

discussed that in a fluid if the fluid velocity is greater than the sound speed then any weak 

perturbation which is caused in that fluid, I mean of course, the fluid should be compressible, 

and for our convenience we also assumed that the fluid is polytropic then actually we showed 

that for the case where fluid velocity is greater than the sound speed that is the Mach number 

exceeds 1. 

Any weak perturbation, which is applied to the flow field, in general cannot be repaired and 

eventually it gets aggravated by the fluid flow, and in the same context in this discussion we 

will now introduce the concept of shock, and we will see that how mathematically this thing 

can be treated.  

One thing is, of course, true that as I said that the perturbation is no longer weak. So, we can 

no longer treat the perturbation part in the linear framework. So, how including the non-linear 

effects we can handle this type of case of aggravated perturbation that we will see in this 

lecture. 
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Once again 𝑣 > 𝐶𝑠 simply says that the fluid velocity is much more important than the sound 

speed. So, any weak perturbation caused inside the fluid will be actually aggravated by the 

fluid flow before the sound speed reaches to the point of damage in order to repair the 

damage. What is the meaning of that? 

That means, the Mach number is greater than 1, and at that point it is no longer adequate to 

keep only the first order terms in the perturbed equation. So, that means, the linear 

approximation is holding no longer. So, in the momentum equation as we just neglected 

previously the term relating to (𝑣1⃗⃗⃗⃗ . ∇⃗⃗ )𝑣1⃗⃗⃗⃗ , now, it cannot be neglected any longer. We must 

include this. 
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So, the question is that we must include this (𝑣1⃗⃗⃗⃗ . ∇⃗⃗ )𝑣1⃗⃗⃗⃗ , but what is the role of this non-linear 

terms finally. That means, what is the physics which is brought by these non-linear terms? To 

understand that it is true that analytically it is not evident. That means, you cannot do the 

general treatment in pen and paper, but we can do some simplified approach. 

So, for example, we can simply now for instance to understand roughly what is the role of the 

non-linear equations I mean non-linear terms in the perturbation equation, we will simply 

write again the perturbed equation now, but including the non-linear term. So, 
𝜕𝑣1

𝜕𝑡
+

(𝑣1⃗⃗⃗⃗ . ∇⃗⃗ )𝑣1⃗⃗⃗⃗ = −
∇⃗⃗ 𝑝1

𝜌0
 and this one (𝑣1⃗⃗⃗⃗ . ∇⃗⃗ )𝑣1⃗⃗⃗⃗  is no longer neglected. Of course, here in this case 

we neglect again as we neglected last time the forcing term and the viscosity term. 



Just to mention, in the physics of turbulence or in the physics of fluid I mean non-linearities, 

and so, the non-linear phenomena in normal fluids and in plasmas very often we treat the 

shocks in an equation called the Burger’s equation. The Burger’s equation is something 

where it is the total equation is written in one dimension, and the term corresponding to this 

term and this term they survive, we neglect this pressure term, but then the dissipation term is 

no longer neglected there. 

If you do that if you solve that Burger’s equation, it is possible to solve analytically or even 

you solve it numerically. In both cases you can see that something like I mean a discontinuity 

in the velocity profile of the fluid should appear and that is the case of traditional shock, and 

we say that the Burger’s equation contains or entertains a shock type of solution. Now, 

coming to our case where viscosity is throughout neglected, we have this equation 
𝜕𝑣1

𝜕𝑡
+

(𝑣1⃗⃗⃗⃗ . ∇⃗⃗ )𝑣1⃗⃗⃗⃗ = −
∇⃗⃗ 𝑝1

𝜌0
. 
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Again, we will do two more simplification. So, we will omit the pressure gradient term and 

we will write the whole thing in one dimension. So, finally, it simply gives us this form. So, 

this is a trivial form of Euler’s equation. No viscosity, no pressure just the inertia term, 
𝜕𝑣1

𝜕𝑡
+

𝑣1
𝜕𝑣1

𝜕𝑥
= 0.  



