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Lecture – 18 

Derivation of real fluid equations 

 

Hello. So, we continue our discussion of the Derivation of real fluid equations; starting 

from distribution function which has a small first order perturbation with respect to the 

zeroth order local Maxwellian distribution. 
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So, we just stated last time that BGK equation considerably simplifies the total formalism 

just by saying that only one of the term, 
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that is the last term of the four terms of 𝑓0
′𝑔1

′ + 𝑓01
′ 𝑔′ − 𝑓0𝑔1 − 𝑓01𝑔 is sufficient to 

adequately recover all the transport phenomena in a usual fluid. 
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Now, this was done by three scientists Liepmann, Narasimha and Chahine. So, we said 

that finally, a very reasonable approximation gives  𝑔 ≈ −𝜏 (
𝜕

𝜕𝑡
+ 𝒖 ⋅ ∇ + 𝒂 ⋅ ∇𝒖) 𝑓0. So, 

𝑓0 we know. What is 𝑓0? 𝑓0 is nothing but the local Maxwellian distribution. 

So, now we have to calculate the three term.  Now, we know that 𝑓0 is the local Maxwellian 

distribution. So, calculating (𝒂 ⋅ ∇𝒖)𝑓0 is reasonably direct because in 𝑓0, if you see the 



form of 𝑓0 the dependence on 𝒖 is explicit dependence and that is why this is direct to 

calculate. So, please calculate at home. 

Once again in this course it will be not possible to do all the steps of intermediate algebra, 

but you are supposed to check all the steps of algebra at home; if in case you are blocked 

you can ask me or you can just refer to one of the books which I suggested in your course 

handout. 

Then we have to calculate also 
𝜕𝑓0

𝜕𝑡
 and 

𝜕𝑓0

𝜕𝑥𝑖
, which corresponds to first two terms in the 

expression of 𝑔. Now, for that we have to realize the fact that in 𝑓0, which is the local 

Maxwellian, the explicit space and time dependent comes through three variables 𝑛, 𝑇 and 

𝒗. 

So, when we will try to calculate 
𝜕𝑓0

𝜕𝑡
 the total expression will be simply  

𝜕𝑓0

𝜕𝑡
=

𝜕𝑓0

𝜕𝑛

𝜕𝑛

𝜕𝑡
+

𝜕𝑓0

𝜕𝑇

𝜕𝑇

𝜕𝑡
+

𝜕𝑓0

𝜕𝒗

𝜕𝒗

𝜕𝑡
. 

Where, 
𝜕𝑓0

𝜕𝒗
= ∇𝒗𝑓0, so in the similar way you can also write 

𝜕𝑓0

𝜕𝑥𝑖
 as a summation of three 

terms through their implicit dependence of 𝑛, 𝑇 and 𝒗 (see below). 
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So, now you have to do step by step some straight forward but careful algebra. If you make 

some mistake over here then you will be lost. So, do slowly even at home when you will 

practice, do slowly but step by step do not do any step jump. 
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And this will finally give you 𝑔 to be equal to the whole thing (see above). So, it may look 

like a bit I mean lengthy or a bulky, but believe me if you try to understand segment wise 

this is quite interesting. 

So, inside the bracket there are several things. So, (
𝜕

𝜕𝑡
+ 𝒖 ⋅ ∇ + 𝒂 ⋅ ∇𝒖) 𝑓0 all these things 

give us finally, a factor times 𝑓0. So, finally, again this whole thing is proportional to 𝑓0 as 

well this is also proportional to 𝜏. 

That is very very interesting that it directly says that when your system is strongly 

collisional, 𝜏 is very small-your 𝑔 is small; when 𝜏 is big and your systems collisionality 

is very weak then you have basically a considerable 𝑔. 

So, 𝑔 is consisting of globally two type of contributions one comes from 

1

𝑇

𝜕𝑇

𝜕𝑥𝑖
𝑈𝑖(

𝑚

2𝐾𝐵𝑇
𝑈2 −

5

2
) and this one is proportional to 

𝜕𝑇

𝜕𝑥𝑖
, another one proportional to Λ𝑖𝑗; 

if you remember what Λ𝑖𝑗 was! So Λ𝑖𝑗 was just the velocity gradient tensor like 
1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
), this is a symmetric tensor. 



