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Lecture — 22
A small digression: Newtonian fluids

Hi, welcome to another session of introduction to astrophysical fluids. So, last time we stopped
just after discussing different approximations or basic assumptions in the theory of thin

accretion disks.

Today before addressing the equations of dynamics of a thin accretion disks, I would like to
digress a bit and to share with you a very important physical concept that is the concept of

Newtonian fluids.
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So, here basically you can see that if you remember when we were talking about the ideal fluid
equations then after deriving it or rather after I mean attempting the equations to be derived
from kinetic equations, we also showed that the different type of forces: body forces and surface

force these can be also derived from macroscopic considerations.

If you remember and we also said that the bulk force or the body force acts equally on all points

of the volume and the body forces are in general conservative in nature whereas the dissipative



forces are surface force; that means, they work along a surface mostly on the surface of

contacts.

Then we said that the only type of surface force which arises in the case of ideal fluids are
nothing but the pressure gradient force. Now here we will try to recover the form of viscous
term which was absent for the ideal fluid equations of course and which is constituted by the
off-diagonal part of the pressure tensor. We shall try to recover that part from macroscopic

consideration.

Now, what we in general called a Newton’s hypothesis is very intuitive and this is based on the
very basic level definition of viscosity. It is usually found that the internal friction or the viscous

effect of a fluid always tries to reduce the relative velocity between two layers of the fluid.
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It simply means that if you have two layers of fluid then the faster layer always will try to
accelerate the slower layer and the slower layer will always try to retard or the decelerate the
faster one. Thereby in both cases as you can easily understand that there will be a decrease in
the relative velocity and finally, they want to make a compromise between the two for
becoming to a I mean intermediate velocity for example, okay and sometimes actually the

global thing even comes to a rest that is also possible that differs from case to case.
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Now, in general we say from our everyday experience that internal friction of a fluid or viscous
effect is something which always tries to prevent the development of a velocity gradient. Now,
try to understand much more schematically and much more like systematically that we all know

that the internal friction part should arise from the off-diagonal term of P;; right.

That is because when we try to derive the real fluid equations from kinetic equation, we actually
showed that the viscous terms are non-zero when we consider a perturbation or a departure
from the equilibrium Maxwell Boltzmann distribution and this is this part 7;; which represents
this internal friction, I mean effect of the internal friction or the viscous effect. Now we would

try here to find the form of 7r;; , already we have done something from kinetic theory but here

you will see this macroscopically without using kinetic theory.

Historically, once again these equations were derived much before the development of this

passage from kinetic to fluid equations ok.

So, let us take let us consider one any one component of this type of tensors let us say i is x and
j is y , then we just consider the fluid motion let us say in the XY plane so, this is the XY plane

and we actually consider that the z direction is perpendicular to the plane of the paper.

So, y direction is the vertically upward direction along which the different layers are situated
and like the layers are basically they are flowing in the XZ plane, but now we are just neglecting

the z direction we just say these layers are flowing along x directions.



Let us say this is the ground at which the flow is at rest, the fluid it at rest because of the contact
with the static floor and then it starts, I mean the velocity increases gradually. You can see the
different sizes of the arrows simply shows that the velocities are increasing when one goes

away from the from this floor.
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Now of course, from common sense we say that the frictional force will work along the contact
surface of different layers and that is I mean what frictional force is, even this is true when we

are talking about two solid surfaces, one solid surface and one liquid surface.

So, now in the in this case the flow is along x direction so, the friction will very intuitively
work along negative x direction, but this friction works only because the velocity gradient
along y direction. If there is no velocity gradient; that means, the arrows are all of same size

then there is no frictional force.

Then from that consideration Newton posed a hypothesis and that is the macroscopic tool to

get into this, I mean in business of finding 7r;; is simply saying that r,,, should be proportional

to 4 . So, if the differences of v, along y is more and more prominent then the xy term of
dx

the 7T tensor will also be more and more important and there will be a minus sign because

this basically tries to develop frictional entity, this tries to reduce the velocity gradient.



