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Hello, and welcome to another lecture of Introduction to Astrophysical Fluids. In this lecture, 

we will discuss the dynamics of accretion disks in astrophysics. Before starting, I try to tell 

you a very important point that here in this context of Accretion Disk we will do some 

modeling.  

When we will do some modeling, sometimes it may happen that the steps are not 

mathematically rigorous. So, at that point we have to remember that we will try to match 

some of our results or our mathematical structure or model with some known phenomena or 

observed phenomena. 

That is why, if sometimes something is reasonable from our practical point of view, that 

means, from our observational knowledge or some common sense then I mean we will not 

really abide by the mathematically 100 percent at that point, and we will do something 

offhand approximately.  

But I will tell you, there will be no secret or no hidden message of this type of approximation, 

whenever there will be approximation, I will tell you explicitly. But finally, the goal is to find 

something or to recover something, which we already observed, even if not exactly at least 

moderately exactly, so that is our motto or our objective for this thing. 

Another point is that, in case of the accretion disks, there will be a lot of mathematical steps. 

So, in this course, it is not our objective to learn all the detailed mathematical steps. 

Sometimes, when I will say in the scope of this course to go through the mathematical steps 

to learn, please do that.  

But for example, when I will tell here some mathematical steps, and I will say that after some 

algebra after some steps, in the most cases this is not really mandatory for you to go through 

all the steps, but rather you try to understand the final result and the physical meaning of the 

final result, and that is something which is important for this course. 



 

 

However, if you are interested you can always go through this type of detailed calculation, 

searching through internet, or referring to some books which I have already mentioned, and 

some elements of the detailed calculation will also be communicated to you by me. So, do not 

worry much for these things. I will try to make clear the best possible mathematical details, 

but of course once again the objective is not to get lost inside the mathematical details rather 

try to find out the meaning out of the final results. 

Even for exams, we will not ask you to do calculations to derive something long, it will be 

mostly using the results, which will be discussed here to show something interesting or to 

calculate something or to ask physics questions. So, it is finally, important that the picture of 

accretion disk, and the corresponding dynamics, the formation, the stability, the physics 

behind it should be clear. 

(Refer Slide Time: 04:25) 

 

So, once again we start by capitulating the basic assumptions. As I said that for analytical 

convenience Sakura and Sunyaev – these two people, they propose thin disk models, and for 

that, we need several approximations. The first one is of course, the use of cylindrical 

coordinates. Then the disk to be axisymmetric, so that for any quantity 
𝜕

𝜕𝜃
 will be 0. 

The principal motion of the moving matter will be considered mostly in the cross radial 

direction that is the 𝑣𝜃 will be the dominating component of velocity however, 𝑣𝑟 will be 

non-zero, but it is very small, but 𝑣𝑟 will cause the small radial flow due to viscosity. Now, 

for 𝑣𝑧, we will assume that to be 0. 
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In general, we will also assume that 
𝜕

𝜕𝑧
 is not equal to 0. For example, 

𝜕𝜌

𝜕𝑧
 is not equal to 0, but 

for the velocity components of 𝑣𝑟 and 𝑣𝑧, 𝑣𝜃 that will be 0. Because 𝑣𝑟, 𝑣𝜃 – they are small 

and their changes are also assumed very reasonably to be small.  

So, if it is not as I said last time then think of it. You will understand that there should be 

some deformation in the disk formation and that is not quite welcome in this simplified 

framework. Now, with all these assumptions, finally, we will go and study the dynamics of 

accretion disks. 

(Refer Slide Time: 06:17) 
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Now, first this is nothing but the equation of continuity comes. In cylindrical coordinate, this 

is written as 
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟) = 0. Now, this is my question to you, have you understood why 

the divergence term has only one term and not the del? So, the term involving 
𝜕

𝜕𝜃
 is 0, but the 

term involving 
𝜕

𝜕𝑧
 is not 0, but 𝑣𝑧 there will be 0. So, this type of simplifications you can 

actually check at home. 

