Introduction to Astrophysical Fluids
Prof. Supratik Banerjee
Department of Physics
Indian Institute of Technology, Kanpur

Lecture — 18
Derivation of real fluid equations

Hello. So, we continue our discussion of the Derivation of real fluid equations; starting

from distribution function which has a small first order perturbation with respect to the

zeroth order local Maxwellian distribution.
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So, we just stated last time that BGK equation considerably simplifies the total formalism

just by saying that only one of the term,
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that is the last term of the four terms of fyg1 + fo19' — fog1 — fo19 1S sufficient to

adequately recover all the transport phenomena in a usual fluid.
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Now, this was done by three scientists Liepmann, Narasimha and Chahine. So, we said
that finally, a very reasonable approximation gives g = —t (% +u-V+a- Vu) fo- So,

fo we know. What is f,? f, is nothing but the local Maxwellian distribution.

So, now we have to calculate the three term. Now, we know that f; is the local Maxwellian

distribution. So, calculating (a - V,,)f; is reasonably direct because in f, if you see the



form of f, the dependence on u is explicit dependence and that is why this is direct to

calculate. So, please calculate at home.

Once again in this course it will be not possible to do all the steps of intermediate algebra,
but you are supposed to check all the steps of algebra at home; if in case you are blocked

you can ask me or you can just refer to one of the books which | suggested in your course

handout.

Then we have to calculate also d f" WhICh corresponds to first two terms in the

expression of g. Now, for that we have to realize the fact that in f;, which is the local
Maxwellian, the explicit space and time dependent comes through three variables n, T and

V.

So, when we will try to calculate %" the total expression will be simply

afo _ 6foan 6f06T afoav
at  dn ot = 9T 9t v At

dfo

Xi

f

— =V, fo, S0 in the similar way you can also write — 5. asa summation of three

Where,

terms through their implicit dependence of n, T and v (see below).
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So, now you have to do step by step some straight forward but careful algebra. If you make
some mistake over here then you will be lost. So, do slowly even at home when you will

practice, do slowly but step by step do not do any step jump.
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And this will finally give you g to be equal to the whole thing (see above). So, it may look
like a bit I mean lengthy or a bulky, but believe me if you try to understand segment wise

this is quite interesting.

So, inside the bracket there are several things. So, (% +u-V+a- Vu) fo all these things

give us finally, a factor times f;,. So, finally, again this whole thing is proportional to f, as

well this is also proportional to .

That is very very interesting that it directly says that when your system is strongly
collisional, T is very small-your g is small; when 7 is big and your systems collisionality

is very weak then you have basically a considerable g.

So, g is consisting of globally two type of contributions one comes from

10T

__Ul(

T 0x;

m
2KgT

U? — g) and this one is proportional to %, another one proportional to A;;;

if you remember what A;; was! So A;; was just the velocity gradient tensor like %(% +
]

ov; .. .
a—x’_), this is a symmetric tensor.
i



So, one term should be proportional to the temperature gradient and you can see that term
has an odd dependence on the components of U because there is always one U; which is

unpaired, which makes component wise the thing odd.

Now, another part which is depending on the velocity gradient has two parts — one is of
course, clearly even, the another is conditionally even or odd. So, let us say if you

multiplied with U;U; — %UZ, something where both U; and U; can pair, like if you just
multiply U; and U;, with all the thing, then this part will become behave as a even

combination.

On the other hand, if you just multiply with a single U; , then U; will pair, but U; will
remain unpaired or uncoupled. So, that will give you an odd contribution. So, this is the

conditional part, §;;U? is even always because it is U?.

So, you see after all these simplifications finally, we have a form of g which looks like a
bit frightening, but believe me finally this is a very handy form. So, you can decouple the
total contribution as a sum of a contribution which is proportional to the linear temperature

gradient another is a linear velocity gradient.

So, if you remember now, that from your basic knowledge or previous knowledge of fluid
dynamics or something, it is somehow expected that the heat transfer should be related to
temperature gradient term and momentum transfer or the viscosity basically you know that
viscosity is nothing but a transfer of momentum or transport of momentum should be

related to A;;, and one of the very simplest models we know is the Newtonian fluid model

ijs

that | will come later.