So, one term should be proportional to the temperature gradient and you can see that term 

has an odd dependence on the components of 𝑼 because there is always one 𝑈𝑖 which is 

unpaired, which makes component wise the thing odd. 

Now, another part which is depending on the velocity gradient has two parts – one is of 

course, clearly even, the another is conditionally even or odd. So, let us say if you 

multiplied with 𝑈𝑖𝑈𝑗 −
𝛿𝑖𝑗

3
𝑈2, something where both 𝑈𝑖 and 𝑈𝑗 can pair, like if you just 

multiply 𝑈𝑖 and 𝑈𝑗, with all the thing, then this part will become behave as a even 

combination. 

On the other hand, if you just multiply with a single 𝑈𝑖 , then 𝑈𝑖  will pair, but 𝑈𝑗 will  

remain unpaired or uncoupled. So, that will give you an odd contribution. So, this is the 

conditional part, 𝛿𝑖𝑗𝑈2 is even always because it is 𝑈2. 

So, you see after all these simplifications finally, we have a form of 𝑔 which looks like a 

bit frightening, but believe me finally this is a very handy form. So, you can decouple the 

total contribution as a sum of a contribution which is proportional to the linear temperature 

gradient another is a linear velocity gradient. 

So, if you remember now, that from your basic knowledge or previous knowledge of fluid 

dynamics or something, it is somehow expected that the heat transfer should be related to 

temperature gradient term and momentum transfer or the viscosity basically you know that 

viscosity is nothing but a transfer of momentum or transport of momentum should be 

related to Λ𝑖𝑗, and one of the very simplest models we know is the Newtonian fluid model 

that I will come later. 

But, roughly speaking you can easily understand that maybe the temperature gradient part 

is related to the thermal conduction or thermal transport part and Λ𝑖𝑗 it is related to the 

momentum transport part. And, we will see that there is no exception to that, what we have 

guessed is actually correct. 

So, previously with Maxwellian distribution we had simply, 𝒒 is equal to 0, and the 

pressure tensor was trivially diagonal with a single value which says that all the diagonal 

elements were equal. So, it was simply a scalar. So, we will now calculate again 𝒒 and �̅̅� 



with this new distribution function and as we can expect that, 𝒒 will no longer be 0, 𝑃𝑖𝑗 

will no longer be purely diagonal right. 
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So, for 𝒒 we will have by definition 
𝑚

2
∫ (𝑓0 + 𝑔)𝑈2𝑼𝑑3𝑼. So, 

𝑚

2
∫ 𝑓0𝑈2𝑼𝑑3𝑼 = 𝟎. So, 

finally, the term which remains is 
𝑚

2
∫ 𝑔𝑈2𝑼𝑑3𝑼. So, non-zero 𝒒 basically is an outcome 

of non-zero 𝑔. 
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So, a careful observation now here clearly indicates that the part of 𝑔 which is proportional 

to 
𝜕𝑇

𝜕𝑥𝑖
 will contribute to the non-vanishing expression of 𝒒, why is that? That is something 

very interesting and we have to learn how to check that. 

So, here you can see component wise 
𝑚

2
∫ 𝑔𝑈2𝑼𝑑3𝑼, there is an odd functionality, because 

if you just write it in components you will have (𝑈𝑥 + 𝑈𝑦 + 𝑈𝑧)𝑈2 and from this one if 

you just do the multiplication, then some of the component of Λ𝑖𝑗(𝑈𝑖𝑈𝑗 −
𝛿𝑖𝑗

3
𝑈2) will pair 

with 𝑈𝑖𝑈𝑗 part, some component may or may not pair, but finally, the other component 

will be remained uncoupled. 

