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Lecture — 23
Accretion disks 11
Hello, and welcome to another lecture of Introduction to Astrophysical Fluids. In this lecture,
we will discuss the dynamics of accretion disks in astrophysics. Before starting, | try to tell
you a very important point that here in this context of Accretion Disk we will do some

modeling.

When we will do some modeling, sometimes it may happen that the steps are not
mathematically rigorous. So, at that point we have to remember that we will try to match
some of our results or our mathematical structure or model with some known phenomena or

observed phenomena.

That is why, if sometimes something is reasonable from our practical point of view, that
means, from our observational knowledge or some common sense then I mean we will not
really abide by the mathematically 100 percent at that point, and we will do something

offhand approximately.

But I will tell you, there will be no secret or no hidden message of this type of approximation,
whenever there will be approximation, I will tell you explicitly. But finally, the goal is to find
something or to recover something, which we already observed, even if not exactly at least
moderately exactly, so that is our motto or our objective for this thing.

Another point is that, in case of the accretion disks, there will be a lot of mathematical steps.
So, in this course, it is not our objective to learn all the detailed mathematical steps.
Sometimes, when | will say in the scope of this course to go through the mathematical steps

to learn, please do that.

But for example, when | will tell here some mathematical steps, and | will say that after some
algebra after some steps, in the most cases this is not really mandatory for you to go through
all the steps, but rather you try to understand the final result and the physical meaning of the

final result, and that is something which is important for this course.



However, if you are interested you can always go through this type of detailed calculation,
searching through internet, or referring to some books which I have already mentioned, and
some elements of the detailed calculation will also be communicated to you by me. So, do not
worry much for these things. | will try to make clear the best possible mathematical details,
but of course once again the objective is not to get lost inside the mathematical details rather

try to find out the meaning out of the final results.

Even for exams, we will not ask you to do calculations to derive something long, it will be
mostly using the results, which will be discussed here to show something interesting or to
calculate something or to ask physics questions. So, it is finally, important that the picture of
accretion disk, and the corresponding dynamics, the formation, the stability, the physics

behind it should be clear.
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So, once again we start by capitulating the basic assumptions. As | said that for analytical
convenience Sakura and Sunyaev — these two people, they propose thin disk models, and for

that, we need several approximations. The first one is of course, the use of cylindrical

coordinates. Then the disk to be axisymmetric, so that for any quantity % will be 0.

The principal motion of the moving matter will be considered mostly in the cross radial
direction that is the vy will be the dominating component of velocity however, v, will be
non-zero, but it is very small, but v, will cause the small radial flow due to viscosity. Now,

for v,, we will assume that to be 0.
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In general, we will also assume that — |s not equal to 0. For example |s not equal to 0, but

for the velocity components of v, and v,, vy that will be 0. Because v,, vg — they are small
and their changes are also assumed very reasonably to be small.

So, if it is not as | said last time then think of it. You will understand that there should be
some deformation in the disk formation and that is not quite welcome in this simplified
framework. Now, with all these assumptions, finally, we will go and study the dynamics of
accretion disks.
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Now, first this is nothing but the equation of continuity comes. In cylindrical coordinate, this

IS written as % + %%(rpvr) = 0. Now, this is my question to you, have you understood why
the divergence term has only one term and not the del? So, the term involving % is 0, but the

term involving % is not 0, but v, there will be 0. So, this type of simplifications you can

actually check at home.

Now, we want to get rid of any z-dependence that is because our primary assumption or the
premise is that we should discuss for the dynamics of a disk whose thickness is negligible

with respect to its radial extension, | mean radial dimension.

And that is why any variation about z or something is not really of our current interest, it may
be interest for other research topic. But for our case, we will just try to see what happens
roughly in the plane, which is perpendicular to the z-direction or that means, the » — 8 plane.

For that, what we will do? We will try to get rid of any z-dependence. So, we all know that

vy

ovy 61}9
0z 0

is already 0 and so —= is something, which we should be taking care of, other than that p

z

has a z-dependence, and aaiz is also 0.

Now, the question is that how to get rid of the z-dependence of p? One very simple thing, we
can do that we say that instead of p, we will write equations in terms of X. So, this X is not for
summation that can be confusing, but just please bear with it for instance that X is equal to

[ pdz. So, this is the density integrated along z-direction.