But, roughly speaking you can easily understand that maybe the temperature gradient part

is related to the thermal conduction or thermal transport part and A;; it is related to the

momentum transport part. And, we will see that there is no exception to that, what we have

guessed is actually correct.

So, previously with Maxwellian distribution we had simply, q is equal to 0, and the

pressure tensor was trivially diagonal with a single value which says that all the diagonal

elements were equal. So, it was simply a scalar. So, we will now calculate again g and P



with this new distribution function and as we can expect that, g will no longer be 0, P;;
will no longer be purely diagonal right.
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So, for q we will have by definition %f (fo + g)U?Ud3U. So, %ffOUZU(PU = 0. So,
finally, the term which remains is %f gU?Ud3U. So, non-zero q basically is an outcome

of non-zero g.
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So, a careful observation now here clearly indicates that the part of g which is proportional

to % will contribute to the non-vanishing expression of g, why is that? That is something

very interesting and we have to learn how to check that.

So, here you can see component wise %f gU?Ud3U, there is an odd functionality, because
if you just write it in components you will have (Ux + U, + UZ)U2 and from this one if

: . 8y o
you just do the multiplication, then some of the component of A;;(U;U; — ?’ U?) will pair

with U;U; part, some component may or may not pair, but finally, the other component

will be remained uncoupled.

So, if in case some of them will pair with U;, then one will remain uncoupled; if none of
them pair with that then simply both of them will be uncoupled. So, in any case this will
vanish. Same thing for U?, this is an even. So, even times odd gives you something odd

with respect to each component of the velocity.

Now, here you have an odd contribution component wise for the velocity. Once again
when | say U just remember U is nothing but the fluctuation velocity which sometimes we

call ¢ ok. So, just for recapitulation U = u — v = c.

Now, only the part with % has an even contribution and that is why you can easily see
L

that the only possibility that the g has a nonzero contribution may only come from

temperature

Now, again here you have some few steps of cumbersome algebra | agree, but systematic
algebra, so for this type of thing rather than doing this algebra it is rather interesting to

understand the physics. So, some steps of algebra can give you q = —KVT.

So, we already showed that this thing will be so, the part of g which is proportional to %

2

will contribute only. So, g should be expected to be proportional to gradient of temperature
and if you say that | now suppose that q is equal to some constant, of course, | am writing
minus for the conventional purpose, but minus K times gradient of temperature then one

can simply calculate just by comparing and by replacing g

m
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So, you see that finally, again this integration is all over all the components of the U. So,

it is integrated over U.

So, if you do again the integration from minus infinity to plus infinity that is the | mean

5 kAT
domain of integration for classical cases you can show that K = 5T Ly

So, if you can do that finally, try to understand what this is. So, this is some quantity which
is the proportionality constant of g, it may or may not be constant. But at least if you just

see the expression, it should not depend on U. So, of course, there is T and n.
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So, it will be a function of in general r and t. So, this is not an absolute constant, but this
is not a function of kinetic velocity. So, this is another macroscopic quantity if you want.
This K, when you match your previous results of real fluids you can see that this is nothing

but the thermal wave conductivity.

Now, the physics comes here, you have to note that K is proportional to 7, K is proportional
to n, K is proportional to T. Of course, when | am saying proportional to t, that means, n
and T are kept constant. So, by the rule of joint variation you can say that K is proportional

to TnT the product, when all of them vary and individually saying that K actually increases.

Let us say that n is constant, T is constant, then K increases with . So, if in a system for

example, we just do not change the temperature and we do not change the density, but we



just simply say that the collisionality is now becoming weaker and weaker then strangely
the thermal conductivity increases. So, that the system is a fluid. So, that is the problem.
So, what is the the problem here? because n is constant | understand, but then when t is
larger, that simply says that the mean collision time is larger, how can that correspond to
a greater K? That is simply because in order that the system still behaves like a fluid it

should have a greater transportability.

So, this is the this is the story of the thermal transport. So, K is the responsible for the
thermal transport. So, at least the duty of K is to do the thermal transport efficiently when

T increases; that means, the collision basically decreases, so, mean collision time increases.

So, if this is the case then you can see that the systems conductivity should be strong
enough, so that the system can efficiently transport energy from one part to the other
otherwise the system is no longer fluid. But here we have supposed that already we are

representing this as a macroscopic thing.