So, if in case some of them will pair with 𝑈𝑖, then one will remain uncoupled; if none of 

them pair with that then simply both of them will be uncoupled. So, in any case this will 

vanish. Same thing for 𝑈2, this is an even. So, even times odd gives you something odd 

with respect to each component of the velocity. 

Now, here you have an odd contribution component wise for the velocity. Once again 

when I say 𝑼 just remember 𝑼 is nothing but the fluctuation velocity which sometimes we 

call 𝒄 ok. So, just for recapitulation 𝑼 = 𝒖 − 𝒗 = 𝒄. 

Now, only the part with 
𝜕𝑇

𝜕𝑥𝑖
 has an even contribution and that is why you can easily see 

that the only possibility that the 𝒒 has a nonzero contribution may only come from 

temperature  

Now, again here you have some few steps of cumbersome algebra I agree, but systematic 

algebra, so for this type of thing rather than doing this algebra it is rather interesting to 

understand the physics. So, some steps of algebra can give you 𝒒 = −𝐾∇𝑇. 

So, we already showed that this thing will be so, the part of 𝑔 which is proportional to 
𝜕𝑇

𝜕𝑥𝑖
 

will contribute only. So, 𝒒 should be expected to be proportional to gradient of temperature 

and if you say that I now suppose that 𝒒 is equal to some constant, of course, I am writing 

minus for the conventional purpose, but minus 𝐾 times gradient of temperature then one 

can simply calculate just by comparing and by replacing 𝑔  

𝐾 =
𝜏𝑚

6𝑇
∫ 𝑑3𝑼𝑈4 [

𝑚

2𝑘𝐵𝑇
𝑈2 −

5

2
] 𝑓0. 



So, you see that finally, again this integration is all over all the components of the 𝑼. So, 

it is integrated over 𝑼. 

So, if you do again the integration from minus infinity to plus infinity that is the I mean 

domain of integration for classical cases you can show that 𝐾 =
5

2
𝜏

𝑛𝑘𝐵
2 𝑇

𝑚
.  

So, if you can do that finally, try to understand what this is. So, this is some quantity which 

is the proportionality constant of 𝒒, it may or may not be constant. But at least if you just 

see the expression, it should not depend on 𝑼. So, of course, there is 𝑇 and 𝑛. 
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So, it will be a function of in general 𝒓 and 𝑡. So, this is not an absolute constant, but this 

is not a function of kinetic velocity. So, this is another macroscopic quantity if you want. 

This 𝐾, when you match your previous results of real fluids you can see that this is nothing 

but the thermal wave conductivity. 

Now, the physics comes here, you have to note that 𝐾 is proportional to 𝜏, 𝐾 is proportional 

to 𝑛, 𝐾 is proportional to 𝑇. Of course, when I am saying proportional to 𝜏, that means, 𝑛 

and 𝑇 are kept constant. So, by the rule of joint variation you can say that 𝐾 is proportional 

to 𝜏𝑛𝑇 the product, when all of them vary and individually saying that 𝐾 actually increases. 

Let us say that 𝑛 is constant, 𝑇 is constant, then 𝐾 increases with 𝜏. So, if in a system for 

example, we just do not change the temperature and we do not change the density, but we 



just simply say that the collisionality is now becoming weaker and weaker then strangely 

the thermal conductivity increases. So, that the system is a fluid. So, that is the problem. 

So, what is the the problem here? because 𝑛 is constant I understand, but then when 𝜏 is 

larger, that simply says that the mean collision time is larger, how can that correspond to 

a greater 𝐾? That is simply because in order that the system still behaves like a fluid it 

should have a greater transportability. 

So, this is the this is the story of the thermal transport. So, 𝐾 is the responsible for the 

thermal transport. So, at least the duty of 𝐾 is to do the thermal transport efficiently when 

𝜏 increases; that means, the collision basically decreases, so, mean collision time increases. 

So, if this is the case then you can see that the systems conductivity should be strong 

enough, so that the system can efficiently transport energy from one part to the other 

otherwise the system is no longer fluid. But here we have supposed that already we are 

representing this as a macroscopic thing. 

