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A small digression: Newtonian fluids 

 

Hi, welcome to another session of introduction to astrophysical fluids. So, last time we stopped 

just after discussing different approximations or basic assumptions in the theory of thin 

accretion disks.  

Today before addressing the equations of dynamics of a thin accretion disks, I would like to 

digress a bit and to share with you a very important physical concept that is the concept of 

Newtonian fluids. 
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So, here basically you can see that if you remember when we were talking about the ideal fluid 

equations then after deriving it or rather after I mean attempting the equations to be derived 

from kinetic equations, we also showed that the different type of forces: body forces and surface 

force these can be also derived from macroscopic considerations. 

If you remember and we also said that the bulk force or the body force acts equally on all points 

of the volume and the body forces are in general conservative in nature whereas the dissipative 



forces are surface force; that means, they work along a surface mostly on the surface of 

contacts. 

Then we said that the only type of surface force which arises in the case of ideal fluids are 

nothing but the pressure gradient force. Now here we will try to recover the form of viscous 

term which was absent for the ideal fluid equations of course and which is constituted by the 

off-diagonal part of the pressure tensor. We shall try to recover that part from macroscopic 

consideration. 

Now, what we in general called a Newton’s hypothesis is very intuitive and this is based on the 

very basic level definition of viscosity. It is usually found that the internal friction or the viscous 

effect of a fluid always tries to reduce the relative velocity between two layers of the fluid. 
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It simply means that if you have two layers of fluid then the faster layer always will try to 

accelerate the slower layer and the slower layer will always try to retard or the decelerate the 

faster one. Thereby in both cases as you can easily understand that there will be a decrease in 

the relative velocity and finally, they want to make a compromise between the two for 

becoming to a I mean intermediate velocity for example, okay and sometimes actually the 

global thing even comes to a rest that is also possible that differs from case to case. 
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Now, in general we say from our everyday experience that internal friction of a fluid or viscous 

effect is something which always tries to prevent the development of a velocity gradient. Now, 

try to understand much more schematically and much more like systematically that we all know 

that the internal friction part should arise from the off-diagonal term of 𝑃𝑖𝑗  right. 

That is because when we try to derive the real fluid equations from kinetic equation, we actually 

showed that the viscous terms are non-zero when we consider a perturbation or a departure 

from the equilibrium Maxwell Boltzmann distribution and this is this part 𝜋𝑖𝑗 which represents 

this internal friction, I mean effect of the internal friction or the viscous effect. Now we would 

try here to find the form of 𝜋𝑖𝑗 , already we have done something from kinetic theory but here 

you will see this macroscopically without using kinetic theory. 

Historically, once again these equations were derived much before the development of this 

passage from kinetic to fluid equations ok. 

So, let us take let us consider one any one component of this type of tensors let us say 𝑖 is 𝑥 and 

𝑗 is 𝑦 , then we just consider the fluid motion let us say in the 𝑋𝑌 plane so, this is the 𝑋𝑌 plane 

and we actually consider that the z direction is perpendicular to the plane of the paper. 

So, 𝑦 direction is the vertically upward direction along which the different layers are situated 

and like the layers are basically they are flowing in the 𝑋𝑍 plane, but now we are just neglecting 

the 𝑧 direction we just say these layers are flowing along 𝑥 directions. 



Let us say this is the ground at which the flow is at rest, the fluid it at rest because of the contact 

with the static floor and then it starts, I mean the velocity increases gradually. You can see the 

different sizes of the arrows simply shows that the velocities are increasing when one goes 

away from the from this floor. 
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Now of course, from common sense we say that the frictional force will work along the contact 

surface of different layers and that is I mean what frictional force is, even this is true when we 

are talking about two solid surfaces, one solid surface and one liquid surface. 

So, now in the in this case the flow is along 𝑥 direction so, the friction will very intuitively 

work along negative 𝑥 direction, but this friction works only because the velocity gradient 

along y direction. If there is no velocity gradient; that means, the arrows are all of same size 

then there is no frictional force. 

