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Lecture – 11 
Derivation of the ideal fluid equations 

 

Hello and welcome to another lecture of Introduction to Astrophysical Fluids. In this lecture, 

we discuss the Derivation of ideal fluid equations. 
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Previously we saw that, the moment equations are not sufficient to constitute automatically a 

dynamical theory. The reason was very simple that we had 5 moment equations, one was the 

continuity equation, the other four were just the three components of the equation of the 

evolution for the linear momentum and the last one being the equation for the evolution of 

internal energy 𝜖.  

Now, we had 14 unknown variables. So, 5 equations and 14 variables. So, in case you cannot 

remember, we recapitulate that of the 14 variables, we had 6 from the symmetric tensor of 

pressure, 3 variables from the bulk velocity 𝑣, 3 from the heat flux vector 𝑞, 1 for the density 

𝑛 and 1 for the internal energy density, that is 𝜖. 

I mean 𝑛 or 𝜌, they are just the same. When 𝑛 is multiplied by the mass of one single particle 

that will give you the massive density. So, we had total 14 variables, 5 equations. So, this 



does not make sense because we know that, if we have 𝑛 number of state variables, we need 

𝑛 number of evolution equation for each of the state variables in order to get a dynamical 

theory. 

That is just a recapitulation from our lectures of the first week. We separately derived that, if 

a uniform kinetic system of gas molecules, who are interacting just by the virtue of binary 

elastic collisions then, this type of gas if they are left to relax for a long time, for example, 

then this is such a system will attain an equilibrium distribution and we showed that this 

equilibrium distribution is nothing but a Maxwellian distribution. 

Now, in this lecture, we will try to see that whether a knowledge of this distribution function 

can help in reducing the number of unknowns. That is where exactly we ended in the last 

lecture, where we said that, in general one way to reduce the number of unknown. So, 

basically how can we expect that we can make a dynamical theory for a continuum, we have 

to somehow reduce the number of variables. 

Now, one way of reducing the number of variables is to find interrelations between them. 

And then another way to show that some variables are identically vanishing. Then also in a 

way we can eliminate those variables and that is again reducing the number of total number 

of variables.  
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So, in this lecture we will see that, if we have a distribution which is Maxwellian in nature 

then how this knowledge can reduce the total number of unknowns. In an alternative way, 

this is equivalent to see whether the effect of collision can lead to a dynamical theory of the 

collection of the particles. 

So, this is something interesting to understand that the Maxwellian distribution basically 

becomes the most probable or the equilibrium distribution, when the system is collisional, 

and not any arbitrary collision but just the binary elastic collision. If the knowledge of the 

distribution function being Maxwellian in nature, can reduce the number of variables, that 

means, can find some interrelations between the variables.  

That is somehow equivalent to say that the collisions are the reason for the Maxwellian 

distribution at the fundamental level, actually helps the system attaining a dynamical theory. 

So, in this way, we will also check that whether the collisions and actually binary elastic 

collisions can help to fluidify the system.  

Now, fluidify means to make a dynamical theory for the continuum. And if you remember 

that, our primary objective from the beginning was to develop a dynamical theory at different 

levels and finally, to get a dynamical theory for the continuum of fluids.  
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So, now we just recall the Maxwellian distribution. Now, the Maxwellian distribution is 

nothing but this 𝑓 which is a function of the velocity. This is the equilibrium distribution, 



there is no dependence. So, if it is an equilibrium distribution for a uniform gas, and the 

system is led to relax itself then we can easily expect that there will be no space and time 

dependence explicitly.  

So, the only explicit dependence will be on velocity and it should look like simply 

𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥𝑝 (−𝑚 

(௨ሬሬ⃗ ି௩ሬ⃗ )మ

ଶ௞ಳ்
) . So, here we assumed that this 𝑛, 𝑇 and 𝑣 all are constants. 

Now, this is the distribution function of a uniform gas at equilibrium.  
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Let us assume that our system is such that, this is not exactly the above equilibrium, but the 

particles are following local Maxwellian distributions. So, what is the meaning of that? That 

means that the constants 𝑛, 𝑇 and 𝑣, they are no longer absolute constants but they are the 

functions of 𝑟 and 𝑡, space and time.  

Now, what is the physical meaning is of that? That simply says that, the chemical, thermal 

and dynamical equilibria. So, 𝑛 is corresponding to the chemical equilibria, 𝑇 is 

corresponding to the thermal equilibria and 𝑢0 is corresponding to the dynamical equilibria or 

the mechanical equilibria. 