Now, we want to get rid of any 𝑧-dependence that is because our primary assumption or the 

premise is that we should discuss for the dynamics of a disk whose thickness is negligible 

with respect to its radial extension, I mean radial dimension.  

And that is why any variation about 𝑧 or something is not really of our current interest, it may 

be interest for other research topic. But for our case, we will just try to see what happens 

roughly in the plane, which is perpendicular to the 𝑧-direction or that means, the 𝑟 − 𝜃 plane. 

For that, what we will do? We will try to get rid of any 𝑧-dependence. So, we all know that 

𝜕𝑣𝑟

𝜕𝑧
 is already 0 and so 

𝜕𝑣𝜃

𝜕𝑧
 is something, which we should be taking care of, other than that 𝜌 

has a 𝑧-dependence, and 
𝜕𝑣𝑧

𝜕𝑧
 is also 0.  

Now, the question is that how to get rid of the 𝑧-dependence of 𝜌? One very simple thing, we 

can do that we say that instead of 𝜌, we will write equations in terms of Σ. So, this Σ is not for 

summation that can be confusing, but just please bear with it for instance that Σ is equal to 

∫ 𝜌𝑑𝑧. So, this is the density integrated along 𝑧-direction.  

So, that does not have any information about the variation. Already, it is integrated over 𝑧, so 

any variation of 𝜌 with respect to 𝑧 will be contained in it. Finally, if we just study the 

evolution equation of Σ, now basically in those equations we are actually concentrating what 

is happening on the plane of the disk that is 𝑟 − 𝜃 plane.  

For that, you can actually see that this continuity equation becomes simple. So, you just 

multiply every term with 𝑑𝑧, and then you integrate, and you will say you will have 
𝜕Σ

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟Σ𝑣𝑟) = 0. So, this is a good exercise to do at home. 
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Up to this point, we are using assumptions, but we are not compromising anything with 

mathematically. So, up to this, this is mathematically exact. Now, this was all for the 

continuity equation. Now, for the momentum evolution equation, we know that 𝑣𝜃 is the 

dominant component of velocity. So, we are interested in the 𝜃 component of the momentum 

equation, fair enough. 

(Refer Slide Time: 10:49) 

 



 

 

So, that is some part you can check in the books of vector algebra vector calculus and vector 

analysis that if you write this type of equation – Navier-Stokes’s equation in cylindrical 

coordinate system, and where you do not use the 𝜇 to be constant. 

(Refer Slide Time: 11:15) 

 

If you remember this, then you actually see that the 𝜃 component of Navier-Stokes equation 

should look like this 𝜌[
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝑟𝑣𝜃

𝑟
], that one term which comes, you can actually 

show is equal to 𝜇 [
𝜕2𝑣𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟2] +
𝜕𝜇

𝜕𝑟
(

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟
). Now, this term 

𝜕𝜇

𝜕𝑟
(

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟
) is 

something, which comes as a result of the spatial dependence of the coefficient of viscosity. 

Now, we again integrate over 𝑧 to have the equations in terms of Σ, and you will see that this 

equation gives that Σ times the left-hand side basically does not change. So, if you just check, 

you will see, but the right-hand side changes a bit and we have already transformed 𝜇 is equal 

to 𝜌𝜐, so that we can actually include that also in the integration.  

And we will say that 𝜐 is called the coefficient of kinematic viscosity, and 𝜇 is the coefficient 

of dynamic viscosity. So, Σ [
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝑟𝑣𝜃

𝑟
] =  𝜐Σ [

𝜕2𝑣𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟2] +
𝜕 𝜐Σ

𝜕𝑟
(

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝑟
) , 

that is something you can actually check. So, this is also a good exercise to check. 
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Now, if we can do something to find the evolution of the angular momentum of the disk, 

because the disc is somehow rotating. So, we can be interested in understanding the evolution 

of the angular momentum. That can be obtained if you do one trick that you multiply 𝑟𝑣𝜃, 

with this equation 
𝜕Σ

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟Σ𝑣𝑟) = 0, and you multiply simply 𝑟 with this equation Σ [

𝜕𝑣𝜃

𝜕𝑡
+

𝑣𝑟
𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝑟𝑣𝜃

𝑟
] =  𝜐Σ [

𝜕2𝑣𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟2] +
𝜕 𝜐Σ

𝜕𝑟
(

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝑟
).  