So, in a sense friction i.e., viscous effect is something which tries to kill the reason of its

generation right and then you can say m,,, is equal to ~Hdvy  there should be a minus sign in
dx

general and for fluids where this is true, so, of course, we said that this comes from common
sense and in a real fluid this is not exactly true, but sometimes this is reasonably true and for

those fluids for which this type of hypothesis works is known as a Newtonian fluid.

So, most of our everyday fluids which we come across, most of them can work moderately
well under this Newton’s hypothesis. So, in a sense all of them are moderately well
approximated as Newtonian fluids. So, Newtonian fluid simply says that the off-diagonal part
of the pressure tensor that is the shear stress part is non-zero, this is called the shear stress. Why

it is shear because this does not have any diagonal term.

So, shear is nothing but a combination of elongation and compression in two mutually
perpendicular direction. All these off diagonal terms are giving the shear. So, this is something

like a stress, you all know that pressure and stress they are the same dimension.

So, it is a force by unit area type of thing and this shear stress should be proportional to the
velocity gradient and the velocity gradient should be perpendicular to the direction of the flow,

that is to be understood.
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And one can easily understand that if we just say that this one ~“#4Yy, is getting bigger and
dx

bigger simply saying or is equivalent to saying that the frictional force corresponding this term



also increases and is also very easy to understand because viscous force we see is nothing but

a surface type of force so dF .oy 1S given by

0 Txy Tlxz dde
dF yiscous = T.ds = Tyx 0 Tyy <dxdz>

T[zx T[Zy 0 dXdy

Now if you do the dot product of this tensor 7t which does not have any diagonal element, when
this is contracted with the area element ds you will see that the x component of this viscous
force simply gives you two terms m,,dxdz plus m,,dxdy. For our case, we are just
concentrating at one value of y for example, at one layer so, y is constant. So, this part 7, dxdy
is 0. So, we only have finally, (dF,;scys)x 1s nothing but mr,,,dxdz because dy is 0, for a given
intersection between two successive layers and then you can simply say that mr,, is a very good

proxy for (dFviscous)x'
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So, then that is why we say that when this Ty increases then this 2% , it’s modulus increases
dx

and it simply says that the x component of the viscous force also increases. So, you see that the

stronger is your velocity gradient stronger will be the reply of the fluid medium to that velocity

gradient in terms of internal friction or viscosity.

Now, coming to a very practical point Newton’s hypothesis is experimentally found to hold

only approximately, that is what I told. In addition, it cannot give the correct shear stress in



case of rigid body rotations that is something very-very important. Although, I mean it is
moderately valid for most of the fluids we encounter but if the fluid is rotating and actually if
the fluid is rotating following at rigid body rotation; that means, now think of an imaginary
concentric cylinder thing and the fluid is actually rotating in concentric cylinders with constant
angular velocity; that means, although they have different linear velocities, they do not have

relative angular velocity.

So, they do not have any relative angular motion with respect to the other and that basically
gives you some nonzero linear velocity gradient. But the system does not need to respond in

terms of shear; or in terms of its viscosity that is what I am saying.
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Because all the layers are moving are corotating. Solid body rotation means € is constant, the

angular velocity is constant. Then there is of course, a prominent non zero 2% because your
dxj
]

angular velocity € is constant.

So Q x r which is nothing but the linear velocity v that is of course, a function of r. So, that
will be different at different 7’s, but finally, since the system is rotating in such a way that some
global rotation is followed by every point of the system so, there is relative motion of the layers
of fluid. Of course, here we are just thinking that the whole system is only following a global

rotation there is no other flow.



Then what happens that one has to remove the solid body rotation part from the total velocity
gradient. Now maybe I should explain once again that in case of solid body rotation what
happens that we have a non-zero velocity gradient, but the viscous force is 0 because there is

no relative motion.

So, it is actually not a very correct statement if we simply say that the viscous force or the shear

stress will be proportional always to the 47i but rather we should say that the shear stress should
dx j
be proportional to the part of the velocity gradient which does not include the solid body

rotation.