So, being a macroscopic entity where the collective effects are important the necessity that 

𝜏 is higher is that 𝐾 must be higher. The same thing if your 𝑛 is higher, then 𝐾 is also 

higher; if your temperature is higher, temperature gradient can also be expected to be 

higher and then the energy transport should be efficient as well. So, 𝐾 should be higher. 

So, these things are in consistency with each other.  

(Refer Slide Time: 20:59) 

 



Now, the question is that was the story of the heat flux tensor. Now, what is the destiny of 

the pressure tensor, what happens to it? Of course, �̅̅� will now have a diagonal part 𝑝𝛿𝑖𝑗 

due to 𝑓0 plus an off-diagonal part 𝜋𝑖𝑗 due to the perturbation 𝑔. So, obviously, we now 

can write that 𝜋𝑖𝑗 = 𝑚∫ 𝑑3𝑼𝑈𝑖𝑈𝑗𝑔. 

Now, again careful observation simply says, if you just take the part which is proportional 

to 
𝜕𝑇

𝜕𝑥𝑖
, it will remain odd component wise and making this 0. So, there is no chance of 

having a contribution from temperature gradient part. 

Contribution now may come from Λ𝑖𝑗 term. Now, of course in Λ𝑖𝑗 when you have this 𝑖 is 

equal to 𝑗 and this part can also contribute when 𝑖 not equal to 𝑗, but 𝑖𝑗 is exactly equal to 

this 𝑖𝑗. So, that 𝑈𝑖𝑈𝑗 is now paired with 𝑈𝑖𝑈𝑗 gives you 𝑈𝑖
2 𝑈𝑗

2 square.  
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So, even multiplied with conditional even makes it globally even. So, if you finally, write 

the expression explicitly you will see this is nothing but  

𝜋𝑖𝑗 = −
𝜏𝑚2

𝑘𝐵𝑇
Λ𝑘𝑙∫ 𝑑3𝑼𝑈𝑖𝑈𝑗 [𝑈𝑘𝑈𝑙 −

1

3
𝛿𝑘𝑙𝑈

2] 𝑓0. 

So, that is the most general way you have to write. So, of course, here you see this 𝑖 and 𝑗 

they are the free index over there. And 𝑘𝑙’s are dummy indices; that means, there is a sum 

over these indices. 
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For example, and then when you have fixed 𝑖𝑗 as 1 and 2 respectively for example, then 

you make a sum over all the values of 𝑘𝑙, because repetitive or dummy indices they are 

basically designating sums. 
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The above form of 𝜋𝑖𝑗 represents a traceless tensor. Why? what is the meaning of traceless 

tensor? 
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That means, 𝜋𝑖𝑖 = ∑ 𝜋𝑖𝑖𝑖 = 𝜋11 + 𝜋22 + 𝜋33 = 0. 

And, how is that possible? Let say we just take 𝜋11 so, 𝑖 = 1, 𝑗 = 1. So, every time you 

have 𝑈2 −
1

3
𝑈2. So, after when you sum all these three things you will have finally 𝑈2 −

𝑈2  because 
1

3
𝑈2 will then contribute thrice to make it a 𝑈2. 



And it will give you something a traceless tensor. So, this is the necessary condition for a 

traceless tensor basically. 

So, again you can notice here that 𝜋𝑖𝑗 when we just defined that from its basic definition 

it is proportional to Λ𝑖𝑗. So, if it is proportional to Λ𝑖𝑗, that is also our consideration that 

this part will now contribute for 𝜋𝑖𝑗.  
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So, we can simply say if this is proportional to Λ𝑖𝑗 then of course, it is tempting to write 

that this 𝜋𝑖𝑗 is equal to some constant times Λ𝑖𝑗, but we have to remember always that the 

property of tracelessness should be satisfied. And, for that the correct way of writing 

mathematically 𝜋𝑖𝑗is not simply −2𝜇Λ𝑖𝑗, but 𝜋𝑖𝑗 = −2𝜇(Λ𝑖𝑗 −
1

3
𝛿𝑖𝑗∇ ⋅ 𝒗). 