Then from that consideration Newton posed a hypothesis and that is the macroscopic tool to 

get into this, I mean in business of finding 𝝅𝒊𝒋 is simply saying that 𝜋𝑥𝑦 should be proportional 

to 𝑑𝑣𝑦

𝑑𝑥
 . So, if the differences of 𝑣𝑥 along 𝑦 is more and more prominent then the 𝑥𝑦 term of 

the  �̅̅�   tensor will also be more and more important and there will be a minus sign because 

this basically tries to develop frictional entity, this tries to reduce the velocity gradient. 



So, in a sense friction i.e., viscous effect is something which tries to kill the reason of its 

generation right and then you can say 𝝅𝒙𝒚 is equal to −𝜇𝑑𝑣𝑦

𝑑𝑥
,  there should be a minus sign in 

general and for fluids where this is true, so, of course, we said that this comes from common 

sense and in a real fluid this is not exactly true, but sometimes this is reasonably true and for 

those fluids for which this type of hypothesis works is known as a Newtonian fluid. 

So, most of our everyday fluids which we come across, most of them can work moderately 

well under this Newton’s hypothesis. So, in a sense all of them are moderately well 

approximated as Newtonian fluids. So, Newtonian fluid simply says that the off-diagonal part 

of the pressure tensor that is the shear stress part is non-zero, this is called the shear stress. Why 

it is shear because this does not have any diagonal term. 

So, shear is nothing but a combination of elongation and compression in two mutually 

perpendicular direction. All these off diagonal terms are giving the shear. So, this is something 

like a stress, you all know that pressure and stress they are the same dimension. 

So, it is a force by unit area type of thing and this shear stress should be proportional to the 

velocity gradient and the velocity gradient should be perpendicular to the direction of the flow, 

that is to be understood. 
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And one can easily understand that if we just say that this one −𝜇𝑑𝑣𝑦

𝑑𝑥
, is getting bigger and 

bigger simply saying or is equivalent to saying that the frictional force corresponding this term 



also increases and is also very easy to understand because viscous force we see is nothing but 

a surface type of force so 𝑑𝑭𝑣𝑖𝑠𝑐𝑜𝑢𝑠 is given by 

𝑑𝑭𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = �̅̅�. 𝑑𝒔 = (

0 𝜋𝑥𝑦 𝜋𝑥𝑧

𝜋𝑦𝑥 0 𝜋𝑦𝑧

𝜋𝑧𝑥 𝜋𝑧𝑦 0
) (

𝑑𝑦𝑑𝑧
𝑑𝑥𝑑𝑧
𝑑𝑥𝑑𝑦

)

 

Now if you do the dot product of this tensor �̅̅� which does not have any diagonal element, when 

this is contracted with the area element 𝑑𝒔 you will see that the 𝑥 component of this viscous 

force simply gives you two terms 𝜋𝑥𝑦𝑑𝑥𝑑𝑧  plus 𝜋𝑥𝑧𝑑𝑥𝑑𝑦. For our case, we are just 

concentrating at one value of 𝑦 for example, at one layer so, y is constant. So, this part 𝜋𝑥𝑧𝑑𝑥𝑑𝑦 

is 0. So, we only have finally, (𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠)𝑥 is nothing but 𝜋𝑥𝑦𝑑𝑥𝑑𝑧 because 𝑑𝑦 is 0, for a given 

intersection between two successive layers and then you can simply say that 𝜋𝑥𝑦 is a very good 

proxy for (𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠)𝑥. 
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So, then that is why we say that when this 𝜋𝑥𝑦 increases then this 𝑑𝑣𝑦

𝑑𝑥
 , it’s modulus increases 

and it simply says that the 𝑥 component of the viscous force also increases. So, you see that the 

stronger is your velocity gradient stronger will be the reply of the fluid medium to that velocity 

gradient in terms of internal friction or viscosity. 

Now, coming to a very practical point Newton’s hypothesis is experimentally found to hold 

only approximately, that is what I told. In addition, it cannot give the correct shear stress in 



case of rigid body rotations that is something very-very important. Although, I mean it is 

moderately valid for most of the fluids we encounter but if the fluid is rotating and actually if 

the fluid is rotating following at rigid body rotation; that means, now think of an imaginary 

concentric cylinder thing and the fluid is actually rotating in concentric cylinders with constant 

angular velocity; that means, although they have different linear velocities, they do not have 

relative angular velocity. 

