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Macroscopic forces on an ideal fluid 

 

Hi. We are continuing our discussion on ideal fluids. So, in the previous discussion, we 

derived the ideal fluid equations.  
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So, we actually saw that the moment equations. So, continuity equation, momentum equation 

and energy equations, these three moment equations they constitute a dynamical theory. I 

mean, three means, one is vectorial of course. So, well, if we count the number of scalar 

equations, we have five equations in total. So, they constitute a dynamical theory finally. 

When the system constituents they follow a local Maxwellian distribution that we saw in the 

previous part.  

And the momentum evolution equation then simply becomes 
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ ) �⃗⃗� = −

∇⃗⃗ 𝑝

𝜌
+ 𝑔, which 

is the gradient of pressure force, so which is actually coming from the inside of the fluid, so 

that is not an external force. So, 𝑝 is the fluid pressure basically.  

So, 𝑝 is coming due to the pressure of the fluid. And this is the external forcing agent. So, I 

said that 𝑔 is something, which we call the body force. And most of the cases, in 

astrophysics, this is either I mean external gravitational field, in some cases, it can be an 

electromagnetic field as well. But most of the cases, this is a gravity field.  

So, 
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ ) �⃗⃗� = −

∇⃗⃗ 𝑝

𝜌
+ 𝑔 is an equation of the acceleration of force. So, here you will see 

−
∇⃗⃗ 𝑝

𝜌
 is nothing but the density of force. So, I mean mass density of force. So, basically this 

simply says that this is force per unit mass which is acceleration.  

Now, in this discussion, till now, we were talking about deriving or obtaining the fluid 

equation or the known equations for the fluids or the continuum starting from the very basic 

kinetic theory. So, this is called the down to top approach, that means, we are starting from a 

very basic level, one term, then single particle, then kinetic, then statistical level, and then 

finally, a continuum level. 

Now, it is also true that the fluid equations can equally be obtained, so at least, till now we 

have talked about the perfect fluid or ideal fluid equation, so that can also be obtained from 

macroscopic consideration. That means, using such a length scale where we do not have a 

microscopic view but we just see, right from the beginning the fluid as a continuum.  

So, we cannot see their constituents with our acquired instruments or measurement method. 

Still, we can obtain these equations. So, basically that is the way of obtaining the 

macroscopic equations macroscopically.  



So, in most of the fluid mechanics books or in engineering books, the fluid equations are 

derived in that way. And historically when people derived them, they actually did this 

macroscopically, and that was much more interesting.  

And then people who wanted to know that really this is consistent with our microscopic 

theory or rather I mean how can from starting a microscopic theory, we can really find a 

beautiful down to top approach, and just by saying that from microscopic to macroscopic, 

how we can develop the different levels of theory or a hierarchy of theory. So, for that people 

tried this approach what I was discussing. 

But now let me do something which is very much conventional. So, let us just try to re obtain 

force terms from a macroscopic point of view.  

But before that it is also useful to say that if we try to handle or study a fluid medium or a 

flow medium macroscopically, we need to know two about two approaches which are 

equivalent, but they are priory not the same approach, ok. So, one is called the Lagrangian 

approach another is called the Eulerian approach.  
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So, in fluid mechanics, a flow in continuum can be studied in these two following ways. The 

first one is that is called the Lagrangian view, that means, we just assume a very small fluid 

particle type of thing inside a blob of fluid in a flow that will be of course an imaginary blob, 



because this is a continuum. You cannot think of a discrete particle like that. And this blob of 

fluid will be traced throughout the flow, and we will see that where it is going with time.  

So, if we just trace this, being on the blob, so let us consider that we are the observer. And we 

sit on that blob of fluid. And we go at every point. Where we are going? We just measure our 

positions.  

And when we measured our position taking the 
𝑑

𝑑𝑡
 of that position, we also measured our 

velocity. So, in this way, we can measure the position and the velocity of the blob of the 

fluid. So, this is the way one can study a flow, and this is called the Lagrangian view or 

Lagrangian approach.  