And, we subtracted the divergence part because we know that the trace of Λ𝑖𝑗 is divergence 

of 𝒗. So, again starting from this expression this is another small exercise for you to check 

that ∑ 𝜋𝑖𝑖𝑖 = 0. Now we have introduced 𝜇 as a proportionality constant but can we obtain 

an expression for 𝜇?  
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For that of course, we should calculate 𝜋𝑖𝑗 when 𝑖 is not equal to 𝑗. Why? 

So, it is a very small brain twister can you immediately tell me from the expressions of 

𝜋𝑖𝑗, why we have to calculate 𝜋𝑖𝑗 with 𝑖 not equal to 𝑗 to calculate 𝜇? Think about it! 

And, this expression finally comes out to be  

𝜋12 =
𝜏𝑚2

𝑘𝐵𝑇
Λ𝑘𝑙∫ 𝑑3𝑈𝑈1𝑈2 [𝑈𝑘𝑈𝑙 −

1

3
𝛿𝑘𝑙𝑈2] 𝑓0, 

because the nonzero contribution only comes from the conditional part of 𝑔. Finally, we 

compare this with the full expression for 𝜋𝑖𝑗. 
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And, if you do that you will finally, see that  

𝜇 =
𝜏𝑚2

𝑘𝐵𝑇
∫ 𝑑3𝑈𝑈1

2𝑈2
2𝑓0 

that is equal to, if you correctly do the integration, finally you will see this is nothing but 

𝜏𝑛𝑘𝐵𝑇. 

Of course, you can calculate mu just by taking let us say 𝑖 is equal to 2, 𝑗 is equal to 3 or 𝑖 

is equal to 2, 𝑗 is equal to 1 or 𝑖 is equal to 1, 𝑗 is equal to 3 anything, but 𝑖 is not equal to 

𝑗. You should find the same result to our utter surprise that just like 𝐾, 𝜇 is also 

proportional to 𝜏, 𝜇 is also proportional to 𝑛 and 𝑇. So, 𝜇 increases when 𝑇 increases, 𝜏 

increases or 𝑛 increases. Why? 

Now, I discussed about these dependencies for 𝐾, now for 𝜇 you have to think. This 𝜇 

from our previous knowledge of fluid equations, the fluid dynamists can match and call 

that as coefficient of viscosity rather dynamic viscosity coefficient of dynamic viscosity. 

When this is divided by the 𝜌, by the density mass density, it is called the coefficient of 

kinematic viscosity, but in general this is called roughly coefficient of viscosity. 

So, one thing is true that when temperature increases coefficient of viscosity should 

increase. Now, tell me one thing, it is true, I know for gas, when you increase the 

temperature 𝜇 increases, but what happens for oil? When you heat oil in a frying pan and 



you increase the temperature of it, you will see the oil is moving around much more easily 

on the pan. So, can you reconcile that? 

So, this is a question not exactly related to the course, but this is a general physics question. 

So, what happens? So, why the viscosity of a gas and the viscosity of a liquid have different 

type of temperature dependencies? So, just think. 

Here we are talking about mostly about fluid which is gas because here we are just trying 

to make a macroscopic theory from that of kinetic theory and kinetic theory is only valid 

for classical gases. 

For classical liquid, you cannot make kinetic theory because of the simple fact that in a 

liquid you have complicated interactions, long range interactions, other than the 

instantaneous interactions due to binary elastic collisions. 
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So, finally our objective was to search whether we can still build up a dynamical theory 

for macroscopic variables for real fluids or not. Now, for that let us calculate the following 

terms of first order moment equation the 
𝜕𝑃𝑗𝑖

𝜕𝑥𝑖
. So, for diagonal 𝑃 we had only 

𝜕𝑝

𝜕𝑥𝑗
, for local 

Maxwellian, now we have the additional term like −𝜇 [∇2𝑣𝑗 +
1

3

𝜕

𝜕𝑥𝑗
(∇ ⋅ 𝒗)] where 𝜇 is 

assumed to be constant in space and which is very reasonable for most of the fluids. 