So, they do not have any relative angular motion with respect to the other and that basically 

gives you some nonzero linear velocity gradient. But the system does not need to respond in 

terms of shear; or in terms of its viscosity that is what I am saying. 
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Because all the layers are moving are corotating. Solid body rotation means 𝛀 is constant, the 

angular velocity is constant. Then there is of course, a prominent non zero 𝑑𝑣𝑖

𝑑𝑥𝑗
 because your 

angular velocity 𝛀 is constant. 

So  𝛀 × 𝐫 which is nothing but the linear velocity 𝒗 that is of course, a function of 𝒓. So, that 

will be different at different 𝒓′𝑠, but finally, since the system is rotating in such a way that some 

global rotation is followed by every point of the system so, there is relative motion of the layers 

of fluid. Of course, here we are just thinking that the whole system is only following a global 

rotation there is no other flow. 



Then what happens that one has to remove the solid body rotation part from the total velocity 

gradient. Now maybe I should explain once again that in case of solid body rotation what 

happens that we have a non-zero velocity gradient, but the viscous force is 0 because there is 

no relative motion. 

So, it is actually not a very correct statement if we simply say that the viscous force or the shear 

stress will be proportional always to the 𝑑𝑣𝑖

𝑑𝑥𝑗

 but rather we should say that the shear stress should 

be proportional to the part of the velocity gradient which does not include the solid body 

rotation. 

How to do that? We can do a very simple thing, we can write the velocity gradient component 

as a sum of a symmetric part and an antisymmetric part, symmetric part we call capital Λ𝑖𝑗 = 

𝑑𝑣𝑖

𝑑𝑥𝑗
+

𝑑𝑣𝑗

𝑑𝑥𝑖
 and the antisymmetric part we called Φ𝑖𝑗 =  

𝑑𝑣𝑖

𝑑𝑥𝑗
−

𝑑𝑣𝑗

𝑑𝑥𝑖
 ; just 𝜋𝑖𝑗 for example. So, this 

is just I mean a plus b plus a minus b type of thing okay. 

Now, let us assume that the fluid is undergoing solid body rotation; that means, 𝛀 is constant. 

So, 𝒗 is equal to some constant vector cross 𝒓 .So, then 𝑣𝑖 the ith component of the velocity 

vector is nothing but equal to 𝜖𝑖𝑘𝑙Ω𝑘𝑟𝑙 , 𝜖 you all know this is a Levi-Civita symbol okay. 
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And so, this is the antisymmetric tensor of rank 3 you know and there is a sum on 𝑘 and 𝑙 okay. 

Now, if you do 
𝑑𝑣𝑗

𝑑𝑥𝑖
 . So, then 𝑑

𝑑𝑥𝑖
 of this whole expression 𝜖𝑗𝑘𝑙Ω𝑘𝑟𝑙 will go there just here in 

case it is 𝑣𝑗. So, I have replaced the 𝑖 by 𝑗 over here. So, now, if you see this is nothing but 

equal to 𝜖𝑗𝑘𝑙Ω𝑘𝛿𝑙𝑖. Now Ω𝑘 is constant so, it comes out and finally, you have 𝑑𝑥𝑙

𝑑𝑥𝑖
 and it is 

nothing but 𝛿𝑙𝑖 . So, if 𝑙 is equal to 𝑖 then it is 1 otherwise it is 0 and if we have this type of thing 

then this 𝑙 will be equal to 𝑖. So, finally, this is nothing, but 𝜖𝑗𝑘𝑖Ω𝑘. 