Now, one needs to realize that in an 𝑥 − 𝑡 plane, where 𝑡 is along the horizontal direction and 

𝑥 is along the vertical direction. So, this is the 𝑥 − 𝑡 plane. What will be the trajectory of a 

fluid particle? Now, remember the concept of fluid particle, which we introduced in the 

framework of Lagrangian approach. 

Now a fluid particle, of course, in this case will follow a curve for which 
𝑑𝑥

𝑑𝑡
 is equal to the 

velocity of the fluid particle and that is the fluid velocity itself at that point and that is 𝑣1. So, 

this is the curve followed by a fluid particle and in other ways this defines a flow line. But 

you know that if we write this expression now, we know this expression. 

Now, we just try to express 
𝑑𝑣1

𝑑𝑡
, how does it look like. So, 

𝑑𝑣1

𝑑𝑡
 is equal to 

𝜕𝑣1

𝜕𝑡
, because 𝑣1 is a 

function of 𝑥 and 𝑡, plus 
𝜕𝑣1

𝜕𝑥

𝑑𝑥

𝑑𝑡
. We are in one dimension. So, only space coordinate is the 𝑥 

coordinate. And what is 
𝑑𝑥

𝑑𝑡
? It is nothing but 𝑣1. So, if we consider the 

𝑑𝑣1

𝑑𝑡
 along the 

trajectory of the fluid particle that means, along the flow lines real flow lines. Then we can 

simply say that this term 
𝜕𝑣1

𝜕𝑥

𝑑𝑥

𝑑𝑡
 is nothing but this term 𝑣1

𝜕𝑣1

𝜕𝑥
. 

Otherwise, this is a general statement, but at the step where we are writing that 
𝑑𝑥

𝑑𝑡
 is equal to  

𝑣1. Then we are actually constraining to check or to study the 
𝑑𝑣1

𝑑𝑡
 along our trajectory of a 

fluid particle. That means, the following fluid particle trajectory and if we can write this from 

this one 
𝑑𝑣1

𝑑𝑡
=

𝜕𝑣1

𝜕𝑡
+ 𝑣1

𝜕𝑣1

𝜕𝑥
. we know by definition this one is equal to 0. So, 

𝑑𝑣1

𝑑𝑡
 is equal to 0 

along a flow line. 

So, along the flow line, there is no change in velocity of a fluid particle and that is very true. 

You can easily understand because in this total equation this is the momentum evolution 

equation. The right-hand side is identically 0. So, there is no net force. So, all the fluid 

particles are moving freely right.  
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Of course, once again, this is a very simplified case, but as you will see that this will already 

help to understand how the non-linear terms play a role in steepening the different flow field. 

Now, this one what we concluded. A fluid particle always moves with constant velocity when 

we are talking in terms of this equation. 
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Now, the question is that how to get the essence of steepening using this concept. So, let us 

now concentrate on the velocity profile in a space which is 𝑣 as a function of 𝑥 in the figure. 

Now, remember there is only one space coordinate and only one velocity coordinate in the 

problem because this is 1-D flow. Now, this is the velocity profile as a function of space and 

let us take one smooth curve. 



Let us say some sinusoidal type of curve and two fluid particles on it at 𝑝 and 𝑞. This is 

taken. Now, 𝑝 and 𝑞 has certain distance and the velocity of the fluid particle which is 

situated initially at point 𝑝, has a greater velocity than that of the fluid particle which is 

situated at 𝑞. Now, since it has the greater velocity then it will traverse a greater distance in 

some given time. 

So, after some given time 𝑝 comes to 𝑝′. So, it traverses a greater distance, but the fluid 

particle which was at 𝑞 having a smaller velocity. It cannot go equal amount of distance. So, 

it can go a distance which is smaller in compared to with the distance traversed by the fluid 

particle which was initially at 𝑝, and then new positions are given by 𝑝′ and 𝑞′, respectively. 

