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Weak perturbation in a compressible fluid: sound waves 

 

Hello and welcome to another lecture session of Introduction to Astrophysical Fluid. In this 

lecture, we mainly discuss the response of a compressible fluid to a very weak external 

perturbation. 
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So, for that first we will remember what happens, if we perturb a particle in the framework of 

Newtonian mechanics. So, if the particle is perturbed very weakly with respect to some stable 

equilibrium state, then the particle actually performs a harmonic oscillation with respect to its 

mean position of equilibrium or position of equilibrium and if the particle is perturbed very 

weakly with respect to some unstable equilibrium state then the particle moves in such a way 

that it always goes farther from its original equilibrium position.  
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Analogous things can be expected here as well. For a fluid if the fluid is somehow at some 

stable initial state and then some weak perturbation is performed or is carried out on it then 

we can see a linear wave mode. So, linear wave mode, if you think this is nothing but a 

generalization of this type of oscillatory motion which propagates in space and time. 

If the fluid is perturbed with respect to some unstable initial state, then what we get is known 

as the linear instability. We will come to these two things in more detail when we will talk 

about the wave modes and instabilities in a general framework. 
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Now, for the time being we just discuss the what happens or how a polytropic fluid responds 

to a very weak perturbation and so, let us start with very basic polytropic equations. First one 

is of course, the well-known continuity equation 

𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌𝒗) = 0   

and the second one is  

𝜕𝒗

𝜕𝑡
+ 𝒗. 𝛁𝒗 =  −

𝛁𝑝

𝜌
 

this is the momentum evolution equation. So, this equation is written for simplicity in the 

absence of any external force and viscosity. These two effects are neglected here. We will 

just see that if such a system is perturbed with respect to some initial condition, then what 

happens. 
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Now, it is true that and as you will see that we will make the initial state in such a way that it 

is actually a stable initial state. So, what is the most intuitive stable initial state? That is the 

state is at rest. Then, we will actually decide to perturb the fluid with respect to an initial state 

where 𝜌 is equal to 𝜌0 which is a constant; 𝑝 is equal to 𝑝0, which is a constant and 𝒗 is equal 

to 0; that means, the system is at rest.  



A fluid for example, is confined in a container. So, throughout the fluid, it has one density, 

one pressure and that is the case of our normal thermodynamics. Now, we perturb a bit and 

we let the system flow. So, the perturbations are done very weakly, so that they are called 

first order perturbation.  

This type of perturbation theories are also called the first order perturbation theories that 

means, the perturbations are so small that only the linear order is kept. Now, we just call the 

equilibrium quantities with index 0 and the perturb quantities with index 1, okay. So, 

equilibrium quantities were all constants and for 𝒗, it is not only constant but is actually 0.  

For pressure and density, the perturb quantities are 𝑝1  and 𝜌1, both are functions of 𝑟 space 

and time and for 𝑣, the nonzero part comes due to its perturbation which is 𝑣1, which is also a 

function of 𝑟 and 𝑡. 
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Now, if we perturb the system in this way, then the continuity equation should look like this 

𝜕(𝜌0 + 𝜌1)

𝜕𝑡
+ 𝛁. ((𝜌0 + 𝜌1)𝒗𝟏) = 0                   

the total fields are now decomposed into its equilibrium value plus some fluctuation. If you 

do the same thing for momentum evolution equation then you will have 

𝜕𝒗𝟏

𝜕𝑡
+ (𝒗

𝟏
. 𝛁)𝒗𝟏  = −

𝛁𝑝1

𝜌0

  



What happens for 0th order case? 0th order case 𝑣 is 0. So, what was the continuity equation 

for equilibrium? It was simply 
𝜕𝜌0

𝜕𝑡
= 0, because the other term is 0 since 𝑣0  is 0. 

So, we can use this one 
𝜕𝜌0

𝜕𝑡
= 0 in this equation 

𝜕(𝜌0+𝜌1)

𝜕𝑡
+ 𝛁. ((𝜌0 + 𝜌1)𝒗𝟏) = 0  and finally, 

we will see that we will have three terms; 
𝜕𝜌1

𝜕𝑡
 plus 𝜌

0
𝛁. 𝒗𝟏 and then 𝛁. 𝜌1𝒗𝟏. But, 

𝛁. 𝜌1𝒗𝟏 includes two terms of first order smallness that means the composite term is of 2nd 

order smallest that we neglect here. We are doing here a linear analysis. 

Linear analysis; linear sometimes we said linear stability analysis. In several literatures you 

can see this type of vocabularies. When you do that, you will only have two terms 

𝜕𝜌1

𝜕𝑡
+ 𝜌0𝛁. 𝒗𝟏 = 0                                    (𝑖) 

If you linearize the momentum evolution equation, then you will have  

𝜕𝒗𝟏

𝜕𝑡
+ (𝒗

𝟏
. 𝛁)𝒗𝟏  = −

𝛁𝑝1

𝜌0

 

that is simply because 𝑣0 is identically 0, then momentum evolution equation in steady state 

is given by this equation 
𝛁𝑝0

𝜌0
= 0.  