So, being a macroscopic entity where the collective effects are important the necessity that
T is higher is that K must be higher. The same thing if your n is higher, then K is also
higher; if your temperature is higher, temperature gradient can also be expected to be
higher and then the energy transport should be efficient as well. So, K should be higher.

So, these things are in consistency with each other.

(Refer Slide Time: 20:59)

% What Mrws to e PTWC temsor ?

* 0{ Lowx 82 —f will nzo Rave o»d,ia(.?crmd part
dma 4o i

% Obv%trmfg, we thew hawe T\’;J‘ :W\Jng UiU; &

* CN"L‘SVJ 0 bsuvation: P— o i

— &w%bmﬁquww%w Ai)' patk

- e v




Now, the question is that was the story of the heat flux tensor. Now, what is the destiny of
the pressure tensor, what happens to it? Of course, P will now have a diagonal part pé;;
due to f, plus an off-diagonal part m;; due to the perturbation g. So, obviously, we now

can write that r;; = mJ d*UU,U;g.

Now, again careful observation simply says, if you just take the part which is proportional

to %, it will remain odd component wise and making this 0. So, there is no chance of

having a contribution from temperature gradient part.

Contribution now may come from A;; term. Now, of course in A;; when you have this i is
equal to j and this part can also contribute when i not equal to j, but ij is exactly equal to

this ij. So, that U;U; is now paired with U;U; gives you U7 U} square.
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So, even multiplied with conditional even makes it globally even. So, if you finally, write

the expression explicitly you will see this is nothing but
: 1
A _%A"J d>UU.U; [UkUl B §6klU2]fo.

So, that is the most general way you have to write. So, of course, here you see this i and j
they are the free index over there. And kl’s are dummy indices; that means, there is a sum

over these indices.
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For example, and then when you have fixed ij as 1 and 2 respectively for example, then

you make a sum over all the values of kl, because repetitive or dummy indices they are
basically designating sums.
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The above form of r;; represents a traceless tensor. Why? what is the meaning of traceless

tensor?
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That means, m;; = %, ;; = mqq + Ty, + 33 = 0.

And, how is that possible? Let say we just take 4 o, i = 1,j = 1. So, every time you

have U? — éUz. So, after when you sum all these three things you will have finally U? —

U? because % U? will then contribute thrice to make it a U?.



And it will give you something a traceless tensor. So, this is the necessary condition for a

traceless tensor basically.

So, again you can notice here that 7;; when we just defined that from its basic definition
it is proportional to A;;. So, if it is proportional to A;;, that is also our consideration that

this part will now contribute for m;;.
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So, we can simply say if this is proportional to A;; then of course, it is tempting to write

that this m;; is equal to some constant times A;;, but we have to remember always that the

j!
property of tracelessness should be satisfied. And, for that the correct way of writing

mathematically r;;is not simply —2uA;;, but r;; = —2u(A;; — §6UV V).

And, we subtracted the divergence part because we know that the trace of A;; is divergence

of v. So, again starting from this expression this is another small exercise for you to check
that )}; m;; = 0. Now we have introduced u as a proportionality constant but can we obtain

an expression for u?
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For that of course, we should calculate m;; when i is not equal to j. Why?

So, it is a very small brain twister can you immediately tell me from the expressions of

m;;, why we have to calculate m;; with i not equal to j to calculate 4? Think about it!

And, this expression finally comes out to be

™m? 5 1 5
My = —= Mg ] ABUULU, |UU; = = 81U | fo,
kT 3
because the nonzero contribution only comes from the conditional part of g. Finally, we

compare this with the full expression for m;;.
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And, if you do that you will finally, see that
r ? 3 271712
u= _kBde UU1 U3 fo

that is equal to, if you correctly do the integration, finally you will see this is nothing but
tnkgT.

Of course, you can calculate mu just by taking let us say i is equal to 2, j is equal to 3 or i
is equal to 2, j is equal to 1 or i is equal to 1, j is equal to 3 anything, but i is not equal to
j. You should find the same result to our utter surprise that just like K, u is also
proportional to 7, u is also proportional to n and T. So, u increases when T increases, T

increases or n increases. Why?

Now, | discussed about these dependencies for K, now for u you have to think. This u
from our previous knowledge of fluid equations, the fluid dynamists can match and call
that as coefficient of viscosity rather dynamic viscosity coefficient of dynamic viscosity.
When this is divided by the p, by the density mass density, it is called the coefficient of

kinematic viscosity, but in general this is called roughly coefficient of viscosity.