So, you see as a result what happens when their distances decrease, so, now, the two fluid 

particles they are situated at 𝑝′ and 𝑞′. So, they are coming closer, but the problem is that and 

this is exactly what it is written. So, I am just try to concentrate on the figure now. 
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So, now the important thing is that as we have just shown that for a fluid particle along its 

trajectory 𝑣 will be unchanged. So, the 𝑣 at 𝑝 and 𝑣 at 𝑝′ will be the same. So, for example, 

the value of 𝑣 over here and now the value of 𝑣 over here is the same. 

In the similar way value of 𝑣 at 𝑞 and value of 𝑣 at 𝑞′ they are also same. So, you see that 

these two things and what happens then? That this velocity discrepancy is now constrained in 

a shorter region in space, and what is the meaning of that? That means, for example this wave 



type of shape gets steepened like that and it will continue steepening until you have 

something totally perpendicular. 

This is the traditional picture of a shock. So, this is the known as the steepening of the wave 

front, and actually it is possible that for any smooth velocity field. But of course, we have to 

understand that this is not the whole picture. For obtaining the true picture one can go back to 

the original equation that means, again considering this pressure term and actually you can 

consider the dissipation term. 

You have to go to more than one dimension and then you have to do treat the problem 

numerically. Then also people have done this. For example, people who work in the domain 

of turbulence, let us say compressible turbulence, astrophysical turbulence, supersonic 

turbulence, they actually see very evidently that shock fronts appear. So that means, the very 

localized steepened wave fronts I mean steepen this type of things, they are like how to say 

that? 

A very steep velocity profile basically that appears, if you see the spatial profile of the 

velocity. So, that is something generalization of a traditional shock. So, traditional shock this 

is actually always discussed in one dimension. In three dimension that is a generalized shock.  
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Now, it is observed that usually for fluid flows with Mach number greater than 1, the velocity 

field is no longer continuous that is why that is what I just mentioned and mathematical 



discontinuities appear. Now, in 1D this is possible to treat analytically and so, this type of 

discontinuities we call them shocks. So, once again the concept of shock is not constrained in 

one dimension, but as far as we are talking about the analytical approach for shocks, very 

frequently we talk in one dimension. 

So, now we have to define. So, once again, shock is nothing but a steepened wave front or a 

steepened velocity profile basically, let us say like that velocity profile due to the non-linear 

effect. Now, we have to define somehow formally what a shock is.  

So, a shock is a region of small thickness over which the fluid variables let us say 𝜌, 𝑣 and 𝑝, 

change very rapidly across this surface. So, if you want, for example, here the velocity and 

here the velocity, here the density, here the density, here the pressure, here the pressure they 

are finitely apart from each other. 

Now, mathematically this type of case can be handled using a jump condition across a 

discontinuity. I hope you are aware of this type of jump across a discontinuity. In case you 

are not aware just you can search over internet. So, normally how we can treat analytically 

shocks and discontinuities in fluids and plasmas and you will come across these things.  
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But, here for this course even if you do not know that very in detail that is not a problem. Just 

think that its jump means that roughly the difference of these two values. So, let us say this 

green color surface is the so-called shock front, the shock surface, and just the value of the 



density of the fluid which is very near to this surface, but to the left of the surface and very 

near to the surface and, but to the right of the surface they are different, and the difference 

between them is called the jump. 

So, a jump is actually designated by a symbol like this. So, let us say jump in 𝜌 or density is 

nothing but equal to 𝜌2 − 𝜌1, so, this type of things. Now, for convenience in understanding 

we use this figure and we consider the shock. So, a shock is nothing but a region in flow field 

with very small thickness, but for our analytical convenience we consider shock as a surface 

with actually zero thickness here. 