So, these three equilibria, they are established only locally, that means, within a volume 

element 𝑑𝑟 and during a time 𝑑𝑡, in the neighborhood of some function of some space point 

𝑟 and time instant 𝑡. So, the basic supposition is that in the neighborhood of every 𝑟 and 𝑡, 

there should be some local Maxwellian distribution. 



That means, the velocity distribution is a Maxwellian but these constants are now no longer 

constants. So, they are basically constant for that specific point but globally they are just the 

functions of space and time. If we do that, then we can have a local Maxwellian distribution 

which should look like 𝑓(𝑟, 𝑣⃗, 𝑡) = 𝑛(𝑟, 𝑡) (
௠

ଶగ௞ಳ்(௥⃗,௧)
)ଷ/ଶ𝑒𝑥𝑝 (−𝑚 

(௨ሬሬ⃗ ି௩ሬ⃗ (௥⃗,௧))మ

ଶ௞ಳ்(௥⃗,௧)
). So, you can 

see there is nothing new, other than just writing these previous constants 𝑛, 𝑇 and 𝑣 to be 

explicit functions of 𝑟 and 𝑡. 
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Now, for brevity now onwards, we will simply write 𝜒  for any arbitrary variable 𝜒, which is 

a function of 𝑟 and 𝑡. So, when I write 𝑛, I mean this is a function of 𝑟 and 𝑡 because we are 

talking in the framework of local Maxwellian distribution from now onwards. 

So, now you see we have the knowledge of 𝑓. We know what 𝑓 is. So, now, we will see how 

it can help in reducing the number of the unknowns. So, we first calculate 𝒫ന . So, 𝒫𝑖𝑗 is 𝑖𝑗௧௛ 

component is given by 𝑚 ∫ 𝑈௜𝑈௝ 𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ 𝑑ଷ𝑈ሬሬ⃗ . So, this U is nothing but 

the fluctuation velocity. 

So, that is easy to understand, if you just go back to the original definition of 𝒫ന , you will see 

that for a Maxwellian distribution, this is nothing but m times this fluctuation 𝑈𝑖𝑈𝑗. So, 𝒫ന  is 

the tensorial product of the fluctuation velocities times the distribution function and then 

𝑑3𝑈. 



So, when this integration, integrated over the velocity space, it gives you the pressure tensor. 

So, the 𝑖𝑗𝑡ℎ component will simply be 𝑚 ∫ 𝑈௜𝑈௝ 𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ 𝑑ଷ𝑈ሬሬ⃗ . 
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Now, you see that, when I just write this type of single integration with a 𝑈ሬሬ⃗  , it basically 

denotes three integrations over three components of 𝑈. And all the integrations will vary 

from -∞ to +∞. So, from this type of expression, you will simply understand that 𝒫𝑖𝑗 

vanishes, if the integrand is odd.  

And how is that possible to understand? Just a minute, you see that, 

𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ part is an even function of U. Now, this part 𝑈𝑖𝑈𝑗 you have two 

different components. So, of course, these things we even do not know how should they be 

but if this part 𝑈𝑖𝑈𝑗 will have an odd part, then the total thing will be an odd function. And as 

the whole integration will vanish within -∞ to +∞. Then anything which is odd inside will 

make the whole thing vanish, that is very easy to understand.  
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Now, since the nature of the integrand depends on 𝑈𝑖𝑈𝑗 what I just said 5 seconds ago, 

evidently 𝒫𝑖𝑗 vanishes when 𝑖 is not equal to 𝑗 that means when we have this type of 

combinations 𝑈𝑥𝑈𝑦 or 𝑈𝑦𝑈𝑧 or 𝑈𝑥𝑈𝑧. Now, please check. So, basically due to the lack of 

time, it is not always possible to do every single step of the lengthy calculations.  

But it is highly recommended or highly suggested that, you check all this calculation at home 

that is the only way to learn. So, please check that. Let us say you just take with this 

combination 𝑈𝑥𝑈𝑦, then basically you are calculating nothing but 𝒫௫௬, the 𝑥𝑦 component of 

the pressure tensor and this will be given by 𝑚 ∫ 𝑈௫𝑈௬ 𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ 𝑑ଷ𝑈ሬሬ⃗ . 

And you see that in this integration, basically 𝑥 is not equal to 𝑦. So, this is a case, where 𝑖 is 

not equal to 𝑗. So, you can easily check this is 0. I leave it on you as an exercise. 