So, that exactly we incorporate here and we will have this equation  

𝜕𝒗𝟏

𝜕𝑡
+ (𝒗

𝟏
. 𝛁)𝒗𝟏  = −

𝛁𝑝1

𝜌0
, but this is not yet linearized because we have a term 

(𝒗
𝟏

. 𝛁)𝒗𝟏, containing two terms of 1st order smallness which is a 2nd order smallness again, 

we neglect that and we finally, have an equation which has a smallness of order 1. 

𝜕𝒗𝟏

𝜕𝑡
 = −

𝛁𝑝1

𝜌0

                               (𝑖𝑖) 

So, the advection term (𝒗
𝟏

. 𝛁)𝒗𝟏 which we call the advection term for Navier-Stokes 

equation does not appear in the linearized form. So, now we have these two linearized 

equations (i) and (ii).  
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Here we are considering a polytropic fluid, for polytropic fluid you can have 𝑝 = 𝐾𝜌𝛾 and 𝑝 

you can write as 𝑝0 + 𝑝1 and 𝜌 you can write as 𝜌0 + 𝜌1. So, K into (𝜌
0

+ 𝜌1) 𝛾 and then 

since 𝜌1 is very very small with respect to 0; one order smaller, then you can just take 𝜌
0
𝛾
 to 

outside of the bracket and inside the bracket you will have (1 +
𝜌1

𝜌0
)

𝛾

. So, this is 

actually, 𝐾𝜌0
𝛾

(1 + 𝛾
𝜌1

𝜌0
), since this 

𝜌1

𝜌0
 is a very small quantity. 

𝑝0 + 𝑝1 =  𝐾𝜌0
𝛾 + 𝐾𝛾𝜌𝛾−1𝜌1  

If you see that what this is? This 𝐾𝜌𝛾−1 this is nothing but 
𝑝0

𝜌0
 and 𝐾𝜌0

𝛾 is 𝑝0. 

So, finally, your thing will come up  

𝑝0 + 𝑝1 = 𝑝0 +
𝛾𝑝0

𝜌0

𝜌1 

And what is this 
𝛾𝑝0

𝜌0
? This is nothing but 𝐶𝑠

2
, it is called the equilibrium sound speed 𝐶𝑠

2 =

 
𝛾𝑝0

𝜌0
 ? So, this total thing will then come down to be 𝑝0 + 𝐶𝑠

2𝜌1.  
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 And now we can write this 𝑝1 in terms of 𝜌1 as 

          𝑝1 =  𝐶𝑠
2𝜌1                                                       (𝑖𝑖𝑖)                     

 So, that is something you have to understand and why this is interesting? Because you can 

simply see that although normal 𝑝 and 𝜌 they were not proportional, they were actually 

satisfying some polytropic condition but their first order perturbations are actually 

proportional to each other and the proportionality constant is nothing but the equilibrium 

sound speed square. Now, if we take 
𝜕

𝜕𝑡
 of both sides of (𝑖), you will have 

𝜕2𝜌1

𝜕𝑡2
+ 𝜌0𝛁.

𝜕𝒗𝟏

𝜕𝑡
= 0   

𝜕

𝜕𝑡
 and divergence will commute. 

𝜕𝒗𝟏

𝜕𝑡
 you can substitute from equation (ii), and you will get, 

𝜕2𝜌1

𝜕𝑡2 + 𝜌0𝛁. (−
𝛁𝑝1

𝜌0
) = 0 . So that is the circuit of logic okay. 

Now, you will have an equation for 𝜌1 which is nothing but 

𝜕2𝜌1

𝜕𝑡2
= 𝐶𝑠

2∇2𝜌1                 (𝑖𝑣) 

where 𝐶𝑠
2  comes due to this fact that 𝑝1 is now substituted in terms of 𝜌1 .  
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So, you see that 𝜌1 satisfies an equation of a progressive wave with the speed of the wave 

equal to 𝐶𝑠. So, we see that the density perturbation obeys the equation of a progressive wave 

with speed equal to equilibrium sound speed. My question is, can we also do this for 

perturbation of velocity and perturbation of pressure? 
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And actually, the good news is that one can indeed show that for any 1st order perturbation, in 

this case for a polytropic fluid normally, in the absence of any forcing or any viscous 

dissipation term; any 1st order perturbation propagates with the speed of sound, but this speed 

is the equilibrium sound speed that is true to understand. 