For example, it is simply a straight line. There is no width, for example now. This is idealized 

shock for mathematical treatments, and this one is considered to be normal to the direction of 

the fluid flow. So, if the fluid is flowing in this direction horizontal direction, then the shock 

is in the vertical direction, and the values of 𝜌, 𝑣, 𝑝 for example, just to the left and right of 

the surface are finitely apart. So, once again just to tell you clearly what this is. This means, 

that two points which are infinitesimally close, but situated to the two sides of a shock 

surface have finite difference in fluid variable values and this difference is known as the 

jump. 

(Refer Slide Time: 19:46) 

 

Now, let us consider a shock is propagating in an undisturbed medium. Now, let us do 

something mathematical and to see analytically how much we can go. So, again I have given 

the same picture.  



So, a shock is propagating in an undisturbed medium let us say the media had nothing, so no 

perturbation. So, let us say we can just see. So, someone is in the frame of the undisturbed 

medium and let us say some fluid, and we see that the shock basically moves with −𝑣1 

velocity. 

So, we see that this surface of discontinuity perpendicular to the fluid flow propagates along 

this negative direction with the velocity 𝑣1. So, its velocity will be −𝑣1 then, if the original 

𝑣1 is in this direction.  

Now, if this is the case, we can see from the frame of the undisturbed medium that the 

medium is at rest. It is the surface of discontinuity which is moving in this direction. 

Now, we have to think that we place ourselves on the shock that means, we are now here in 

the frame of the shock. Then what we will see? The person will see that which is in front of 

the person. So, this is the fluid which is in front of the person and that is the front part of the 

shock and this is the back part of the shock. 

So, for the person who is sitting on the shock we will see the fluid here is coming towards 

him or her with velocity 𝑣1, density 𝜌1, 𝑝1, of course, when we are talking about these values 

ideally. So, they are just the general quantities, but their values can change from every point 

in this fluid. 

So, but in general what I am saying that these are general names of those variables in the 

front part of the shock, and the general symbols for the 𝜌, 𝑝 and 𝑣 for the back part of the 

shock is known as they are known as 𝜌2, 𝑝2 and 𝑣2. 

Of course, as I said that the for the fluid which is very, very close to this shock front but 

being inside the front part of the shock and in the back part of the shock they have a finite 

difference in values although they are very, very close. Now, this is true for all 𝜌, 𝑝 and 𝑣.  

Now, it is also true that in the rest frame of the shock what we will see that the front part fluid 

is coming in this direction with velocity 𝑣1, and the back part of the fluid is going farther 

from the shock surface, with the velocity 𝑣2. You can simply imagine that. 
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Then it can be shown by the virtue of all three basic equations of hydrodynamics that is the 

continuity equation, the momentum evolution equation and the internal energy evolution 

equation. One can actually show that at steady state if we consider that the whole system the 

flow is steady. If it is not steady then these conditions are no longer true, but at steady state 

these three conditions are true. 

That means, although 𝜌, 𝑝 and 𝑣 they have jumps across the surface of shock there are some 

quantities which are continuous across the shocks. One is the 𝜌𝑣 that is 𝜌1𝑣1 will be equal to 

𝜌2𝑣2. So, although 𝜌1 is not equal to 𝜌2, 𝑣1 is not equal to 𝑣2, but their products will be the 

same. 

Again, 𝑝1 is not equal to 𝑝2, but 𝑝1 + 𝜌1𝑣1
2 is equal to 𝑝2 + 𝜌2𝑣2

2. This is the equality, and 

finally, although we know that 𝑣1 is not equal to 𝑣2, 𝑝1 is not equal to 𝑝2, 𝜌1 is not equal to 

𝜌2, but finally, 
1

2
𝑣1

2 +
𝛾𝑝1

(𝛾−1)𝜌1
 is equal to 

1

2
𝑣2

2 +
𝛾𝑝2

(𝛾−1)𝜌2
, this is another equality.  

So, these three quantities, they are continuous and these conditions are known as Rankine 

Hugoniot conditions, RH conditions. But my question to you is that can you completely 

recognize these quantities?  