So, one thing is true that when temperature increases coefficient of viscosity should
increase. Now, tell me one thing, it is true, I know for gas, when you increase the

temperature u increases, but what happens for oil? When you heat oil in a frying pan and



you increase the temperature of it, you will see the oil is moving around much more easily

on the pan. So, can you reconcile that?

So, this is a question not exactly related to the course, but this is a general physics question.
So, what happens? So, why the viscosity of a gas and the viscosity of a liquid have different

type of temperature dependencies? So, just think.

Here we are talking about mostly about fluid which is gas because here we are just trying
to make a macroscopic theory from that of kinetic theory and kinetic theory is only valid
for classical gases.

For classical liquid, you cannot make kinetic theory because of the simple fact that in a
liquid you have complicated interactions, long range interactions, other than the

instantaneous interactions due to binary elastic collisions.
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So, finally our objective was to search whether we can still build up a dynamical theory

for macroscopic variables for real fluids or not. Now, for that let us calculate the following

terms of first order moment equation the D . So, for diagonal P we had onIy — for local

Maxwellian, now we have the additional term like — Vzv] + (V v)] where u is

assumed to be constant in space and which is very reasonable for most of the fluids.



So, there is a case, when we will talk about the physics of accretion disc, the u is not
constant in space and that actually adds a separate physical flavor to the problem, but here

most of the cases we have this.
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So, then you we can write this the double contraction term of P tensor and the A tensor in

the energy equation which was previously just p(V - v), now we will have an additional
term like —2u [AUAU —%(V . v)z]. So, these terms with u are due to g, g means the

perturbation over the local Maxwellian.

Now, experiments show that the viscous term in (ii) (see above) is usually negligible and

actually most of the cases the viscous term é%(v -v) in (i) is also negligible, but the
]

term in (ii) is much more negligible and this is much more popular actually. Sometimes

even in some cases we can keep %% (V- v), but the term in (ii) is mostly neglected.
J
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So, finally, we get the equations for continuity as ‘;—? +V-(pv) =0.

equation the momentum as Z—: +w-Vv=- %p +g+ % [Vzv + iV(V . v)].

g is the body force, not to be confused with the perturbation of the distribution function.

This is just the gravitational acceleration plus the new viscous term.
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Now, this % which I was calling the coefficient of kinematic viscosity is in general denoted

by v. And finally, the energy equation becomes



p|E+ @ V)e| -V (KVT) +p(V-v) = 0.

Of course, here we have not yet considered K to be independent of space and that is
actually not a very good approximation because most of the cases K has a very explicit

dependence on space.

Now, we have again five equations and how many unknowns? p, v, p, u. g is known, e,
K and T. Now g, in the most of the problem is given for a specific fluid. So, it is a constant
of course, other than this accretion disc problem, but even in accretion disc it is handle
able. We will talk about that.
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K is either a constant or is an explicit function of space. So, you can always write that K

is like let us say proportional to r.

(Refer Slide Time: 40:59)
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So, then what happens, if you are just doing some integration, this does not add to the
complicacy of the unknown variables and so K in most of the cases, is a known explicit
function of space or is a constant; because there are some experiments by which you can

actually find the functional form and the functional dependence of K. So, it does not really

complicate the scenario.
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And finally, p, p, € and T we know that they are all related by two independent variables
and most popularly the 2 variables are n and T. So, finally, 2 independent variables from
them and 3 components of v, so 5 equations, 5 unknowns. So, finally we succeeded to

constitute a dynamical theory for the real fluids.



So, that is exactly where | should stop for this lecture. So, in the next discussion we will
talk about a very interesting application of these equations and we will talk about the
hydrostatic condition, the hydrostatic equilibrium of such a fluid where the viscous effect
is negligible, but not the conductive conductivity effect.

So, that we will do, but till now what we have seen something very interesting that, starting
from a very simplistic assumption that the distribution function is perturbed only by a very
small amount with respect to the Maxwell-Boltzmann equation; finally we retrieved all
the, under of course certain approximations, all the transport phenomena in a real fluid.

So, now these set of equation is known as the equations of the real fluids.

Thank you very much.