There is an approach, alternative approach which is very useful for physicists at least, and 

also for studying complex type of fluid flow where you cannot really trace efficiently fluid 

flow. For example, let us say you have a chaotic flow or something and where it is very 

difficult to search for a blob of fluid, because this is a mess inside the flow, it is an highly 

non-linear and you cannot see layers.  

So, there is a very high chance that once you start tracing a blob of fluid, you will be lost in 

some moments. This is highly possible. Then a very effective approach is the Eulerian 

approach ok. And this Eulerian approach simply says that you are the observer. Again, the 

same thing, we are the observer and we do not move, and we just sit at one point in the flow 

field ok.  

And then we will measure the fluid which is coming and the passing that point, and we will 

measure the velocity of that particle. So, that is the thing where we are not changing our 

space, but we are simply measuring the velocities with respect to different fluid particles. 

So, here basically we are not interested in one single fluid particle, but we are interested in 

one point in space. So, that is the part where you will see that how the velocity at one point 

just changes explicitly with respect to time, and that gives the partial time derivative of 

velocity or any quantity. It can be a velocity, it can be density, it can be pressure.  

So, whenever this fluid particle or some fluid passes through the point where you are sitting, 

you just measure its density, pressure, velocity like this. So, basically, when at some other 

time interval another fluid comes, so no change in space, but only time is changing. So, that 



simply says that this will give you some partial time derivative of that corresponding 

quantity.  

Again, another thing is there that in the same way, you can easily understand that is not all, 

that is a partial picture of the studying the flow. So, now we can say that many of us we are 

sitting at different point in space, and all of us are measuring velocities at a given time 

instant. And that will give us an essence of a partial space derivative of velocity.  

Once again, when I just say velocity, that can be any property of the fluid, velocity, density or 

pressure whatever. And that will be given by its variation and this is called the advective 

derivative of some quantity. Once again it can be 𝜌, it can be velocity itself.  
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So, these two approaches are equivalent and that is why basically Eulerian is a combination 

of these two parts of Eulerian approach, that means, in one case you are not changing space, 

but changing time and in one case, study is being done at different point in space, but at a 

given time of course, and more than one observer are needed ok. The combined result will 

finally give us something.  

So, basically, I mean some particle which is coming here and at a given time instant, it will 

have some. So, let us say I am interested in this blob.  
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And in this blob, now I am just tracing its 
𝑑𝑣

𝑑𝑡
. Now, these 

𝑑𝑣

𝑑𝑡
 can be obtained just by the 

combination of  
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ ) �⃗⃗� .  
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That is simply because 
𝑑

𝑑𝑡
 is nothing but 

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥

𝑑𝑥

𝑑𝑡
+ 

𝜕

𝜕𝑦

𝑑𝑦

𝑑𝑡
+ 

𝜕

𝜕𝑧

𝑑𝑧

𝑑𝑡
 . And this part is nothing but 

the advective derivative part ok.  
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So, finally, due to the equivalence you can see that this 
𝑑

𝑑𝑡
 is equivalent equal to 

𝜕

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ ). In 

our derivation, we obtained what we did I mean starting from the kinetic theory, we obtain 

the Eulerian derivatives of course. Now, these derivatives sometimes are called the material 

derivative or the total derivative.  
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So, once again, this is sometimes important when we are talking in terms of fluid particles. 

Now, let us look back to the equations of continuity and we will see, these two approaches 

were important to be introduced just simply because the approach is to study fluid motions or 

a flow macroscopically.  



So, if the equation of continuity you can see  
𝜕𝜌

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ )𝜌 + 𝜌(∇⃗⃗ . �⃗⃗� ) is equal to 0, then this 

𝜕𝜌

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ )𝜌 is nothing but 

𝑑𝜌

𝑑𝑡
 by definition this is a Lagrangian derivative, and that is equal 

to −𝜌(∇⃗⃗ . 𝑣 ).  
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So, that was just to tell you how the Lagrange’s derivative will look like. So, this was the 

Eulerian time derivative. So, this is the Lagrangian time derivative. Now, just have a look at 

the force equations. The force equation is written like this  
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� . ∇⃗⃗ ) �⃗⃗�  is equal to −

∇⃗⃗ 𝑝

𝜌
+ 𝑔 .  