So, that does not have any information about the variation. Already, it is integrated over z, so
any variation of p with respect to z will be contained in it. Finally, if we just study the
evolution equation of X, now basically in those equations we are actually concentrating what

is happening on the plane of the disk that is r — 6 plane.

For that, you can actually see that this continuity equation becomes simple. So, you just

multiply every term with dz, and then you integrate, and you will say you will have % +

%% (rZv,) = 0. So, this is a good exercise to do at home.
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Up to this point, we are using assumptions, but we are not compromising anything with
mathematically. So, up to this, this is mathematically exact. Now, this was all for the
continuity equation. Now, for the momentum evolution equation, we know that vy is the
dominant component of velocity. So, we are interested in the & component of the momentum

equation, fair enough.
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So, that is some part you can check in the books of vector algebra vector calculus and vector
analysis that if you write this type of equation — Navier-Stokes’s equation in cylindrical

coordinate system, and where you do not use the u to be constant.
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If you remember this, then you actually see that the & component of Navier-Stokes equation

should look like this p[—+ av" +@], that one term which comes, you can actually

show is equal to H[a 2+ 1aﬁ—v—e]+a—“(aﬁ—vr—6). Now, this term (6”9 =)

r or r2 or ~ or

something, which comes as a result of the spatial dependence of the coefficient of viscosity.

Now, we again integrate over z to have the equations in terms of X, and you will see that this
equation gives that X times the left-hand side basically does not change. So, if you just check,
you will see, but the right-hand side changes a bit and we have already transformed u is equal

to pv, so that we can actually include that also in the integration.

And we will say that v is called the coefficient of kinematic viscosity, and u is the coefficient

61;3 dvg n vrmg] - [62179 n 10vg 17_9] dvx v_gaﬁ)

of dynamic viscosity. So, Z[ Ur o oz T2, 7z pol Guew

that is something you can actually check. So, this is also a good exercise to check.
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Now, if we can do something to find the evolution of the angular momentum of the disk,
because the disc is somehow rotating. So, we can be interested in understanding the evolution

of the angular momentum. That can be obtained if you do one trick that you multiply rvy,

with this equation a_>: + li(err) = 0, and you multiply simply r with this equation Z [aaif +

6179 vrve] [6 vy 161;9 ve] 0 VX vg dvg
Ur 5 or = VX or2 " r or r? or (r ar)'

If you do rvg times equation 1 and r times equation 2, and you sum them up you will have

%(Zrzﬂ), and what is this? This is nothing but the angular momentum density right,

integrated over z, of course, plus %% (Qzriv,).

So, that is equal to %% (Zr3v g—f) Now, for a Keplerian disk, we know that Q is just a function

of r, and it is just you know how should it look like, that should look like =3/2. So, you all

know that @ should have r=3/2, so if you remember that T2 o r3. So, this type of thing.
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Now, if you do that, you will see that this aa—f can actually also be written as ‘;—?. We also know

how should it look like because of the dependence. Then for a Keplerian disk, you can further

oz

1
0z _ Ei(ﬁair@rlﬂv))_ So, from equation 3 to this 2

simplify this equation to get this % =

at

39
ror

1
(rE%(Zrl/Zu)), I will try to communicate the analytical steps, but this is a bit
cumbersome do not worry much.
If you want to show that you can enjoy the calculation. But, even in case you are lost in it, do

not worry. The basic objective is to understand the final result, and the final result is not yet

obtained.
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So, finally, what we can see that % So, what we get? Try to understand what we get an

oz _30

equation for the 3. So, = ==-=

1
(rE%(Zrl/Zv)) and you see that this is an equation of

evolution of the mass for a Keplerian disk. So, we needed all these things.

1
We used Keplerian disk formula and finally, we got this %=%%(r§%(2rl/2v)>. So,

although it looks like sometimes, we thought that it can be directly derived from continuity

equation, you can check. It is not that easy, because v is there.

So, v should come from your momentum equation. So, it is really obtained after combining
continuity equation with the momentum equation. However, when you will see the

calculations or if you do that at home, then you will check it yourself.