 

If you do 𝑟𝑣𝜃 times equation 1 and 𝑟 times equation 2, and you sum them up you will have 

𝜕

𝜕𝑡
(Σ𝑟2Ω), and what is this? This is nothing but the angular momentum density right, 

integrated over 𝑧, of course, plus 
1

𝑟

𝜕

𝜕𝑟
(ΩΣ𝑟3𝑣𝑟).  

So, that is equal to 
1

𝑟

𝜕

𝜕𝑟
(Σ𝑟3𝜐

𝜕Ω

𝜕𝑟
). Now, for a Keplerian disk, we know that Ω is just a function 

of 𝑟, and it is just you know how should it look like, that should look like 𝑟−3/2. So, you all 

know that Ω should have 𝑟−3/2, so if you remember that 𝑇2 ∝ 𝑟3. So, this type of thing. 
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Now, if you do that, you will see that this 
𝜕Ω

𝜕𝑟
 can actually also be written as 

𝑑Ω

𝑑𝑟
. We also know 

how should it look like because of the dependence. Then for a Keplerian disk, you can further 

simplify this equation to get this 
𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
(𝑟

1

2
𝜕

𝜕𝑟
(Σ𝑟1/2𝜐)). So, from equation 3 to this  

𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
(𝑟

1

2
𝜕

𝜕𝑟
(Σ𝑟1/2𝜐)), I will try to communicate the analytical steps, but this is a bit 

cumbersome do not worry much.  

If you want to show that you can enjoy the calculation. But, even in case you are lost in it, do 

not worry. The basic objective is to understand the final result, and the final result is not yet 

obtained. 
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So, finally, what we can see that 
𝜕Σ

𝜕𝑡
. So, what we get? Try to understand what we get an 

equation for the Σ. So, 
𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
(𝑟

1

2
𝜕

𝜕𝑟
(Σ𝑟1/2𝜐)), and you see that this is an equation of 

evolution of the mass for a Keplerian disk. So, we needed all these things.  

We used Keplerian disk formula and finally, we got this 
𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
(𝑟

1

2
𝜕

𝜕𝑟
(Σ𝑟1/2𝜐)). So, 

although it looks like sometimes, we thought that it can be directly derived from continuity 

equation, you can check. It is not that easy, because 𝜐 is there.  

So, 𝜐 should come from your momentum equation. So, it is really obtained after combining 

continuity equation with the momentum equation. However, when you will see the 

calculations or if you do that at home, then you will check it yourself. 

Now, if we at this point, this is the fundamental equation of evolution of a Keplerian disk. 

Now, if we consider that at 𝑡 = 0, we are now imposing some initial condition, the matter 

was in the form of a ring at 𝑟 = 𝑟0. Then what happens, that Σ at 𝑡 = 0 is nothing but 

𝑚

2𝜋𝑟0
𝛿(𝑟 − 𝑟0), that means, the mass is only concentrated at 𝑟 = 𝑟0. That means, this is a thin 

ring. 

Now, with the initial condition, then this 
𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
(𝑟

1

2
𝜕

𝜕𝑟
(Σ𝑟1/2𝜐)) type of equation finally 

gives this type Σ(x, τ) of solution, where 𝑥 is nothing but process of non-dimensionalization 



 

 

of 
𝑟

𝑟0
, and 𝑟0 is the position where the initial mass ring is supposed to be situated, and τ is 

nothing but another way of non-dimensionalization of the time. So, finally, in the solution 

you can see that the solution for Σ.  