So, what is this? This is nothing but 
𝑑�⃗⃗� 

𝑑𝑡
. So, this is the acceleration of a fluid particle and 

finally, you see that the total force or total force per unit mass which is acting on that fluid 

particle is given by the sum of these two terms. One comes from the inside or once from the 

internal of the fluid that is the gradient of −
∇⃗⃗ 𝑝

𝜌
 , another comes from the external part.  

So, finally, we can say that we have something like a Newton’s equation, but of course, in 

density sense, because we are talking in terms of fluid flow. So, 𝜌
𝑑�⃗� 

𝑑𝑡
 will be equal to −∇⃗⃗ 𝑝 +

 𝜌𝑔 . So, this is a force equation if you want. Now, we want to check. So, this one we already 

got, but we have not derived it till now macroscopically.  
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Now, to obtain these equations from macroscopic considerations, we have to define two type 

of forces; one is called body force, another is surface force. Whenever we are talking about 

this body force and surface force, basically we have to introduce the concept of this fluid 

particle.  

Whenever we are saying that the force is acting on something then that something is given by 

the fluid blob or fluid particle and then this Lagrangian derivative comes into play. That is 

why I introduced both the Lagrangian and the Eulerian point of view. Eulerian is the one 

which we are using throughout.  

Now, what is body force? So, body force is something, which acts at all points of the body of 

a fluid element. You see we still use the motion of the fluid element and so, this is known as 

the body force or the bulk force sometimes people say, so this is given by 𝐹 𝑏. So, if we are 

just taking fluid particle’s mass then the mass will be 𝜌𝛿𝜏, where 𝛿𝜏 is the volume.  
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Then the total force will be given by 𝜌𝛿𝜏 𝑔 because 𝑔 is nothing but the force per unit mass 

or the body force per unit mass. Then what is the surface force? So, this body force acts at all 

points of the body of a fluid element.  

So, body force will be proportional to the volume. And surface force is something this acts 

across the surface enclosing the fluid element. So, for body force, this acts at every point of 

the volume of the fluid element, and surface force acts through the across the surface 

enclosing the fluid element. 
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So, some small incremental 𝛿𝐹 𝑠, surface force will be expected to be proportional to the 

incremental area, some small area 𝛿𝐴 .  

And if this is proportional to 𝛿𝐴  then one can simply write that when two vectors are 

proportional, of course, then the proportionality constant can be a scalar or there is another 

possibility that the both of them are joined by a tensor of rank 2 which is given by a matrix 

right.  

And that is the most general possibility and that is what we are writing over here. So, 𝛿𝐹 𝑠 will 

then be equal to some tensor of rank 2 and area,  �̿�′. 𝛿𝐴  . And then the total 𝐹 𝑠 will be some 

incremental or some infinite decimal surface force.  

Now, the total surface force will then be a surface integral over the whole surface. And if you 

now remember the famous Gauss divergence theorem, then the closed surface integral �̿�′. 𝑑𝐴  

is nothing but volume integral ∇⃗⃗ . �̿�′ 𝑑𝜏.  

Now, you see if you write this incremental total force is equal to incremental body force plus 

incremental surface force, then that will be simply written by [𝜌𝑔 + ∇⃗⃗ . �̿�′ ]𝑑𝜏. 
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And if you simply identify your pressure term, this �̿�′ term then this new tensor to be minus 

of the pressure what we just introduced in our original definition, original derivation. Then 



we simply get back our ideal fluid equation. We know for ideal fluid this −∇⃗⃗ . �̿�′ is even 

simpler for Maxwellian case for −∇⃗⃗ 𝑝.  

So, we again get back our ideal fluid equation starting from macroscopic considerations. 

Once again whenever we are talking macroscopic considerations, we start from fluid 

elements, and that is the reason why I introduced this Lagrangian point of view. Now, fluid 

element is the smallest entity of the macroscopic framework. 
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So, in the next part, I will discuss the different properties of ideal fluid. 

Thank you very much. 