Now, if we at this point, this is the fundamental equation of evolution of a Keplerian disk.
Now, if we consider that at t = 0, we are now imposing some initial condition, the matter
was in the form of a ring at r = r,. Then what happens, that £ at ¢ = 0 is nothing but

%5& — 1p), that means, the mass is only concentrated at r = r,. That means, this is a thin

ring.

2 _ Ei(r%%@rl/zu)) type of equation finally

Now, with the initial condition, then this —
ot ror

gives this type Z(x,t) of solution, where x is nothing but process of non-dimensionalization



of % and rq is the position where the initial mass ring is supposed to be situated, and t is

nothing but another way of non-dimensionalization of the time. So, finally, in the solution

you can see that the solution for .

So, how X evolves in space and time that is given by this Z(x, ). So, you see whenever there
iIs a T, there is a v, there is viscosity. So, the viscosity plays a very important role in
determining this type of equation. So, what is this type of equation? It is an exponential type

of equation which is —1%362, and it is multiplied by a modified Bessel function. So, once

again do not get horrified by these mathematical mumbo jumbos.
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On the other hand, try to understand what it gives qualitatively, and because if you do not
know how to calculate analytically, you can always calculate this type of equations
numerically. So, this solution clearly shows something very interesting, and that is why we
are very happy.

If you plot the solution, then you will see that at very initial position there will be a peak like
this is direct peak there it starts to diffuse. So, this is 0.004, then this is 0.016, then this is
0.064, and then this is 0.256. Now, you see that finally, it happens. So, first it got started
diffusing. So, basically this says that this solution clearly sees that when t increases it simply

says that if this is not t, this is t basically.



When t increases, basically it says that this is nothing but when v increases and t increases. It
is also possible for a given t if v increases, we can also have an increasing 7. So, that way
you can see that if we just freeze the time for example, and if we just increase the | mean if
we just change the viscosity coefficient for example, then we will see that this type of effect

can also occur.

So, in this way, you can also think that viscosity is something which plays a very important
role in transforming this peak type of mass distribution, ring type of mass distribution very
localized to a diffused disk. If you do not just change here v, v is a constant, you just change

t. You will see that exponential also includes this .

So, for that, basically you will see this broadening. So, this is the mathematical detailing. But,
just believe, at that point the broadening with bigger and bigger t is mainly caused by the
viscosity coefficient. And not only that you will see after a certain time this the symmetric
nature is already get. So, at first it was a bit symmetric this one, and then it was more or less a

bit less and this one is not at all symmetric the final one — the lower one.

(Refer Slide Time: 23:11)

* N selulion cl shrs Hhat with Hme, e w{r\g
aUtIP wath +o disk omd e seosi rl s Hae maun ~ole mid
: e
Y 0% "
* SUna, 'T‘Rj.amavxlﬁﬂwwmhuw\ fvrum"t ™o (-0_77')'\'7/7—

omd e ovr\au\a/r

et b Lonserve
Hwm, m\LJ o sl
amownd o2 Moz
qov entside Bt

Most of alie lost

W §\>ivals mword

HRerely Loc(»g amgnlan

What is the meaning of that? That is because the whole system does not have any net external
torque, so the angular momentum should be conserved. But we know that the angular

momentum for a Keplerian disk Q is proportional to ~3/2, so Qr? should be proportional to
r1/2,



Then the angular momentum actually should increase when some mass goes outside for
larger and larger r. If the angular momentum should be conserved, then what happens? That
the momentum, which is gained for some mass which is going outside should be

compensated by the angular momentum lost by the mass which is spiraling inward.

As the angular momentum density or the specific angular momentum, angular momentum per
unit mass, increases with r, we can actually say that only a small amount of mass can have
large angular momentum, and vice versa, a large amount of mass can have small momentum,
and that is why we conclude that most of the lost mass actually spirals inward thereby losing

angular momentum and only a very few percent of the lost mass go outward.
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And that is why the disks are less dense outward, and that is exactly what you can see here.
So, this is somehow the X is getting less and less when you are going to more and more away
of the accretion disk center. So, now, you see that is the picture you have to understand. It is
not really that you have to understand every single functional form or something at this point.