So, how Σ evolves in space and time that is given by this Σ(x, τ). So, you see whenever there 

is a τ, there is a 𝜐, there is viscosity. So, the viscosity plays a very important role in 

determining this type of equation. So, what is this type of equation? It is an exponential type 

of equation which is −
1+𝑥2

τ
, and it is multiplied by a modified Bessel function. So, once 

again do not get horrified by these mathematical mumbo jumbos. 

(Refer Slide Time: 19:59) 

 

On the other hand, try to understand what it gives qualitatively, and because if you do not 

know how to calculate analytically, you can always calculate this type of equations 

numerically. So, this solution clearly shows something very interesting, and that is why we 

are very happy. 

If you plot the solution, then you will see that at very initial position there will be a peak like 

this is direct peak there it starts to diffuse. So, this is 0.004, then this is 0.016, then this is 

0.064, and then this is 0.256. Now, you see that finally, it happens. So, first it got started 

diffusing. So, basically this says that this solution clearly sees that when 𝑡 increases it simply 

says that if this is not 𝑡, this is 𝜏 basically.  



 

 

When 𝜏 increases, basically it says that this is nothing but when 𝜐 increases and 𝑡 increases. It 

is also possible for a given 𝑡 if 𝜐 increases, we can also have an increasing 𝜏. So, that way 

you can see that if we just freeze the time for example, and if we just increase the I mean if 

we just change the viscosity coefficient for example, then we will see that this type of effect 

can also occur.  

So, in this way, you can also think that viscosity is something which plays a very important 

role in transforming this peak type of mass distribution, ring type of mass distribution very 

localized to a diffused disk. If you do not just change here 𝜐, 𝜐 is a constant, you just change 

𝑡. You will see that exponential also includes this 𝜏. 

So, for that, basically you will see this broadening. So, this is the mathematical detailing. But, 

just believe, at that point the broadening with bigger and bigger  𝜏 is mainly caused by the 

viscosity coefficient. And not only that you will see after a certain time this the symmetric 

nature is already get. So, at first it was a bit symmetric this one, and then it was more or less a 

bit less and this one is not at all symmetric the final one – the lower one. 

(Refer Slide Time: 23:11) 

 

What is the meaning of that? That is because the whole system does not have any net external 

torque, so the angular momentum should be conserved. But we know that the angular 

momentum for a Keplerian disk Ω is proportional to 𝑟−3/2, so Ω𝑟2 should be proportional to 

𝑟1/2.  



 

 

Then the angular momentum actually should increase when some mass goes outside for 

larger and larger 𝑟. If the angular momentum should be conserved, then what happens? That 

the momentum, which is gained for some mass which is going outside should be 

compensated by the angular momentum lost by the mass which is spiraling inward.  

As the angular momentum density or the specific angular momentum, angular momentum per 

unit mass, increases with 𝑟, we can actually say that only a small amount of mass can have 

large angular momentum, and vice versa, a large amount of mass can have small momentum, 

and that is why we conclude that most of the lost mass actually spirals inward thereby losing 

angular momentum and only a very few percent of the lost mass go outward. 

(Refer Slide Time: 24:43) 

 

And that is why the disks are less dense outward, and that is exactly what you can see here. 

So, this is somehow the Σ is getting less and less when you are going to more and more away 

of the accretion disk center. So, now, you see that is the picture you have to understand. It is 

not really that you have to understand every single functional form or something at this point. 

If you are interested you can of course, go into the detail. 

But what I am saying that this is interesting. So, there are two things to understand at this 

point. The first thing is that you have to see that whenever at initial point of time, you are 

giving some ring like very locally concentrated mass, I mean distribution. Then with time, it 

is the viscosity which diffuses the whole thing. Because if there is no viscosity, then there is 



 

 

no angular momentum transfer that we discussed last time, and that actually diffuses the 

whole thing from ring to disk like type of thing. 