So, basically you have to remember that, 𝑈 squared is nothing but 𝑈𝑥
2 + 𝑈𝑦

2 + 𝑈𝑧
2. And 𝑑3𝑈 is 

nothing but 𝑑𝑈௫𝑑𝑈௬𝑑𝑈௭ . Then you just use your knowledge of integration and you should 

find 0. If you do not find 0, that is a problem. Then please let me know. Now, the integration 

of course, does not vanish in case 𝑖 is equal to 𝑗.  
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Why? Because we can show that if 𝑖 is equal to 𝑗 then what happens, then it will give you a 

square of something. So, for example, if 𝑥 is equal to 𝑦, then it will be 𝑈𝑥
2 for example. Now, 

I showed how it should and what will be the value. If it is non zero, then what should be the 

value of it.  

So, the integration will then be simply 𝒫𝑖𝑖 and it will be given by 

𝑚𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ ∫ 𝑈௜

ଶ  𝑒𝑥 𝑝 ቀ−𝑚 
(𝑈)మ

ଶ௞ಳ்
ቁ 𝑑ଷ𝑈ሬሬ⃗ .  

Now, we again take a particular example, 𝑖 is equal to 𝑥 then the integral is nothing but 𝐼 =

 ∭ 𝑈௫
ଶାஶ

ିஶ
 𝑒𝑥 𝑝 ቀ−𝑚 

௎ೣ
మା௎೤

మା௎೥
మ

ଶ௞ಳ்
ቁ 𝑑𝑈௫𝑑𝑈௬𝑑𝑈௭  . And if you have this, now you can simply 

see that this 𝑈𝑥
2 square will go to this part 𝑒𝑥 𝑝 ቀ−𝑚 

௎ೣ
మ

ଶ௞ಳ்
ቁ, the other two parts 

𝑒𝑥 𝑝 ቀ−𝑚 
௎೤

మ

ଶ௞ಳ்
ቁ  𝑎𝑛𝑑  𝑒𝑥 𝑝 ቀ−𝑚 

௎೥
మ

ଶ௞ಳ்
ቁ will simply be just integrated within -∞ to +∞.  
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So, we will have at the end this 𝐼 is equal to ∫ 𝑈𝑥
2+∞

−∞
𝑒𝑥 𝑝 ൬−𝑚 

𝑈𝑥
2

2𝑘𝐵𝑇
൰  𝑑𝑈𝑥  ට

2𝜋𝑘𝐵𝑇

𝑚
. And then 

for 𝑦 and 𝑧, we will have the same type of integration. So, we will just write one integration 

of this type and we will square that.  

So, that is the square ∫ 𝑈𝑥
2+∞

−∞
𝑒𝑥 𝑝 ൬−𝑚 

𝑈𝑥
2

2𝑘𝐵𝑇
൰  𝑑𝑈𝑥  (ට

2𝜋𝑘𝐵𝑇

𝑚
)

2

 . So, this is exactly what we did 

and you know that, this type of integration has a very simple formula. So, in integration over 

from -∞ to +∞, if it is simply 𝑒−𝛽𝑥2
𝑑𝑥, then it should be simply ට

𝜋

𝛽
. And that is exactly what 

we did here. 

What about this integral ∫ 𝑈𝑥
2+∞

−∞
𝑒𝑥 𝑝 ൬−𝑚 

𝑈𝑥
2

2𝑘𝐵𝑇
൰  𝑑𝑈𝑥, that you have to do? So, right from the 

first assignment, I mean tried to train you in doing this type of integrations. And in the 

reference books which I told you in the course handout, you can see this type of integrations 

are done there.  

So, if you do it like with proper care and finally, just again replacing the integration value in 

the 𝒫𝑥𝑥. And this 𝒫𝑥𝑥, if you just remember this was nothing but this factor 𝑚𝑛(
௠

ଶగ௞ಳ்
)ଷ/ଶ 

times the integration ∫ 𝑈𝑥
2+∞

−∞
𝑒𝑥 𝑝 ൬−𝑚 

𝑈𝑥
2

2𝑘𝐵𝑇
൰  𝑑𝑈𝑥. 