How to do that? We can do a very simple thing, we can write the velocity gradient component

as a sum of a symmetric part and an antisymmetric part, symmetric part we call capital A;; =

av; 4 4vj and the antisymmetric part we called &, = i _ 4vj ; just m; j for example. So, this
dx]' dxi Y de dxi

is just [ mean a plus b plus a minus b type of thing okay.

Now, let us assume that the fluid is undergoing solid body rotation; that means, € is constant.
So, v is equal to some constant vector cross r .So, then v; the i component of the velocity

vector 1s nothing but equal to €;,;Q,1;, € you all know this is a Levi-Civita symbol okay.
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And so, this is the antisymmetric tensor of rank 3 you know and there is a sum on k and [ okay.

Now, if you do %% . So, then _%_of this whole expression €y, (r; will go there just here in
dx; dx;

case it is v;. So, I have replaced the i by j over here. So, now, if you see this is nothing but

equal to €, 8;;- Now (), is constant so, it comes out and finally, you have Xt and it is
dx;

nothing but §;;. So, if [ is equal to i then it is 1 otherwise it is 0 and if we have this type of thing

then this [ will be equal to i. So, finally, this is nothing, but €;;,; Q.

So, we now have only one sum on k ok and similarly we have 4% which is equal to €€y,
dxj
J

you can show that. Please check that at home this type of exercises is super important for your
own development. Of course, you can see that k is a dummy index. So, whether I can write k
or m does not matter, but then when I try to write the sum again to show that what is the value

of A;; then again, I can take k for both the terms. So, that I can group 4vj and 2% ifIadd them,
dx; dax;j

we will see that there will be term wise cancellation of every term because €j; is minus €,
that is simply because of the antisymmetric nature of Levi-Civita symbol and this finally, leads

to the vanishing of A;; tensor A;; = 0.

So, it simply says that when this body has a solid body rotation, the symmetric part of this
velocity gradient actually vanishes identically. So, the if we wanted assign the property of the

solid body rotation to some part of this velocity gradient that will be this part @, ;.

So, actually this part ®;; carries the signature of rotation, the antisymmetric part and the

symmetric part is free of solid body rotation effect because this vanishes for a solid body

rotation.
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However, actually one can show explicitly that ®;; does not vanish, but how much it is? Once

again calculate, this is super easy because | already showed some steps how to manage that

previously. I calculated capital A;; and therefore, ®;; it represents the effect of rotation okay.

So, finally, removing the part of the solid body rotation, we can actually say that the correct
statement will be the shear stress should be proportional to the symmetric part of the velocity

gradient tensor 4vi 4vj. But now we do should not forget that there is another condition that
dx;j dx;

m;; should be a traceless tensor.

So, ;; summation over i should be 0 and if we consider that we can actually show by some
calculations that you have already seen when we were talking, I mean we were deriving the

expression for rr;; in case of kinetic theory starting from kinetic theory. Then you know that

how to do that, r;; is nothing but equal to

_ dvi N d'Uj 2 5.V
T[ij N K dx] dxi 3 b v

Now calculate ;. So, i , 2% will be 2V.v and §;; will be 3, so m;; =0, i.e., m;; is traceless.
dax; dx;
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Finally, we recover macroscopically what we found microscopically but for that we needed a
hypothesis and hence we see the something what we expected and substituting now the value

of ;; in the so-called momentum evolution equation which we call Navier-Stokes equation as

well
v = 2 =
p [E-I_ (v.V)v] = —-Vp+pg +V. [uA—gu(V-v) I]

So, p is the diagonal element of the pressure tensor plus p times g this is the body force density
plus divergence of m;;. Of course, here at this point we have not considered y is necessarily

constant in space, that is very general.

And we will use this expression when we will talk of the dynamics of accretion disks. Because
in case of accretion disks this is most reasonable, [ mean it is actually found by different studies
that the coefficient of viscosity is not constant in space. So, this equation is perfect for studying

the momentum evolution for the accretion disks.
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So, after that we will again just come to the basic assumptions of accretion disk for

recapitulation and then I will address the dynamics of the accretion disk, that I will do in the

next lecture ok.

Thank you very much.