Then there is another point is that some masses are going inside and some masses are going 

outside. So, now, is it the same amount of mass? There is another one point that the disk 

should be maintaining its Keplerianity, and that is why the angular momentum should be 

increasing with 𝑟 as √𝑟.  

That is why, if the total angular momentum should be conserved and that is the case because 

the system does not have any net external torque that we have already seen. There is no 

external torque in the system. Otherwise, we should have mentioned. 

Then the total angular momentum lost by the inward motion of the mass should be exactly 

compensated by the angular gain in the angular momentum by the outward motion. Now, the 

angular momentum per unit mass is much important for the outward mass. So, in order, the 

two parts to be equal the amount of mass involved in outward going motion should be much 

less than the amount of mass which is spiraling inward.  

So, you want to say simply that 𝑎𝑏 = 𝑐𝑑. Now, if 𝑏 is greater than 𝑑, then 𝑎 must be less 

than 𝑐, as simple as that. So, if you understand these two aspects of accretion disk dynamics, 

then this is already a good start. So, at this point I will stop this discussion, and in the next 

discussion, I will discuss a little bit about the steady disks. 

(Refer Slide Time: 28:09) 

 



 

 

But before that, I will just show you a very interesting picture which is taken by Hubble’s 

Space Telescope. So, this is the ground picture. Here, you can see something very prominent 

occurs and when you just like zoom and take proper picture. You will see that this is nothing 

but a dust accretion disk which has a diameter of can you imagine 3700 light-years. This is 

the diameter, and here, at the very center you can see something like a diamond, something is 

glittering. 

And what is that? This is nothing but a huge 300 million solar mass black hole. Of course, 

you can say that we cannot see the black hole that is true. So, this is just the radiation from 

the horizon of the black hole which we can see. So, this simply says that the existence of 

black hole at the proximity of this thing, I mean this is the horizon of the black hole which we 

can see. They are not the black hole of course. 

So, this is a real image of an accretion disk around a black hole, and you can see that what we 

are just discussing the image which was developed in our mind is somehow very close to 

what we see in reality. 

(Refer Slide Time: 29:57) 

 

Now, next part is the properties of steady disk. Now, it is true that till now we have been 

discussing the evolution of disk. So, if we assume that was also an assumption now that 

initial mass was in the form of a ring, then how it got diffused by the virtue of viscosity? 

Now, we will see that if the disk reaches to some steady state, then what happens? So, that 

what I mean we discuss now. 



 

 

That we have seen the formation and the evolution of a disk, now we search for the 

possibility of the disk in steady state. So, that means, we would like to search for the time 

independent solution of the disk evolution equation. There is a routine process for physics. 

But before that let us consider the 𝑟 and 𝑧 component of the Navier-Stokes equation at steady 

state, and we will see something very interesting from that. Last time we neglected those two 

components just by saying that 𝑣𝑟 and 𝑣𝑧 they are very small actually 𝑣𝑧  is 0. So, we really 

do not have anything very interesting for the evolution equation of the corresponding 

momentum. But here we will again fetch them both and we will see that something very 

interesting may be concluded. 

So, assuming that the disk mass is negligible with respect to the mass of the central compact 

object 𝑀, for example, the black hole mass or the neutron star mass which is at the center of 

an attraction and also that 𝑧, the height of the disc or the thickness of the disc is very very less 

than the radial dimension of the disc that is the classical thin disc approximation. 

(Refer Slide Time: 32:19) 

 

Finally, we get that 𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
−

𝐺𝑀

𝑟2 . Of course, the 
𝜕

𝜕𝑡
 terms term goes away, and 

also the 𝑧-component gives us simply this −
1

𝜌

𝜕𝑝

𝜕𝑧
=

𝐺𝑀𝑧

𝑟3 . So, these two expressions are 

actually obtained.  



 

 

You have to just check yourself the calculation, and I think that is quite an easy calculation. 

