Introduction to Astrophysical Fluids
Prof. Supratik Banerjee
Department of Physics
Indian Institute of Technology, Kanpur

Lecture — 11
Derivation of the ideal fluid equations

Hello and welcome to another lecture of Introduction to Astrophysical Fluids. In this lecture,

we discuss the Derivation of ideal fluid equations.
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Previously we saw that, the moment equations are not sufficient to constitute automatically a
dynamical theory. The reason was very simple that we had 5 moment equations, one was the
continuity equation, the other four were just the three components of the equation of the
evolution for the linear momentum and the last one being the equation for the evolution of

internal energy €.

Now, we had 14 unknown variables. So, 5 equations and 14 variables. So, in case you cannot
remember, we recapitulate that of the 14 variables, we had 6 from the symmetric tensor of
pressure, 3 variables from the bulk velocity v, 3 from the heat flux vector g, 1 for the density

n and 1 for the internal energy density, that is €.

I mean n or p, they are just the same. When n is multiplied by the mass of one single particle

that will give you the massive density. So, we had total 14 variables, 5 equations. So, this



does not make sense because we know that, if we have n number of state variables, we need
n number of evolution equation for each of the state variables in order to get a dynamical

theory.

That is just a recapitulation from our lectures of the first week. We separately derived that, if
a uniform kinetic system of gas molecules, who are interacting just by the virtue of binary
elastic collisions then, this type of gas if they are left to relax for a long time, for example,
then this is such a system will attain an equilibrium distribution and we showed that this

equilibrium distribution is nothing but a Maxwellian distribution.

Now, in this lecture, we will try to see that whether a knowledge of this distribution function
can help in reducing the number of unknowns. That is where exactly we ended in the last
lecture, where we said that, in general one way to reduce the number of unknown. So,
basically how can we expect that we can make a dynamical theory for a continuum, we have

to somehow reduce the number of variables.

Now, one way of reducing the number of variables is to find interrelations between them.
And then another way to show that some variables are identically vanishing. Then also in a
way we can eliminate those variables and that is again reducing the number of total number

of variables.
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So, in this lecture we will see that, if we have a distribution which is Maxwellian in nature
then how this knowledge can reduce the total number of unknowns. In an alternative way,
this is equivalent to see whether the effect of collision can lead to a dynamical theory of the

collection of the particles.

So, this is something interesting to understand that the Maxwellian distribution basically
becomes the most probable or the equilibrium distribution, when the system is collisional,
and not any arbitrary collision but just the binary elastic collision. If the knowledge of the
distribution function being Maxwellian in nature, can reduce the number of variables, that

means, can find some interrelations between the variables.

That is somehow equivalent to say that the collisions are the reason for the Maxwellian
distribution at the fundamental level, actually helps the system attaining a dynamical theory.
So, in this way, we will also check that whether the collisions and actually binary elastic

collisions can help to fluidify the system.

Now, fluidify means to make a dynamical theory for the continuum. And if you remember
that, our primary objective from the beginning was to develop a dynamical theory at different

levels and finally, to get a dynamical theory for the continuum of fluids.
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So, now we just recall the Maxwellian distribution. Now, the Maxwellian distribution is

nothing but this f which is a function of the velocity. This is the equilibrium distribution,



there is no dependence. So, if it is an equilibrium distribution for a uniform gas, and the
system is led to relax itself then we can easily expect that there will be no space and time

dependence explicitly.

So, the only explicit dependence will be on velocity and it should look like simply

m

( (ﬁ_"_})z
ZﬂkBT

2kgT

)*/2exp (—m

) . So, here we assumed that this n, T and v all are constants.

Now, this is the distribution function of a uniform gas at equilibrium.

(Refer Slide Time: 07:31)

{5 R AR ‘”r-L —QK—B;—J

Where, v, T, V' one comstanls. i, 5 e diskibubin
fowdtion of o wntiform g ab agmilbviumt (globally).
* A oerume Rk m%gm% Ardnthot tRe
’Pafﬁidm vre ‘-?o—Uﬁw{vﬁ el Maxwellion disbnbodion
= N =n(Tt), T=T(7,¢), b= Lt
(I" M wuoms The chenuenl | Hhermal & dgmawdcaﬂ
eclullLbh'a, are ewhablishad (/uca\ﬂbj‘ ve wiluin
a violume ot AT ond dwr'nﬁ o Hwa ou:)

Let us assume that our system is such that, this is not exactly the above equilibrium, but the
particles are following local Maxwellian distributions. So, what is the meaning of that? That
means that the constants n, T and v, they are no longer absolute constants but they are the

functions of r and t, space and time.