So, 𝒫𝑥𝑥, which is now calculated. And if you, do it carefully, you will see that this pressure is 

nothing but 𝑛𝑘஻𝑇. So, this is something you already know may be from your previous 

knowledge of kinetic theory. 
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If you do not know, you learn here. So, in the same way, if you calculate 𝒫𝑦𝑦, and 𝒫𝑧𝑧 you 

can actually see. Even without calculation if you think of it, you will see that will also give 

you the same thing and this will be again 𝑛𝑘஻𝑇. So, the conclusion is for our case, the 

pressure tensor is such that, it is 0 when 𝑖 is not equal to 𝑗 and it is equal to 𝑝, which is equal 

to 𝑛𝑘஻𝑇, 𝑛 is the density, 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant.  

So, basically if you want to write the pressure tensor roughly, it should look like ൭
𝑝 0 0
0
0

𝑝
0

0
𝑝

൱. 

All the off-diagonal elements should be 0 and all the diagonal elements should be 𝑝, where 𝑝 

is equal to 𝑛𝑘஻𝑇. So, a compact way of writing such type of tensor is nothing but this 𝒫𝑖𝑗, is 

equal to 𝑝 𝛿௜௝, where 𝛿  is the chronicle delta.  
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So, for 𝑝 basically what we see that, we had 6 unknown variables. Now we have only 1 

unknown variable to handle with. Now, we have to calculate the heat flux vector 𝑞ሬሬ⃗ . Again, 

we go back to the definition. So, the definition is 𝑞 is equal to 𝑚
2

∫ 𝑈2+∞

−∞
𝑈ሬሬ⃗ 𝑓𝑑3𝑈ሬሬ⃗ .  

For a Maxwellian distribution, it should look like simply 

𝑚

2
∫ 𝑈2+∞

−∞
𝑈ሬሬ⃗ 𝑛 (

𝑚

2𝜋𝑘𝐵𝑇
)

3/2
𝑒𝑥 𝑝 ቀ−𝑚 

(௎)2

2𝑘𝐵𝑇
ቁ  𝑑3𝑈ሬሬ⃗ . Now, you see this part 

𝑛 (
௠

ଶగ௞ಳ்
)ଷ/ଶ𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ  is again you can see is an even function of 𝑈, for all 

components.  

What about this part 𝑈2𝑈ሬሬ⃗ ? This 𝑈2 is an even function but from 𝑈ሬሬ⃗  you will always have an 

odd function. So, how to check that? You again take one component. So, let us choose 𝑞𝑥 

then what it should be, I mean how it should look like, it will simply be 

𝑚

2
∫ 𝑈2+∞

−∞
𝑈𝑥 𝑛 (

𝑚

2𝜋𝑘𝐵𝑇
)

3/2
𝑒𝑥 𝑝 ቀ−𝑚 

(௎)2

2𝑘𝐵𝑇
ቁ  𝑑3𝑈ሬሬ⃗ .  
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And 𝑈2𝑈, you can write as 𝑈𝑥
2 + 𝑈𝑦

2 + 𝑈𝑧
2 times 𝑈𝑥. So, now we will have the products of 

three integrations. So, for 𝑈𝑦 and 𝑈𝑧, you will have nonzero things because that will be 

globally an even function. But for 𝑈𝑥, you will have 𝑈𝑥
3, which is an odd function and from 

𝑒𝑥 𝑝 ቀ−𝑚 
௎ೣ

మା௎೤
మା௎೥

మ

ଶ௞ಳ்
ቁ you will have 𝑈𝑥

2 all as a function of 𝑈𝑥
2. So, it is an even function. 

So, all the three terms will contain one odd part. So, basically you will have three 

integrations. So, if you just want to check it. So, that will be 𝑚

2
∫ (𝑈𝑥

3 + 𝑈𝑦
2𝑈𝑥 +

+∞

−∞

𝑈𝑧
2𝑈𝑥 ) 𝑛 (

𝑚

2𝜋𝑘𝐵𝑇
)

3/2
𝑒𝑥 𝑝 ቀ−𝑚 

(௎)2

2𝑘𝐵𝑇
ቁ  𝑑3𝑈ሬሬ⃗ . So,  𝑒𝑥 𝑝 ቀ−𝑚 

(𝑈)మ

ଶ௞ಳ்
ቁ  is the even function. 

So, 𝑈𝑥
3 is an odd function. So, when I just take the first one, you will see that this 𝑈𝑥

3gives me 

the odd function and for the 𝑈𝑦 and 𝑈𝑧, I do not have any odd thing. But finally, I have one 

odd part and that will give me 0, for this integration, so that will be a sum of the three 

integrations. For this integration again 𝑈𝑦
2𝑈𝑥  gives me an odd part and this will give me 0. 