So, this one 𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
−

𝐺𝑀

𝑟2
 was the 𝑟𝑡ℎ component, radial component of the 

momentum equation and this one −
1

𝜌

𝜕𝑝

𝜕𝑧
=

𝐺𝑀𝑧

𝑟3
 was the 𝑧 component of the momentum 

equation. 

And in this one −
1

𝜌

𝜕𝑝

𝜕𝑧
=

𝐺𝑀𝑧

𝑟3 , as the 𝑣𝑧 is 0, this simply says that the gradient pressure force 

is exactly balanced by the gravitational force. Although, here the gravitational intensity is 

calculated under this approximation 𝑧 ≪ 𝑟. In these both equations, we have neglected the 

viscosities.  

Although viscosity plays a very crucial role in the radial motion of the system but this is only 

becoming prominent when we are talking about the evolution of momentum in the 𝜃 

direction.  

For the 𝑟̂ direction and for the 𝑧̂ direction really the viscous terms are not of importance, that 

is something very important in modeling. We have always kept an eye open to understand at 

which level, which terms are important, and which terms are not.  

(Refer Slide Time: 34:57) 

 



 

 

Now, we assume that ℎ is the thickness of the disk, which is also a very small quantity, then 

approximately we can say that the 
𝜕𝑝

𝜕𝑧
 that is the change of pressure a linear function of 𝑧. This 

is a fair assumption, so that is nothing, but 
𝑝

ℎ
. 

Then you can say using this one 
𝜕𝑝

𝜕𝑧
=

𝑝

ℎ
 and using this −

1

𝜌

𝜕𝑝

𝜕𝑧
=

𝐺𝑀𝑧

𝑟3
 last equation, you can say 

finally that 
𝑝

𝜌ℎ
 almost of the same order of 

𝐺𝑀ℎ

𝑟3 , and if you do the correct calculation, one line 

calculation, you will see 
ℎ2

𝑟2 is of the approximately equal to 
𝑟𝑝

𝐺𝑀𝜌
. And this is very less than 1 

because this is nothing but 
ℎ2

𝑟2, and 
ℎ2

𝑟2 is very very less than 1 by thin disk approximation. 

Now, from 𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
−

𝐺𝑀

𝑟2 , we can compare two terms. Here, we have two terms 

in the right-hand side, one is the pressure gradient force, another is the gravitational force. If 

we do that, you will see that the ratio of these two is roughly also equal to 
𝑟𝑝

𝐺𝑀𝜌
 and exactly 

equal to the above calculated.  

This is then also very less than 1 in thin disk approximation. That is why we can actually 

assume that this term 
𝐺𝑀

𝑟2
 is dominating over this term 

1

𝜌

𝜕𝑝

𝜕𝑟
. So, we just neglect this term 

1

𝜌

𝜕𝑝

𝜕𝑟
. 

We can forget this term 𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝜃
2

𝑟
 because 𝑣𝑟 is very small with respect to 𝑣𝜃. So, finally, 

the 𝑟 component or radial component of the momentum evolution equation simply gives us 

this 
𝑣𝜃

2

𝑟
=

𝐺𝑀

𝑟2
, and this is nothing but Keplerian Disk approximation. 
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So, you see the conclusion is very interesting that a disk can be assumed to be Keplerian 

when the pressure gradient is neglected with respect to the gravity term, and this is consistent 

with the thin disk approximation. So, if the disk is such that the pressure gradient force 

cannot be neglected with respect to the gravitational force, then Keplerian disk is an 

approximation is a non-reasonable or unreasonable approximation. 

(Refer Slide Time: 37:49) 

 

Now finally, we consider the steady state condition of the basic equations (1) and (3) of disk 

evolution, that means the continuity equation and the evolution for the angular momentum 



 

 

equation. So, now, if you just say that the explicit time dependent terms are 0, then you will 

directly can show that Σr𝑣𝑟 is equal to 𝐶1.  