So, there is a case, when we will talk about the physics of accretion disc, the 𝜇 is not 

constant in space and that actually adds a separate physical flavor to the problem, but here 

most of the cases we have this. 
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So, then you we can write this the double contraction term of 𝑃 tensor and the Λ tensor in 

the energy equation which was previously just 𝑝(∇ ⋅ 𝒗), now we will have an additional 

term like −2𝜇 [Λ𝑖𝑗Λ𝑖𝑗 −
1

3
(∇ ⋅ 𝒗)2]. So, these terms with 𝜇 are due to 𝑔,  𝑔 means the 

perturbation over the local Maxwellian. 

Now, experiments show that the viscous term in (ii) (see above) is usually negligible and 

actually most of the cases the viscous term 
1

3

𝜕

𝜕𝑥𝑗
(∇ ⋅ 𝒗) in (i) is also negligible, but the 

term in (ii) is much more negligible and this is much more popular actually. Sometimes 

even in some cases we can keep 
1

3

𝜕

𝜕𝑥𝑗
(∇ ⋅ 𝒗), but the term in (ii) is mostly neglected.  
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So, finally, we get the equations for continuity as 
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝒗) = 0. 

equation the momentum as 
𝜕𝒗

𝜕𝑡
+ (𝒗 ⋅ ∇)𝒗 = −

∇𝑝

𝜌
+ 𝒈 +

𝜇

𝜌
[∇2𝒗 +

1

3
∇(∇ ⋅ 𝒗)]. 

 𝒈 is the body force, not to be confused with the perturbation of the distribution function. 

This is just the gravitational acceleration plus the new viscous term. 
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Now, this 
𝜇

𝜌
 which I was calling the coefficient of kinematic viscosity is in general denoted 

by 𝜈. And finally, the energy equation becomes 



 𝜌 [
𝜕𝜖

𝜕𝑡
+ (𝒗 ⋅ ∇)𝜖] − ∇ ⋅ (𝐾∇𝑇) + 𝑝(∇ ⋅ 𝒗) = 0.  

Of course, here we have not yet considered 𝐾 to be independent of space and that is 

actually not a very good approximation because most of the cases 𝐾 has a very explicit 

dependence on space.  

Now, we have again five equations and how many unknowns? 𝜌, 𝒗, 𝑝, 𝜇. 𝒈 is known, 𝜖, 

𝐾 and 𝑇. Now 𝜇, in the most of the problem is given for a specific fluid. So, it is a constant 

of course, other than this accretion disc problem, but even in accretion disc it is handle 

able. We will talk about that. 
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𝐾 is either a constant or is an explicit function of space. So, you can always write that 𝐾 

is like let us say proportional to 𝑟𝛼.  
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So, then what happens, if you are just doing some integration, this does not add to the 

complicacy of the unknown variables and so 𝐾 in most of the cases, is a known explicit 

function of space or is a constant; because there are some experiments by which you can 

actually find the functional form and the functional dependence of 𝐾. So, it does not really 

complicate the scenario. 
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And finally, 𝜌, 𝑝, 𝜖 and 𝑇 we know that they are all related by two independent variables 

and most popularly the 2 variables are 𝑛 and 𝑇. So, finally, 2 independent variables from 

them and 3 components of 𝒗, so 5 equations, 5 unknowns. So, finally we succeeded to 

constitute a dynamical theory for the real fluids. 



So, that is exactly where I should stop for this lecture. So, in the next discussion we will 

talk about a very interesting application of these equations and we will talk about the 

hydrostatic condition, the hydrostatic equilibrium of such a fluid where the viscous effect 

is negligible, but not the conductive conductivity effect. 

So, that we will do, but till now what we have seen something very interesting that, starting 

from a very simplistic assumption that the distribution function is perturbed only by a very 

small amount with respect to the Maxwell-Boltzmann equation; finally we retrieved all 

the, under of course certain approximations, all the transport phenomena in a real fluid. 

So, now these set of equation is known as the equations of the real fluids. 

Thank you very much. 