Now, what is the physical meaning is of that? That simply says that, the chemical, thermal
and dynamical equilibria. So, n is corresponding to the chemical equilibria, T is
corresponding to the thermal equilibria and u, is corresponding to the dynamical equilibria or

the mechanical equilibria.

So, these three equilibria, they are established only locally, that means, within a volume
element dr and during a time dt, in the neighborhood of some function of some space point
r and time instant t. So, the basic supposition is that in the neighborhood of every r and ¢,

there should be some local Maxwellian distribution.



That means, the velocity distribution is a Maxwellian but these constants are now no longer
constants. So, they are basically constant for that specific point but globally they are just the

functions of space and time. If we do that, then we can have a local Maxwellian distribution

m

U=V t))?
2tkgT (7.t)

which should look like f(7,7,t) = n(#,t) ( T D
B )

)3/ 2exp (—m ). So, you can

see there is nothing new, other than just writing these previous constants n, T and v to be

explicit functions of r and t.
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Now, for brevity now onwards, we will simply write y for any arbitrary variable y, which is
a function of r and t. So, when I write n, I mean this is a function of r and t because we are

talking in the framework of local Maxwellian distribution from now onwards.

So, now you see we have the knowledge of f. We know what f is. So, now, we will see how
it can help in reducing the number of the unknowns. So, we first calculate P. So, Py isij th

2\ -
)3/2exp (—m %) d3U. So, this U is nothing but

m
ZﬂkBT

component is given by m [ U;U; n (

the fluctuation velocity.

So, that is easy to understand, if you just go back to the original definition of P, you will see
that for a Maxwellian distribution, this is nothing but m times this fluctuation U;U;. So, Pis
the tensorial product of the fluctuation velocities times the distribution function and then

d3U.



So, when this integration, integrated over the velocity space, it gives you the pressure tensor.

2 —
So, the ij" component will simply be m [ U;U;n (27:: T)3/zex p (—m %) d3Uu.
B B
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Now, you see that, when I just write this type of single integration with a U, it basically
denotes three integrations over three components of U. And all the integrations will vary
from -o0 to +oo. So, from this type of expression, you will simply understand that P;

vanishes, if the integrand is odd.

And how is that possible to understand? Just a minute, you see that,

0)?
2kgT

m
(ZﬂkBT

)3/ 2exp (—m ) part is an even function of U. Now, this part U;U; you have two

different components. So, of course, these things we even do not know how should they be
but if this part U;U; will have an odd part, then the total thing will be an odd function. And as
the whole integration will vanish within - to +o0. Then anything which is odd inside will

make the whole thing vanish, that is very easy to understand.
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Now, since the nature of the integrand depends on U;U; what I just said 5 seconds ago,
evidently P;; vanishes when i is not equal to j that means when we have this type of
combinations U,U,, or U,U, or U,U,. Now, please check. So, basically due to the lack of

time, it is not always possible to do every single step of the lengthy calculations.

But it is highly recommended or highly suggested that, you check all this calculation at home
that is the only way to learn. So, please check that. Let us say you just take with this

combination U,U,, then basically you are calculating nothing but P, the xy component of

the pressure tensor and this will be given by m [ U,U, n Gor )3/ Zexp ( Z(IL(’) T) d3U

And you see that in this integration, basically x is not equal to y. So, this is a case, where i is

not equal to j. So, you can easily check this is 0. I leave it on you as an exercise.

So, basically you have to remember that, U squared is nothing but U Z4 U}z, + U2 And d*U is
nothing but dU,dU, dU, . Then you just use your knowledge of integration and you should

find 0. If you do not find 0, that is a problem. Then please let me know. Now, the integration

of course, does not vanish in case i is equal to j.
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Why? Because we can show that if i is equal to j then what happens, then it will give you a

square of something. So, for example, if x is equal to y, then it will be U 2 for example. Now,
I showed how it should and what will be the value. If it is non zero, then what should be the

value of it.

So, the integration will then be simply P; and it will be given by

3/2 (172 W2\ 4377
n(an T) IU exp( 2kBT)d u.

Now, we again take a particular example, i is equal to x then the integral is nothing but [ =

fff “y2 exp( W) dU,dU,dU, . And if you have this, now you can simply

2
see that this U2 square will go to this part exp( ), the other two parts

2kp

2

Ujy UZ o S oy
exp (—m ZkBT) and exp ( szT) will simply be just integrated within -co to +oo.
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So, we will have at the end this I is equal to f_+;° Uz exp (—m ) du, ZHZBT. And then

2kpT
for y and z, we will have the same type of integration. So, we will just write one integration

of this type and we will square that.

UF;
2kgT

2
) du, ( 27TkBT) . So, this is exactly what we did

m

So, that is the square fj;o UZexp (—m
and you know that, this type of integration has a very simple formula. So, in integration over
from -oo to +oo, if it is simply e~P¥ dx, then it should be simply \/% And that is exactly what

we did here.