So, I can just show you once again, there is no problem, in case you forgot. So, in this 

equation (3) at steady state this  
𝜕

𝜕𝑡
(Σ𝑟2Ω) is 0. So, 

1

𝑟
 goes away. So, this thing Σ𝑟2Ω within 

bracket is constant.  

So, you have this ΩΣ𝑟3𝑣𝑟 − Σ𝑟3𝜐
𝜕Ω

𝜕𝑟
  equal to constant, and that is exactly our conclusion over 

here. We call the first constant as 𝐶1 and the second constant as 𝐶2. Now, note that the mass 

loss rate is nothing but minus, because that is a loss rate, of course, −(2𝜋𝑟Σ)
𝜕𝑟

𝜕𝑡
. 

This is because, if you just think that the mass is lost like this. So, the cylindrical shells like 

this, then you just take an infinite extended cylindrical shell like this, and you will see that the 

mass inside this will be nothing but (2𝜋𝑟Σ)dr and mass per unit time, the change in mass will 

be (2𝜋𝑟Σ)
𝜕𝑟

𝜕𝑡
, and 

𝜕𝑟

𝜕𝑡
 is nothing but 𝑣𝑟.  

So, the mass loss rate is nothing but −(2𝜋𝑟Σ)𝑣𝑟, and this is 𝑚̇. Then we know Σr𝑣𝑟 is 

constant 𝐶1. So, 𝑚̇ is equal to −2𝜋𝐶1 which is also constant. So, the first thing is that for our 

consideration, at steady state for an accretion disk, the mass loss rate is a constant.  

Secondly, if we assume that at the surface 𝑟 is equal to 𝑟∗ of the gravitating body, that means, 

at the radius of the central body, for example, the neutron star or the compact star of the black 

hole, the matter is dragged into a rigid rotation process, and then 
𝑑Ω

𝑑𝑟
 is constant there, that is a 

fair reasonable approximation.  

Then using this ΩΣ𝑟3𝑣𝑟 − Σ𝑟3𝜐
𝜕Ω

𝜕𝑟
= 𝐶2 expression you can just express 𝐶2  is equal to 

−
𝑚̇

2𝜋
(𝐺𝑀𝑟∗)1/2. Now, you see again both 𝐶1, and 𝐶2 are proportional to 𝑚̇. 
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Finally, you can find an expression relating 𝑚̇ and Σ𝜐. So, you see Σ𝜐 is equal to 
𝑚̇

3𝜋
[1 −

(
𝑟

𝑟∗
)1/2]. So, this is one result which you can show. These are very good home works.  

Now, even more interesting part is that 𝑚̇ is proportional to 𝜐. So, if 𝜐 is increasing, then 

your 𝑚̇ is increasing, that means, the system viscosity is higher the mass loss rate is higher.  

But finally, even before starting the dynamics of the accretion disks, we said that how really 

one detects the accretion disks that is by detecting their radiated energy in the form of X-ray. 

So, now, we try to calculate although approximately, we try to rather estimate the energy loss 

rate by dissipation, and here you will see that we calculate the rate of energy dissipation by 

viscosity, and we will see what is that. So, for weakly compressible fluid, analytically one 

can actually show that the rate at which energy is dissipated from a fluid by virtue of its 

dissipation is given by −
𝑑𝐸

𝑑𝑡
 which is equal to ∫ 𝜇𝑟2(

𝑑Ω

𝑑𝑟
)2𝑑𝑧. 

That is roughly equal to for our case Σ𝑟2𝜐 (
𝑑Ω

𝑑𝑟
)

2

. Finally, putting this value into this thing 

Σ𝜐 =
𝑚̇

3𝜋
[1 − (

𝑟

𝑟∗
)

1

2
], so 

𝑑𝐸

𝑑𝑡
 you get. So, finally, you will see that −

𝑑𝐸

𝑑𝑡
=

3𝐺𝑀𝑚̇

4𝜋𝑟3 [1 − (
𝑟∗

𝑟
)

1

2
].  