So, these quantities are nothing but the quantities which appear. Now, you remember when 

we discussed about the conservative form these quantities appear.  
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So, 
𝜕𝜌

𝜕𝑡
. So, 𝜌 is the density of some quantity is equal to somehow you can show that plus or 

minus divergence of some flux term. 
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Then you can show the conservation for the quantity 𝜌𝑑𝜏 that means, in volume this quantity 

is conserved in time. 
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If you integrate this 𝜌 in the volume then this quantity is a constant of motion. So, these 

quantities are nothing but those quantities which appear inside the divergence and what are 

they? So, this is known as mass flux right or mass current as I said. This one is nothing but 

momentum flux you remember and this one should be the energy flux. 

So, this term 
𝛾𝑝1

(𝛾−1)𝜌1
 comes due to the polytropic term and this term is called the enthalpic 

contribution. Maybe you can relate it to your knowledge of thermodynamics.  
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But if you just can see what how they look like there, so, 3 equations and we have 6 

unknowns; 𝜌1, 𝜌2, 𝑣1, 𝑣2, 𝑝1, 𝑝2. So, we cannot solve for individual variables, but what we 

can do? We can find the jump ratios; 
𝜌2

𝜌1
,  

𝑝2

𝑝1
 and 

𝑣2

𝑣1
 in terms of the variables of one side of the 

shock. 

For example, if you eliminate 𝑝2 and 𝑣2 and you do some steps of straight forward algebra 

although. Then you can show, that 
𝜌2

𝜌1
 is nothing but 

(𝛾+1)𝜇1
2

2+(𝛾−1)𝜇1
2. 

So, although this is a ratio of two things, but this ratio is now expressed only in terms of the 

variables of the first medium. What is the meaning of first medium? First medium just means 

that the part of the which is in front of the shock. Because 𝜇1 is nothing but 
𝑣1

𝐶𝑠1
 and this 𝐶𝑠1 

contains the information about 𝑝1 and 𝜌1. Because this is a polytropic medium. 

(Refer Slide Time: 29:16) 

 

We also assume that for the both sides of the shock which is completely intuitive that 

polytropic index is actually same because they are the same fluid finally. So, as we discussed 

that for shock formation the primary requirement is that Mach number should be greater than 

1. Otherwise, there will be no accumulation of disturbances or perturbation. 

So, this is the supersonic case. For subsonic case, there is no provision of having a shock 

because every damage is sufficiently repaired by sound waves. Now, alternatively, in this 



from of equation we can write 
𝜌2

𝜌1
 is equal to just by dividing both sides I mean numerator and 

the denominator by 𝜇1
2. You can write this is equal to 

(𝛾+1)𝜇1
2

2+(𝛾−1)𝜇1
2. 

Now, there are two or three very interesting inferences. The first one is you see that this one 

is somehow some quantity which is 𝜇1 greater than 1. Now, if 𝜇1 is greater than 1, so, this is 

true that you can easily see that as 𝜇1. So, I mean it does not have to be 𝜇1 increase. 

But if 𝜇1 is greater than 1, one simple thing you can see that 𝜇1 can go to some values I mean 

let us say large enough values like infinity, and if 𝜇1 tends to infinity, then the interesting 

thing is that sometimes we can think that if 𝜇1 goes to infinity maybe, from this type of 

expression it may happen that some of us can think that 
𝜌2

𝜌1
 will also be infinity, but that is not 

the case. 

Then you have to actually come to this expression because there is an 𝜇1
2 here and here as 

well. So, we have to make divide both the numerator and denominator by this so that you 

have only 𝜇1
2 over there, and when 𝜇1 is tending towards infinity this term will be getting 

smaller and smaller approaching 0, and then this limiting jump will be simply given by 
(𝛾+1)

(𝛾−1)
. 

So, this is finite. 