If you are interested you can of course, go into the detail.

But what | am saying that this is interesting. So, there are two things to understand at this
point. The first thing is that you have to see that whenever at initial point of time, you are
giving some ring like very locally concentrated mass, | mean distribution. Then with time, it

is the viscosity which diffuses the whole thing. Because if there is no viscosity, then there is



no angular momentum transfer that we discussed last time, and that actually diffuses the

whole thing from ring to disk like type of thing.

Then there is another point is that some masses are going inside and some masses are going
outside. So, now, is it the same amount of mass? There is another one point that the disk

should be maintaining its Keplerianity, and that is why the angular momentum should be

increasing with r as /7.

That is why, if the total angular momentum should be conserved and that is the case because
the system does not have any net external torque that we have already seen. There is no

external torque in the system. Otherwise, we should have mentioned.

Then the total angular momentum lost by the inward motion of the mass should be exactly
compensated by the angular gain in the angular momentum by the outward motion. Now, the
angular momentum per unit mass is much important for the outward mass. So, in order, the
two parts to be equal the amount of mass involved in outward going motion should be much

less than the amount of mass which is spiraling inward.

So, you want to say simply that ab = cd. Now, if b is greater than d, then a must be less
than c, as simple as that. So, if you understand these two aspects of accretion disk dynamics,
then this is already a good start. So, at this point | will stop this discussion, and in the next

discussion, I will discuss a little bit about the steady disks.
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But before that, I will just show you a very interesting picture which is taken by Hubble’s
Space Telescope. So, this is the ground picture. Here, you can see something very prominent
occurs and when you just like zoom and take proper picture. You will see that this is nothing
but a dust accretion disk which has a diameter of can you imagine 3700 light-years. This is
the diameter, and here, at the very center you can see something like a diamond, something is

glittering.

And what is that? This is nothing but a huge 300 million solar mass black hole. Of course,
you can say that we cannot see the black hole that is true. So, this is just the radiation from
the horizon of the black hole which we can see. So, this simply says that the existence of
black hole at the proximity of this thing, | mean this is the horizon of the black hole which we

can see. They are not the black hole of course.

So, this is a real image of an accretion disk around a black hole, and you can see that what we
are just discussing the image which was developed in our mind is somehow very close to

what we see in reality.
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Now, next part is the properties of steady disk. Now, it is true that till now we have been
discussing the evolution of disk. So, if we assume that was also an assumption now that
initial mass was in the form of a ring, then how it got diffused by the virtue of viscosity?
Now, we will see that if the disk reaches to some steady state, then what happens? So, that

what | mean we discuss now.



That we have seen the formation and the evolution of a disk, now we search for the
possibility of the disk in steady state. So, that means, we would like to search for the time

independent solution of the disk evolution equation. There is a routine process for physics.

But before that let us consider the r and z component of the Navier-Stokes equation at steady
state, and we will see something very interesting from that. Last time we neglected those two
components just by saying that v, and v, they are very small actually v, is 0. So, we really
do not have anything very interesting for the evolution equation of the corresponding
momentum. But here we will again fetch them both and we will see that something very

interesting may be concluded.

So, assuming that the disk mass is negligible with respect to the mass of the central compact
object M, for example, the black hole mass or the neutron star mass which is at the center of
an attraction and also that z, the height of the disc or the thickness of the disc is very very less

than the radial dimension of the disc that is the classical thin disc approximation.
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Finally, we get that v, P ey Of course, the 5; lerms term goes away, and
also the z-component gives us simply this —%Z—Zz%. So, these two expressions are

actually obtained.



You have to just check yourself the calculation, and I think that is quite an easy calculation.

. 0 10 GM -
So, this one Ur%—vr—OZ —;%—T—Z was the r" component, radial component of the
. . 10p GMz
momentum equation and this one —a = s was the z component of the momentum

equation.

op _ GMz

And in this one — ; o, = , as the v, is 0, this simply says that the gradient pressure force

is exactly balanced by the gravitational force. Although, here the gravitational intensity is
calculated under this approximation z « r. In these both equations, we have neglected the

viscosities.