 

 

So, once again you have this expression for Σ𝜐, and here you have an expression for 
𝑑𝐸

𝑑𝑡
. So, 

you just substitute this value of Σ𝜐 =
𝑚̇

3𝜋
[1 − (

𝑟

𝑟∗
)

1

2
] over here −

𝑑𝐸

𝑑𝑡
= Σ𝑟2𝜐 (

𝑑Ω

𝑑𝑟
)

2

, and you 

will have this expression −
𝑑𝐸

𝑑𝑡
=

3𝐺𝑀𝑚̇

4𝜋𝑟3 [1 − (
𝑟∗

𝑟
)

1

2
]. 
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This is quite easy to understand.  
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And what is the marvel of this expression? Can you see anything interesting? Well, I can see. 

You see this is proportional to 𝑚̇, and 𝑚̇ is proportional to 𝜐 – the viscosity coefficient. So, it 

means that the viscosity coefficient is higher. So, the viscous energy dissipation rate is also 

higher which is intuitive.  

Now, the total energy emitted per unit volume by viscosity is given by then this 𝐿, and that is 

just integrated from 𝑟∗ to infinity, 𝑟∗ means that is the surface of the small compact star on 

which finally all the mass are getting accreted, ∫ −
𝑑𝐸

𝑑𝑡
 2𝜋𝑟𝑑𝑟

∞

𝑟∗
, and finally, if you calculate 

you will find a fantastic result which is 
𝐺𝑀𝑚̇

2𝑟∗
, 𝑚̇ is a function of 𝜐.  

So, 𝐿 is a function of 𝜐 again, and you see what this is, this is nothing but the half of the lost 

gravitational potential energy by the mass lost from the less dense star. So, half of the 

potential energy, which is lost by the mass, which is now accreted to the compact star is 

converted to heat by dissipation. 

What happens to the other half? Well, this is also very easy to understand. This basically 

contributes to the kinetic energy and you can actually calculate that kinetic energy to the disk. 

If you can understand that, you can simply see that the total gravitational potential energy lost 

now gets converted into two classes; one is the kinetic energy of the disk, one is the heat 

energy or the radiated energy.  

And that is exactly the energy what one can see as a compact source of X-ray, for example. 

Now, an interesting thing is that people when they start estimating this type of energy, for 

example, if they use this type of formula 𝐿 and then use this kinematic viscosity, then they 

estimate that from normal kinetic theory, they see that the 𝐿 or the energy emitted is much 

lower than what is really observed.  

That means, the kinetic viscosity or the viscosity coefficient which is calculated from kinetic 

theory is not sufficient to account for the energy, and that is why it is proposed that it is a 

resultant viscosity coefficient, which is the kinematic viscosity coefficient plus the turbulent 

viscosity coefficient, is actually sufficient to account for the observed energy dissipated from 

an accretion disk.  

This thing then opened a new domain of research that is the efficiency of transport of angular 

momentum by turbulence. That means, turbulence what it does? It adds to the efficiency of 



 

 

the viscosity, resultant viscosity of the medium thereby making the process the angular 

momentum transfer much more efficient. 

So, that was all about the accretion disks, which lies in the scope of this course. The accretion 

disc is a matter of ongoing research, of course, and if you are interested, you can check out 

different papers, works, videos over internet, nowadays you have millions of resources of a 

accretion disk. Of course, if you always have good physics questions, do not hesitate to share 

with me. I will be happy to answer you. If I do not know the answer, I will also think. 

Thank you, once again for your support, and I always think that astrophysical things are best 

understood when you will see the images and the videos. So, do that, and that was all about 

this accretion disks in astrophysics. In the next discussion, we start about the behavior of a 

compressible fluid, and how it reacts or how it responds to a perturbation to this medium, and 

thereby introducing sound waves, shocks, and other things. 

Thank you very much. 