So, now, if you have some mono atomic gases and when we are considering that the idea of 

the system of the total flow field is now in an adiabatic process, and then what is 𝛾? 𝛾 is 
5

3
, it 

simply says that. 

Now, there is another thing. If 𝜇1 increases this term will decrease and if this term will 

decrease the whole fraction will increase. So, with 𝜇1 this jump is also increased. 
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Now, you see that is also another important point. It is easy to see that for 𝜇1 greater than 1, 

𝜌2

𝜌1
 is actually greater than 1. Why is that? If 𝜇1 is greater than 1, actually one can show that. 

So, just have a look. You can see that this 
2

𝜇1
2 that will be less than 2, and when 𝜇1 is exactly 1 

then this 
𝜌2

𝜌1
 is exactly equal to 1. 

So, when 𝜇1 is greater than 1 this fraction is less than 2 and that means that this will be less 

than (𝛾 + 1). So, something divided by less than this will always be greater than 1. So, that is 

the reason. 

So, 𝜌2 will be then greater than 𝜌1, and it means that the medium behind the shock is much 

denser or compressed and the compression is higher if the shock moves faster. Because once 

again, so, 
𝜌2

𝜌1
 increases as 𝜇1 increases, and what is the meaning of 𝜇1 increases? That means, 

the 𝜇1 means this is 
𝑣1

𝐶𝑠1
, of course, and the shock speed from the undisturbed medium is 

nothing but −𝑣1. So, the magnitude is 𝑣1. So, that is the thing that 𝜇1 increases means 𝑣1 

increases. So, in other ways, 𝜇1 can increase due to various reasons, but if shock moves faster 

then 𝜇1 increases. Because 𝑣1 increases and then you can say that this ratio increases as well. 

Now, it is my question to you that when the density jumps get smoothed? I have already said 

that the density jumps get smoothed when this ratio is simply 1 and that is the case where 𝜇1 

is nothing but equal to 1, and when 𝜇1 is less than 1 this formula is not at all valid then that is 



actually not possible, and that is what I am saying that means, 𝜇1 greater than 1 is the 

physically possible case. 

So, it is never possible that 𝜌2 should be smaller than 𝜌1. Once you have 𝜌2 is equal to 𝜌1 

then the shock is vanishing, and there is no way to go to the possibility that 𝜌2 is less than 𝜌1. 

Because once the shock is vanishing then the fluid flow is smooth then there is no need for 

the fluid to make any again a discontinuity in the reverse sense.  
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Now, similarly as above, there is one very striking result. Similarly, as above by eliminating 

𝜌2 and 𝑣2 from Rankine Hugoniot conditions one can obtain 

𝑝2

𝑝1
=

2𝛾𝜇1
2−(𝛾−1)

(𝛾+1)
. 

This exercise I somehow suggest you to do at least try at home. I will send you the 

calculations later, but before that try at home. These are very I mean two elegant exercises. 

But if you do that now, you see that when 𝜇1 tends to infinity, what happens to 
𝑝2

𝑝1
? Now, you 

can see that 𝜇1 tends to infinity simply says that this ratio will go to infinity.  

Whereas, for infinite Mach number, the density has jumps have a finite value, the pressure 

jumps become infinity. Why? Please think at that point. What is happening? Why pressure 

jump is infinity and what is the meaning of that? 



Now, for our case, for our astrophysical fluid context, it is much more important rather than 

deriving all these conditions, and it is much more important to apply these conditions. 

Also, you will see that to apply this type of things for analyzing different interesting 

astrophysical phenomena, and in the scope of our course one such phenomena we will 

discussed. We will discuss in the next lecture that will be the analysis of the spherical blast 

waves, which are observed during the explosion of very much energetic supernova. Because 

you will see that the shocks and discontinuities will be very much prominent there. 

So, even using this one dimensional elementary analysis, you can have very interesting result 

and very interesting analytical advancement in explaining the splendid phenomena of 

supernova explosion . So, that I will do in the next session. 

Thank you very much. 