Now, I have two questions for you: the first question is that what happens if the body force 

and the viscous terms are present? then what happens to the wave? That you would to think 

and search ok that is the research outlook, I want that you develop okay. The second one is 

that what happens if the fluid is non-polytropic?  

So, you know there is a broader class which is called barotropic and there can be actually 

more general class where the pressure is not at all function of density only. So, then we have 

to use some more general consideration. So, if you think that how can one treat this type of 

thing that means, if some weak perturbation is done to a non-polytropic fluid, then how the 

system would respond okay? 
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Now, coming back to our original discussion ok, what is the physical meaning of sound 

waves or acoustic waves? Sometimes the sound waves they are called acoustic waves as well. 

So, it simply means that if a weak perturbation or damage is caused inside the fluid, by 

altering its velocity or its density or its pressure actually, all are related, then if it is done with 

respect to a stable equilibrium state then the medium tries to restore the initial state by 

propagating the perturbation at a speed equal to 𝐶𝑠. So, for example, if you just reduce the 

density of one fluid at rest at some point in space, then the other places which have the higher 

density because initially equal density at all parts.  



Now, if you reduce the density very locally, then the surroundings will feel that I mean inside 

then there is a position or there is a space where the density is somehow reduced by some 

external cause or however.  

Then, the matter from them would come and to try to equal equilibrate the density 

discrepancy and that will be done at a speed equal to 𝐶𝑠 and that is only true when the 

perturbation amount is very weak. So, if the perturbation amount is not very weak, then this 

is not evident. 
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Now, one simple question is that what happens for an incompressible fluid? So, can we 

somehow from this polytropic fluids, can we somehow do some appropriate limit by which 

we can reach to incompressible fluids? Now, for an incompressible fluid the recovery is 

immediate that is true because for an incompressible fluid, you cannot change your density.  

So, whether the system is in equilibrium state or not; the 𝜌 is always constant. Whether the 

system is at rest or it is flowing irrespective of that the systems 𝜌 is constant. So, if you 

change the 𝜌 somehow, so it is not any recovery, but it is I have to be much more careful, it is 

the density recovery is immediate okay.  

If the density recovery is immediate, then the corresponding sound speed is given by infinity 

because the time required to repair the damage is zero. But, how to realize this quantitatively?  



Quantitatively, if we say that the sound speed is infinity, we just know that this is nothing but 

from our definition as we have seen over here that  𝐶𝑠
2 =  

𝛾𝑝0

𝜌0
 is the equilibrium sound speed 

So, how can 𝐶𝑠 be infinity? 

So, 𝑝
0
 is somehow finite and 𝜌

0
 is a constant but finite and then how can 𝐶𝑠 be infinity? At 

first look it may be very surprising, but if you think carefully, you will see that the mystery is 

lying under this 𝛾. Now, this 𝛾 basically has a role in making the sound speed infinity. Why? 
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Just think that we have a polytropic fluid 𝑝 = 𝐾𝜌𝛾. Then, 𝛾, we can write is equal to 𝐾
−

1
𝛾

 
𝑝

1
𝛾. 

Now, for incompressible case 
1

𝛾
 is always constant but 𝑝 is not. So, if 𝑝 somehow changes and 

K is a constant, what will be the value of 𝛾, so that 𝜌 is always unchanged? That is only 

possible when you have 𝑝 to the power 0. So, then  

1

𝛾
= 0 ⇒ 𝛾 → ∞  

and this 𝛾 while it is sitting on the numerator makes this equilibrium sound speed to be 

infinity. 
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Now, coming to another interesting topic that is we are considering here only first order 

perturbations ok. So, these perturbations are linear in nature, I mean that as we just saw that 

in the equation there were no non-linear terms and for that then the superposition principle 

holds good and that is why we all know that any arbitrary perturbation can be decomposed in 

terms of Fourier components.  

Like any other linear function and for any typical one Fourier mode where we are talking 

about ones single 𝒌, then, what happens, we can write the perturbation like a plane wave 

solution with some amplitude as 

𝜌1 =  𝜌10exp [i(𝒌. 𝒓 − 𝜔𝑡)] 

and if you now substitute this expression in equation (iv) which is nothing but given here 

𝜕2𝜌1

𝜕𝑡2 = 𝐶𝑠
2∇2𝜌1 ,  this one, you will simply see that this equation gives you an algebraic 

equation 

𝜔2 = 𝐶𝑠
2𝑘2

 

So, a differential equation is reduced to an algebraic equation. 

There is a relation between 𝜔 and 𝑘 ,where 𝜔 is the frequency and 𝑘 is the wave number. 