So, we now have only one sum on 𝑘 ok and similarly we have 𝑑𝑣𝑖

𝑑𝑥𝑗
  which is equal to 𝜖𝑖𝑘𝑗Ω𝑘, 

you can show that. Please check that at home this type of exercises is super important for your 

own development. Of course, you can see that 𝑘 is a dummy index. So, whether I can write 𝑘 

or 𝑚 does not matter, but then when I try to write the sum again to show that what is the value 

of Λ𝑖𝑗 then again, I can take 𝑘 for both the terms. So, that I can group 𝑑𝑣𝑗

𝑑𝑥𝑖
  and 𝑑𝑣𝑖

𝑑𝑥𝑗
. if I add them, 

we will see that there will be term wise cancellation of every term because 𝜖𝑗𝑘𝑖 is minus 𝜖𝑖𝑘𝑗 , 

that is simply because of the antisymmetric nature of Levi-Civita symbol and this finally, leads 

to the vanishing of Λ𝑖𝑗 tensor Λ𝑖𝑗 = 0.  

So, it simply says that when this body has a solid body rotation, the symmetric part of this 

velocity gradient actually vanishes identically. So, the if we wanted assign the property of the 

solid body rotation to some part of this velocity gradient that will be this part Φ𝑖𝑗. 

So, actually this part Φ𝑖𝑗  carries the signature of rotation, the antisymmetric part and the 

symmetric part is free of solid body rotation effect because this vanishes for a solid body 

rotation. 
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However, actually one can show explicitly that Φ𝑖𝑗   does not vanish, but how much it is? Once 

again calculate, this is super easy because I already showed some steps how to manage that 

previously. I calculated capital Λ𝑖𝑗 and therefore, Φ𝑖𝑗   it represents the effect of rotation okay. 

So, finally, removing the part of the solid body rotation, we can actually say that the correct 

statement will be the shear stress should be proportional to the symmetric part of the velocity 

gradient tensor 𝑑𝑣𝑖

𝑑𝑥𝑗
+

𝑑𝑣𝑗

𝑑𝑥𝑖

. But now we do should not forget that there is another condition that 

𝜋𝑖𝑗 should be a traceless tensor. 

So, 𝜋𝑖𝑖 summation over 𝑖 should be 0 and if we consider that we can actually show by some 

calculations that you have already seen when we were talking, I mean we were deriving the 

expression for 𝜋𝑖𝑗 in case of kinetic theory starting from kinetic theory. Then you know that 

how to do that, 𝜋𝑖𝑗 is nothing but equal to 

𝜋𝑖𝑗 =  −𝜇 (
𝑑𝑣𝑖

𝑑𝑥𝑗
+

𝑑𝑣𝑗

𝑑𝑥𝑖
−

2

3
𝛿𝑖𝑗𝛁. 𝒗)

 

Now calculate 𝜋𝑖𝑖. So, 𝑑𝑣𝑖

𝑑𝑥𝑗
+

𝑑𝑣𝑗

𝑑𝑥𝑖
  will be 2𝛁. 𝒗  and 𝛿𝑖𝑖 will be 3, so 𝜋𝑖𝑖 = 0, i.e., 𝜋𝑖𝑗 is traceless. 

. 
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Finally, we recover macroscopically what we found microscopically but for that we needed a 

hypothesis and hence we see the something what we expected and substituting now the value 

of 𝜋𝑖𝑗 in the so-called momentum evolution equation which we call Navier-Stokes equation as 

well  

 𝜌 [
𝜕𝒗

𝜕𝑡
+ (𝒗. 𝛁)𝒗] =  −𝛁𝑝 + 𝜌𝒈 + 𝛁. [𝜇 �̅̅� −

2

3
𝜇(𝛁. 𝒗) �̅̅�  ]   

 

So, 𝑝 is the diagonal element of the pressure tensor plus 𝜌 times 𝒈 this is the body force density 

plus divergence of 𝜋𝑖𝑗. Of course, here at this point we have not considered 𝜇 is necessarily 

constant in space, that is very general. 

And we will use this expression when we will talk of the dynamics of accretion disks. Because 

in case of accretion disks this is most reasonable, I mean it is actually found by different studies 

that the coefficient of viscosity is not constant in space. So, this equation is perfect for studying 

the momentum evolution for the accretion disks. 
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So, after that we will again just come to the basic assumptions of accretion disk for 

recapitulation and then I will address the dynamics of the accretion disk, that I will do in the 

next lecture ok. 

Thank you very much. 