Although viscosity plays a very crucial role in the radial motion of the system but this is only

becoming prominent when we are talking about the evolution of momentum in the 8

direction.

For the 7 direction and for the Z direction really the viscous terms are not of importance, that
is something very important in modeling. We have always kept an eye open to understand at

which level, which terms are important, and which terms are not.
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Now, we assume that h is the thickness of the disk, which is also a very small quantity, then
approximately we can say that the Z—Z that is the change of pressure a linear function of z. This

is a fair assumption, so that is nothing, but %.

. . 0 . . 10 GM -
Then you can say using this one a_z = %and using this —;é = r—3Z last equation, you can say

finally that ;ih almost of the same order of G;"h

3

, and if you do the correct calculation, one line
2
calculation, you will see }rl—z is of the approximately equal to %. And this is very less than 1

because this is nothing but ':—z and 'rl—z is very very less than 1 by thin disk approximation.

v, v} 19p GM
Now, from v, =~ — -2 = — >3 ~ 72 We can compare two terms. Here, we have two terms

in the right-hand side, one is the pressure gradient force, another is the gravitational force. If

we do that, you will see that the ratio of these two is roughly also equal to % and exactly

equal to the above calculated.

This is then also very less than 1 in thin disk approximation. That is why we can actually
assume that this term Gr—ﬂf is dominating over this term %‘;—f. So, we just neglect this term %g—f.

2
We can forget this term Ur% - UTG because v, is very small with respect to vy. So, finally,

T

the » component or radial component of the momentum evolution equation simply gives us

2
this UT" = Gr—lf and this is nothing but Keplerian Disk approximation.



(Refer Slide Time: 37:13)

92| "R TP s T e Y oemp T
(Tkiwbisk)
x Fron (1) wenow Compare
It 5 Mo boxr b R
BE VAR kS
¥ T in (i) Finally we fave apprximately

yE
'\.)L = Q}MT. (K@P\emam b«‘sk>

A
%, a dise tam be arpumed to be Kaf\exﬁowv
wheu HRe prearure rodient b ’Mq\uhd Wy bt
%’rﬂw\)nq Ferwy - Coysislent witly Thin Desk -

So, you see the conclusion is very interesting that a disk can be assumed to be Keplerian
when the pressure gradient is neglected with respect to the gravity term, and this is consistent
with the thin disk approximation. So, if the disk is such that the pressure gradient force
cannot be neglected with respect to the gravitational force, then Keplerian disk is an

approximation is a non-reasonable or unreasonable approximation.
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Now finally, we consider the steady state condition of the basic equations (1) and (3) of disk

evolution, that means the continuity equation and the evolution for the angular momentum



equation. So, now, if you just say that the explicit time dependent terms are 0, then you will

directly can show that Zruv, is equal to C;.

So, | can just show you once again, there is no problem, in case you forgot. So, in this
equation (3) at steady state this %(Zrzﬂ) is 0. So, % goes away. So, this thing Zr2Q within

bracket is constant.

So, you have this QXr3v, — Zr%%—f equal to constant, and that is exactly our conclusion over
here. We call the first constant as C; and the second constant as C,. Now, note that the mass

loss rate is nothing but minus, because that is a loss rate, of course, —(2nrX) %.

This is because, if you just think that the mass is lost like this. So, the cylindrical shells like
this, then you just take an infinite extended cylindrical shell like this, and you will see that the

mass inside this will be nothing but (2zrX)dr and mass per unit time, the change in mass will

be (2nrY) %, and % is nothing but v,..

So, the mass loss rate is nothing but —(2nrX)v,, and this is m. Then we know Zrv, is
constant C;. So, m is equal to —2mC; which is also constant. So, the first thing is that for our

consideration, at steady state for an accretion disk, the mass loss rate is a constant.

Secondly, if we assume that at the surface r is equal to r, of the gravitating body, that means,

at the radius of the central body, for example, the neutron star or the compact star of the black
hole, the matter is dragged into a rigid rotation process, and then Z—f is constant there, that is a

fair reasonable approximation.