UE;
2kgT

What about this integral fj;o Uz exp (—m ) dU,, that you have to do? So, right from the

first assignment, I mean tried to train you in doing this type of integrations. And in the
reference books which I told you in the course handout, you can see this type of integrations

are done there.

So, if you do it like with proper care and finally, just again replacing the integration value in

the P,,. And this P,,, if you just remember this was nothing but this factor mn(2n7: T)3/ 2
B

. . . 400 2 U,ZC

times the integration [~ Uy exp(—m ZkBT) du,.



So, P, which is now calculated. And if you, do it carefully, you will see that this pressure is
nothing but nkgT. So, this is something you already know may be from your previous

knowledge of kinetic theory.
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If you do not know, you learn here. So, in the same way, if you calculate P,,, and P,, you
can actually see. Even without calculation if you think of it, you will see that will also give
you the same thing and this will be again nkgT. So, the conclusion is for our case, the
pressure tensor is such that, it is 0 when i is not equal to j and it is equal to p, which is equal

to nkgT, n is the density, T is the temperature, kg is the Boltzmann constant.

p 0 O
So, basically if you want to write the pressure tensor roughly, it should look like (0 p O).
0 0 p

All the off-diagonal elements should be 0 and all the diagonal elements should be p, where p

is equal to nkgT. So, a compact way of writing such type of tensor is nothing but this P;;, is

equal to p 6;;, where § is the chronicle delta.
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So, for p basically what we see that, we had 6 unknown variables. Now we have only 1

unknown variable to handle with. Now, we have to calculate the heat flux vector §. Again,

we go back to the definition. So, the definition is g is equal to % fj;o U® ﬁf d*U.

For a Maxwellian distribution, it should look like simply
+00 .22 3/2 ) 3_’ .

% S, U"Un (ZHZLBT) exp( mo- T) a’u Now, you see this part

n(—— )3/2exp( (U)Z) 1S again you can see is an even function of U, for all
2mkgT 2kgT ?

components.

What about this part U U7 This U? is an even function but from U you will always have an
odd function. So, how to check that? You again take one component. So, let us choose q,

then what it should be, I mean how it should look like, it will simply be

Vioxp(-m 1) 0

_f+ooU Upn (an T)
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And U?U, you can write as U,ZC + U32, + Ug times U,. So, now we will have the products of

three integrations. So, for U, and U,, you will have nonzero things because that will be

globally an even function. But for U,, you will have Ui, which is an odd function and from
2 2 2
exp (—m %) you will have UZ all as a function of U2. So, it is an even function.
B
So, all the three terms will contain one odd part. So, basically you will have three
integrations. So, if you just want to check it. So, that will be Z [P + vt +

(2
2kgT

3/Zexp (—m %) d*U. So, exp (—m

UZU, ) n ( ) is the even function.

m
ZTL'kBT)

So, U2 is an odd function. So, when I just take the first one, you will see that this Uﬁgives me
the odd function and for the U,, and U,, T do not have any odd thing. But finally, I have one
odd part and that will give me 0, for this integration, so that will be a sum of the three

integrations. For this integration again U }2, U, gives me an odd part and this will give me 0.

Again, for the third one UiU, give me an odd contribution. So, which makes again the

integration to be 0. Finally, the thing is that g, is 0. For the same reason q, and q, can also

be shown to be 0.
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So, it is there is a big relief that we have somehow eliminated a total vector. So, already for p,
we have reduced 6 variables to 1, and for g, we have got rid of 3 components, because it is
identically vanishing for Maxwellian distribution. Now, try to understand the last one, which

is epsilon €.

By definition this is i fj;o U® f d*U. Here 1 am again suggesting that when I am writing this

type of equation, please check that to the equation in the previous lectures and try to match

them, whether they are consistent with each other or not.

Let us say I am writing (U?) and this is nothing but % f_Jr;O U? f dU. So, if I just want to, for

example, make a reference for this integration, it will simply be n{U?).

So, just keeping this in mind, try to check whether this is consistent with its primary

definition or not. So, if you correctly do the algebra and integration, then you should get € is

equal to Z(k”%) . And you see, that is something we did not expected. The kzT has a unit of

kpTy . . . . . .
energy. So, % (%) is unit of energy per unit mass. So, this is a unit of velocity squared.

And that is very easy to check from here as well because [ f d3U has a dimension of density.
So, has a unit of density. So, this by n density will go off and you will have a unit of U

squared that is the energy per unit mass.