Again, for the third one 𝑈𝑧
2𝑈𝑥  give me an odd contribution. So, which makes again the 

integration to be 0. Finally, the thing is that 𝑞𝑥  is 0. For the same reason 𝑞𝑦 and 𝑞𝑧  can also 

be shown to be 0.  
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So, it is there is a big relief that we have somehow eliminated a total vector. So, already for 𝑝, 

we have reduced 6 variables to 1, and for 𝑞, we have got rid of 3 components, because it is 

identically vanishing for Maxwellian distribution. Now, try to understand the last one, which 

is epsilon 𝜖.  

By definition this is 1

2𝑛
∫ 𝑈2+∞

−∞
𝑓𝑑3𝑈ሬሬ⃗ . Here I am again suggesting that when I am writing this 

type of equation, please check that to the equation in the previous lectures and try to match 

them, whether they are consistent with each other or not. 

Let us say I am writing 〈𝑈ଶ〉 and this is nothing but  1

𝑛
∫ 𝑈2+∞

−∞
𝑓 𝑑𝑈ሬሬ⃗ . So, if I just want to, for 

example, make a reference for this integration, it will simply be 𝑛〈𝑈ଶ〉. 

So, just keeping this in mind, try to check whether this is consistent with its primary 

definition or not. So, if you correctly do the algebra and integration, then you should get 𝜖 is 

equal to 
ଷ

ଶ
(

௞ಳ்

௠
) . And you see, that is something we did not expected. The 𝑘஻𝑇 has a unit of 

energy. So, 
ଷ

ଶ
(

௞ಳ்

௠
)  is unit of energy per unit mass. So, this is a unit of velocity squared. 

And that is very easy to check from here as well because ∫ 𝑓  𝑑ଷ𝑈ሬሬ⃗  has a dimension of density. 

So, has a unit of density. So, this by 𝑛 density will go off and you will have a unit of 𝑈 

squared that is the energy per unit mass. 



So, this is a fabulous exercise to do at home. So, try by taking 𝑓 as Maxwell Boltzmann 

distribution and calculate integrations carefully and you will see that epsilon 𝜖 will be equal 

to 
ଷ

ଶ
(

௞ಳ்

௠
)  . 
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Of course, 
ଷ

ଶ
  factor comes for mono atomic gases. Now, what will be 𝜖 for a gas with more 

molecules having 𝑓 degrees of freedom? That will be simply 
௙

ଶ
 because for mono atomic 

gases, they have just 3 degrees of freedom, so 
ଷ

ଶ
(

௞ಳ்

௠
)  that is the formula. When 𝑓 degrees of 

freedoms are there, so 
௙

ଶ
(

௞ಳ்

௠
)  that will be the formula.  
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So, now I have a question for you, this is a small task, from there how to find this epsilon 𝜖 a 

for diatomic molecules? Then you have just to find the number of degrees of freedom, that is 

quite simple. 
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So, finally, you see that we have calculated also 𝜖. So, what else? Finally, if you remember 

there was a term of double contraction in the energy equation and that was the double 

contraction of 𝓟 tensor to 𝛬 tensor, where 𝛬 is the symmetric part of the velocity gradient. 

So, now in case our 𝒫𝑖𝑗 is equal to some small 𝑝 times Kronecker delta 𝛿௜௝. For this 

simplified case of Maxwellian distribution, of course local Maxwellian distribution then this 



contraction is simply equal to 𝒫𝑖𝑗 𝛬௜௝. And from 𝒫𝑖𝑗 𝛬௝௜ finally, you can also write lambda 𝒫𝑖𝑗 

𝛬௜௝  because lambda is symmetric.  

So, if I now expand 𝛬௜௝ and put the value of expression for 𝒫𝑖𝑗 for our current case, we will 

see this is nothing, but 
௣

ଶ
𝛿௜௝[

డ௩೔

డ௫ೕ
+

డ௩ೕ

డ௫೔
], which is equal to 𝑝 times ∇ሬሬ⃗ . 𝑣⃗ simply. Because 𝛿௜௝ will 

survive only when 𝑖 is equal to 𝑗. 