90 : : .
— = (C, expression you can just express C, is equal to

Then using this QXr3v, — 2rdv =

- % (GMr,)*/%. Now, you see again both ¢;, and ¢, are proportional to 7.
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Finally, you can find an expression relating m and Zv. So, you see Zv is equal to %[1 —

(5)1/2]. So, this is one result which you can show. These are very good home works.

Now, even more interesting part is that m is proportional to v. So, if v is increasing, then

your m is increasing, that means, the system viscosity is higher the mass loss rate is higher.

But finally, even before starting the dynamics of the accretion disks, we said that how really

one detects the accretion disks that is by detecting their radiated energy in the form of X-ray.

So, now, we try to calculate although approximately, we try to rather estimate the energy loss
rate by dissipation, and here you will see that we calculate the rate of energy dissipation by
viscosity, and we will see what is that. So, for weakly compressible fluid, analytically one

can actually show that the rate at which energy is dissipated from a fluid by virtue of its

dissipation is given by — Z—f which is equal to furz(Z—f)zdz.

2
That is roughly equal to for our case Xr?v (Z—f) . Finally, putting this value into this thing
1 1
_m r\2 dE . . dE _ 3GMm |, (1.2
Su=—|1- (r—) l S0 — you get. So, finally, you will see that - = [1 ( ) l

31 . 4mr3 T




. . . . dE
So, once again you have this expression for Xv, and here you have an expression for - So,

1
you just substitute this value of Xv = —Il - ) l over here _E =Xr v( Q) , and you

1
will have this expression —‘;—f =3 ll - (E)Zl-

4mr3 T
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This is quite easy to understand.
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And what is the marvel of this expression? Can you see anything interesting? Well, | can see.
You see this is proportional to m, and m is proportional to v — the viscosity coefficient. So, it
means that the viscosity coefficient is higher. So, the viscous energy dissipation rate is also

higher which is intuitive.

Now, the total energy emitted per unit volume by viscosity is given by then this L, and that is

just integrated from r, to infinity, r, means that is the surface of the small compact star on

which finally all the mass are getting accreted, f:o —Z—f 2nrdr, and finally, if you calculate

you will find a fantastic result which is , m is a function of v.

GMm
27
So, L is a function of v again, and you see what this is, this is nothing but the half of the lost
gravitational potential energy by the mass lost from the less dense star. So, half of the
potential energy, which is lost by the mass, which is now accreted to the compact star is

converted to heat by dissipation.

What happens to the other half? Well, this is also very easy to understand. This basically
contributes to the kinetic energy and you can actually calculate that kinetic energy to the disk.
If you can understand that, you can simply see that the total gravitational potential energy lost
now gets converted into two classes; one is the kinetic energy of the disk, one is the heat

energy or the radiated energy.

And that is exactly the energy what one can see as a compact source of X-ray, for example.
Now, an interesting thing is that people when they start estimating this type of energy, for
example, if they use this type of formula L and then use this kinematic viscosity, then they
estimate that from normal kinetic theory, they see that the L or the energy emitted is much

lower than what is really observed.

That means, the kinetic viscosity or the viscosity coefficient which is calculated from kinetic
theory is not sufficient to account for the energy, and that is why it is proposed that it is a
resultant viscosity coefficient, which is the kinematic viscosity coefficient plus the turbulent
viscosity coefficient, is actually sufficient to account for the observed energy dissipated from

an accretion disk.

This thing then opened a new domain of research that is the efficiency of transport of angular

momentum by turbulence. That means, turbulence what it does? It adds to the efficiency of



the viscosity, resultant viscosity of the medium thereby making the process the angular

momentum transfer much more efficient.

So, that was all about the accretion disks, which lies in the scope of this course. The accretion
disc is a matter of ongoing research, of course, and if you are interested, you can check out
different papers, works, videos over internet, nowadays you have millions of resources of a
accretion disk. Of course, if you always have good physics questions, do not hesitate to share

with me. | will be happy to answer you. If | do not know the answer, | will also think.

Thank you, once again for your support, and | always think that astrophysical things are best
understood when you will see the images and the videos. So, do that, and that was all about
this accretion disks in astrophysics. In the next discussion, we start about the behavior of a
compressible fluid, and how it reacts or how it responds to a perturbation to this medium, and
thereby introducing sound waves, shocks, and other things.

Thank you very much.