This type of relation between algebraic relation between 𝜔 and 𝑘 is known as the dispersion 



relation. I mean it is true that in complicated cases, there may not be algebraic relations that 

can be a transcendental relation. 
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Now, if we have this type of relation, then what happens? Then the phase velocity which is 

nothing but the ratio of 𝜔 by 𝑘, so these vocabularies, I expect that you have heard because I 

expect that all of you have physics background. So, phase velocity 𝒗𝒑 is nothing but that is 

just the velocity given by 
𝜔

𝑘
 for a given mode. For this case phase velocity is sound velocity 

𝐶𝑠 itself and group velocity is given by 
𝑑𝜔

𝑑𝑘
 for 1 D case and is also the sound velocity. 

This is not always true for any arbitrary wave mode because for arbitrary wave mode, the 

dispersion relation can be much more complicated than this. Now, for very simple case here 

we have both the phase velocity and the group velocity they are equal. Now you see that 

finally, the speed of the sound does not depend on frequency.  

Because if 𝜔 is different 𝜔, then 𝑘 will be different to make 
𝜔

𝑘
 constant and this is the nothing 

but the equilibrium sound speed 𝐶𝑠. So, that is why we say that sound wave is such a wave 

for which the phase speed does not depend on the frequency of the wave and that is why this 

is known as the non-dispersive wave that means the dispersion does not take place.  

What happens, for example, in a prism when you have different colors, you have different 

velocities of light and then what happens? Then for different wavelengths, you have different 

velocities. Then you have dispersion in a prism, so you can see the colors split. Here for 



sound wave, that cannot split because of this relation 
𝜔

𝑘
= 𝐶𝑠 . So, this type of way is called a 

non-dispersive wave ok.  

Now, it is also true that this non dispersive effect only comes because we now, just try to 

connect with my previous question that what will happen if we consider the forcing and the 

viscous dissipation into effect. Maybe, the dispersion relation is not the same ok, maybe the 

wave is no longer dispersive, this type of thing. 
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Another point about the sound wave or acoustic wave is that if we just add (ii) and (iii) 

𝜕𝒗𝟏

𝜕𝑡
=  −

𝐶𝑠
2𝛁ρ

1

𝜌0

 

Here 𝒗 and 𝒗𝟏 are same since mean velocity is zero. Now, if you do the Fourier 

decomposition, if you just write this also in terms of its plane wave solution using the Fourier 

mode, we can show that 𝒗 will be proportional to 𝒌 because 
𝛁ρ1

𝜌0
 will be will be something 

directed 𝒌 vector. 

That you can just do; just for here you have to use 𝑣1 =  𝑣10exp [i(𝒌. 𝒓 − 𝜔𝑡)] and 𝜌1 =

 𝜌10exp [i(𝒌. 𝒓 − 𝜔𝑡)] some according to our convention. It is a small exercise; you will see 

that 𝒗 will be simply proportional to or parallel to 𝒌 vector and that says that acoustic wave is 

a longitudinal wave okay. 
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Now, coming back to the story of sound waves and the repairing of the damages by the sound 

wave. Before going to that let, me introduce a number dimensionless number called the Mach 

number 𝑀 which is the ratio of the fluid speed by the sound speed 𝑀 =
𝑣

𝐶𝑠
. 

And for cases where this Mach number is less than 1, any perturbation can easily be repaired 

and for Mach number greater than 1 such perturbations cannot be repaired easily. Why? 

Because when Mach number is less than 1, then the sound speed is much more efficient. So, 

if let us say if at some point some density perturbation occurs, then the sound speed will 

repair it very fast and after that the fluid will reach there, ok, so further flow will be there 

okay. 

So, in case of M greater than 1, before the repairing is done; some fluid comes over there to 

aggravate eventually this perturbation. A very easy and simple example of that let us say you 

are on a seashore and you are making some design; let us say you have you have made some 

design or you have written your name on the sand. Now, the sea wave came and you see that 

some part of your name was damaged. 

Now, you immediately you tried your best to repair those damaged part, but before you 

complete your work if you are not fast enough ok, the second wave came and it again made 

your effort in vain. So, you have to be quick enough so that between two successive waves 

every time you can repair the damage made. If Mach number is less than 1, then you can 

efficiently repair the damages ok.  



In case, you are not fast enough that is the Mach number is greater than 1 there is the fluid 

matter is moving actually from one point to the other without caring of the damage ok. For 

example, when the sea wave if came it does not care about which damage it has made or 

something ok you are caring. So, sound wave cares for repairing the damage not the fluid 

itself, the fluid matter just flows and at that point, any such weak perturbation can actually be 

aggravated and then the assumption that the perturbation is weak and can be treated linearly 

does not hold any longer. Then you can simply see that the perturbation is no longer linear 

and the superposition principle does not hold ok. 

At this point one has to feel that part; there will be some accumulation of perturbations inside 

the fluid ok. One very simple treatment of addressing this accumulation of perturbation is the 

treatment of shocks and that we will discuss in the next discussion ok. 

Thank you very much.  