So, simply you will have here 
௣

ଶ
∇ሬሬ⃗ . 𝑣⃗ . And what is this ∇ሬሬ⃗ . 𝒫ധ? When 𝓟 is diagonal then it has 

the three identical values 𝑝. So, the ∇ሬሬ⃗ . 𝒫ധ  will simply be the ∇ሬሬ⃗ 𝑝. So, ∇ሬሬ⃗ . 𝒫ധ  will equal to, will be 

equal to ∇ሬሬ⃗ 𝑝, where 𝑝 is the eigenvalues of the pressure tensor. 
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Now, collecting all the previous expressions, finally we can write the momentum equations to 

be  
డ௩ሬ⃗

డ௧
+ ൫𝑣⃗. ∇ሬሬ⃗ ൯𝑣⃗ =  −

∇ሬሬ⃗ ௣

ఘ
+ 𝑔,  g is nothing but the acceleration due to the body force. I wrote 

g because most of the cases in astrophysics, we use the case or the framework, where the 

body forces the gravity. So, this is just the gravitational acceleration. you can write any other 

symbol. 

And the internal energy evolution equation 
డఢ

డ௧
+ ൫𝑣⃗. ∇ሬሬ⃗ ൯𝜖 =  −

௣

ఘ
 (∇ሬሬ⃗ . 𝑣⃗). Now, you see we 

should not forget this continuity equation 
డఢ

డ௧
+ ∇ሬሬ⃗ . 𝜌𝑣⃗ = 0, that is the third equation. So, now, 



you will see, we have 3 equations. 
డ௩ሬ⃗

డ௧
+ ൫𝑣⃗. ∇ሬሬ⃗ ൯𝑣⃗ =  −

∇ሬሬ⃗ ௣

ఘ
+ 𝑔 is a vectorial equation. So, this 

basically means 3 scalar equations, so we have 5 scalar equations. 

So, we have 5 states, for example, 𝑣௫, 𝑣௬, 𝑣௭, 𝜖, and 𝜌. And effectively how many variables 

or unknowns we have? We have 𝑣, we have 𝑝, we have 𝜌. So, 𝑔 is given. So, this forcing is 

known, that we do not worry about. 

So, 𝑣 has 3 unknowns and then 𝑝, 𝜌, 𝜖. So, we have 6 unknowns. Now, we are almost there. 

So, we had 14 unknowns, 5 equations. We have 5 evolution equations, 6 unknowns, we are 

almost there. Can we be achieving the dynamical theory? The answer is well, let us see. 
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So, you see the previous equations. So, after this basically the previous equations constitute a 

system of 5 equations I just said and so this gives you 6 variables. But we really need 5 

variables, how to do that?  
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That is exactly if we just write the expressions, explicit expressions of 𝜌, 𝑝 and 𝜖, we will see 

that these three basically are related by only 2 variables 𝑛 and 𝑇. So, 𝜌, 𝑝 and 𝜖, all are a 

function of 𝑛 and 𝑇.  

So, you can actually just express 𝑝 in terms of 𝜖. Just I mean in terms of 𝜖 and 𝜌 to be very 

precise, that is a small homework for you. So, just eliminate 𝑛 and 𝑇 to relate 𝑝, 𝜌, and 𝜖 in a 

small simple algebraic relation, ok do that. 

But at least without calculating any further thing, it is now evident that we have 5 equations 

and 5 unknowns. So, we have a dynamical theory finally. We have 5 state variables and we 

have 5 evolution equations. And this is known as then the system of the ideal fluid equations. 

Why it is ideal fluid? So, till now, this is the first time we have developed a dynamical theory 

for a continuum. 

So, we even do not know whether this is called an ideal fluid or not but the equations which 

we get from the previous knowledge of the fluid engineers or fluid mechanists, this is 

somehow very evident that, these are nothing but well-known ideal fluid equations. 

Ideal fluid means, a fluid which does not have any type of transport properties. So, what are 

the transport properties that we will try later. So, for example, I am just trying to tell you 

something, which is easier to understand. For example, a fluid which does not have any type 

of transfer, I mean transfer of density from one point to the other, neither any form of viscous 

effect ok, in case you already are familiar to fluid dynamics. 



And also, it does not have any conductive property, for example, thermal conductivity type of 

thing. So, if we have a fluid like that, which is not a practical fluid in general but it is called 

an ideal or perfect fluid. So, 𝜌 =  𝜌(𝑛), 𝑝 = 𝑛𝑘஻𝑇, 𝜖 =  
ଷ

ଶ
 
௞ಳ்

௠
 are then the equations of the 

perfect fluid. 

So, the basically here we end this current part. So, in the next part, we will discuss some 

properties of the ideal fluid and we also try to understand that, how one can look the ideal 

fluid and its equations from a macroscopic point of view. 

Thank you very much. 