So, this is a fabulous exercise to do at home. So, try by taking f as Maxwell Boltzmann

distribution and calculate integrations carefully and you will see that epsilon € will be equal

k
2°"m
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Of course, % factor comes for mono atomic gases. Now, what will be € for a gas with more
molecules having f degrees of freedom? That will be simply g because for mono atomic
gases, they have just 3 degrees of freedom, so Z(%T) that is the formula. When f degrees of

freedoms are there, so }2: (I%T) that will be the formula.
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So, now I have a question for you, this is a small task, from there how to find this epsilon € a

for diatomic molecules? Then you have just to find the number of degrees of freedom, that is

quite simple.
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So, finally, you see that we have calculated also €. So, what else? Finally, if you remember
there was a term of double contraction in the energy equation and that was the double

contraction of P tensor to A tensor, where A is the symmetric part of the velocity gradient.

So, now in case our P; is equal to some small p times Kronecker delta &;;. For this

simplified case of Maxwellian distribution, of course local Maxwellian distribution then this



contraction is simply equal to P;; 4;;. And from P;; A;; finally, you can also write lambda P;;

A;; because lambda is symmetric.

So, if I now expand 4;; and put the value of expression for P;; for our current case, we will

« . . i ov; . . . - o - .
see this is nothing, but g bij [% + 6—1;]], which is equal to p times V. v simply. Because &;; will
Jj i

survive only when i is equal to j.

So, simply you will have here EV. ¥ . And what is this V. P? When P is diagonal then it has

the three identical values p. So, the V. P will simply be the V)p. So, V. P will equal to, will be

equal to V)p, where p is the eigenvalues of the pressure tensor.
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Now, collecting all the previous expressions, finally we can write the momentum equations to
M [ D\~ v . . .
be a_: + (v. V)v = — 7;9 + g, g is nothing but the acceleration due to the body force. I wrote

g because most of the cases in astrophysics, we use the case or the framework, where the
body forces the gravity. So, this is just the gravitational acceleration. you can write any other

symbol.

. . . a - = —4 -
And the internal energy evolution equation a—i+ (v. V)e = —% (V.v). Now, you see we

. . . . a = - . . .
should not forget this continuity equation a—: + V.pv = 0, that is the third equation. So, now,



-

. . a_) - = - V . . . .
you will see, we have 3 equations. a_: + (v. V)v = —FP + g is a vectorial equation. So, this

basically means 3 scalar equations, so we have 5 scalar equations.

So, we have 5 states, for example, vy, v, v,, €, and p. And effectively how many variables

or unknowns we have? We have v, we have p, we have p. So, g is given. So, this forcing is

known, that we do not worry about.

So, v has 3 unknowns and then p, p, €. So, we have 6 unknowns. Now, we are almost there.
So, we had 14 unknowns, 5 equations. We have 5 evolution equations, 6 unknowns, we are

almost there. Can we be achieving the dynamical theory? The answer is well, let us see.
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So, you see the previous equations. So, after this basically the previous equations constitute a
system of 5 equations I just said and so this gives you 6 variables. But we really need 5

variables, how to do that?
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That is exactly if we just write the expressions, explicit expressions of p, p and €, we will see
that these three basically are related by only 2 variables n and T. So, p, p and €, all are a

function of n and T.

So, you can actually just express p in terms of €. Just I mean in terms of € and p to be very
precise, that is a small homework for you. So, just eliminate n and T to relate p, p, and € in a

small simple algebraic relation, ok do that.

But at least without calculating any further thing, it is now evident that we have 5 equations
and 5 unknowns. So, we have a dynamical theory finally. We have 5 state variables and we
have 5 evolution equations. And this is known as then the system of the ideal fluid equations.
Why it is ideal fluid? So, till now, this is the first time we have developed a dynamical theory

for a continuum.

So, we even do not know whether this is called an ideal fluid or not but the equations which
we get from the previous knowledge of the fluid engineers or fluid mechanists, this is

somehow very evident that, these are nothing but well-known ideal fluid equations.

Ideal fluid means, a fluid which does not have any type of transport properties. So, what are
the transport properties that we will try later. So, for example, I am just trying to tell you
something, which is easier to understand. For example, a fluid which does not have any type
of transfer, I mean transfer of density from one point to the other, neither any form of viscous

effect ok, in case you already are familiar to fluid dynamics.



And also, it does not have any conductive property, for example, thermal conductivity type of

thing. So, if we have a fluid like that, which is not a practical fluid in general but it is called
an ideal or perfect fluid. So, p = p(n),p = nkgT, € = % I%T are then the equations of the

perfect fluid.

So, the basically here we end this current part. So, in the next part, we will discuss some
properties of the ideal fluid and we also try to understand that, how one can look the ideal

fluid and its equations from a macroscopic point of view.

Thank you very much.



