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Lecture - 40 

Flow with a Vector 
 

We will deal with Flows with Vectors now. So, velocity is a vector, but it is advecting 

another vector. So, example being magnetic field, you know magnetic field is advected by 

velocity field. Of course, magnetic field does something to the velocity field too. So, that 

is what we are going to solve. So, I will put as a general framework, ok. So, flow with a 

vector. It could also vector need not be only magnetic field. It could be dipoles, electric 

dipoles or some vector particle which is travelling. So, one example you say active or like 

fish population. So, that is like a vector you know going around, ok. So, let us look at the 

equations. 
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So in fact, is very similar to what you do for scalar, there is a very similar framework. So, 

let us write down those equations. So, velocity field will be same as before and I am going 

to put another vector field 𝝎. We write equation for 𝝎. So, 𝝎 is a vector field, ok. So, 

(𝐮 ⋅ 𝛁)𝛚 is the advection of 𝝎. There is no pressure gradient in this, ok, so pressure 

gradient only acts from the velocity field. So, there could be force on 𝝎. Let us keep a 

general framework. It could depend on 𝐮, no, or it could depend on time it could be general.  



Of course, 𝝎 can back react on 𝐮 or 𝐮 can also influence 𝝎 , 𝐮 is influencing 𝝎 here, but 

𝐮 can also influence 𝝎 here, ok. So, we define few quantities 𝑅𝑒*, Reynolds number based 

on 𝝎, is the Peclet number, so is the ratio of the non-linear term, (𝐮 ⋅ 𝛁)𝛚 by 𝜂𝛁𝟐𝛚, right. 

So, usual non-linear by diffusion, which is -.
/

.  

So, this Reynolds number based on 𝝎, is different then, Reynolds number for velocity 

field, which is -.
0

. So, you can also define Prandtl number, which is 0
/
, but this Prandtl 

number of 𝝎, so, it turns out which will not do in this course but their times when we have 

both temperature and 𝝎. So, magneto convection, you know which some of your working 

on. So, then we will have two Prandtl numbers, 0
1
 and 0

/
. So, you need to differentiate that 

time, also Re. So, there are Peclet number, which is different than 𝑅𝑒2, ok. Now, so this 

is clear. So, these are the equation nothing more complicated. 
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So, what type of you know? I am sorry this is vector flows considered. So, right now for 

today’s lecture I will consider two types of flows, one is a passive vector. Passive vector 

is 𝐅4 is independent of 𝝎. So, force is, velocity field is not affected by 𝝎, so it is passive, 

no. So, 𝝎 is driven by 𝐮, but not 𝐮 is not driven by 𝝎. So, it is called passive, is same thing 

is passive scalar, ok.  

And second, I think some of you will be interested is MHD, magneto hydrodynamics, ok, 

where 𝐅5 and 𝐅2 are quite complex and which I will try to do later.  
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So, your Fourier space how does the equation look like? Please refer to the above slide foe 

equations in the Fourier space. 
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Now, mode to mode transfer. So, for, so there will be quite a few, but 𝐮 part is same as 

before. So, (𝐮 ⋅ 𝛁)𝐮 will induce energy transfer among u modes, that we done before. So, 

I will not worry about it, ok, right. I will not discuss here. 

But now there will be a transfer from 𝝎 to 𝝎 because there is a term, so (𝐮 ⋅ 𝛁)𝛚.  



𝛚(𝐩) gives energy to 𝛚(𝐤′) and 𝐮(𝐪)acts as a mediator, ok. So, this is what I have written 

here. This 𝝎 is the receiver, this 𝛚 is the giver and this 𝐮 is a mediator. So, what is the 

formula?. Please see the above slide for the formula. 

Now, this is coming from advection. Now, we will have 𝐅4 and 𝐅2that can also lead to 

energy transfer.  
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Now, come to the energy flux, Kinetic energy flux same is before, but now we need to 

worry about is there is a flux for 𝝎 because there is a there is a mode to mode transfer, so 

there will be flux. In fact, can easily see the flux of 𝛚, Π2 which is energy going from 

modes inside to modes outside, please refer to the slide for the formula. from w to w. 

We can also define shell to shell transfer. So, T<<, so this is my notation. So, giver is above, 

receiver is below. So, this is a giver, this is a receiver. So, shell, which shell? So, there two 

shells, no, shell m and shell n. So, shell m is a giver, shell n is a receiver. So, what should 

be the formula. Please refer to the above slide. 
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Now, let us work out what happens to the flux. So, what can change flux? We did in the 

past for 𝝎,𝒖 and for 𝜃 as well. So, if we have a shell is this is injection by external force 

in the inertia range which will come from 𝐅4, then it can change the flux, this for Π4. 

similarly, we can do for 𝛚, if there is a 𝐅2 then that can change the Π2.  In the above slide, 

there are the equations for the variable energy fluxes. 

So, in the inertia range this is dropped, this is dropped, and flux can change because of 𝐅4, 

correct, these we done in the past. So, there is a diffusion term. So, that will diffuse 𝝎, ok. 

So, we need this for MHD, but for the next slide I will not really, I will make it simple. 

Now, this is general framework. So, let us think of what happens to passive vector. 
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So, what happens to passive vector? 𝐅5 is on is not a function on 𝝎 and let us assume it 

active only at large scales. Also assume that 𝐅<,and the injection by it are active at large 

scales. So, inertia range there is 0. So, if you look at the equation from the previous slide, 

what happens to @AB
@C

in the inertia range? There is no dissipation, there is no injection, so 

this is 0. @AD
@C

, what happens to that? 0 too. So, both Π4 and Π2 are constants in the inertia 

range.  

So, what is the spectrum for a kinetic energy? Same is Kolmogorov because 𝝎 does not 

do anything. So, 𝐸4 this is same as Kolmogorov. What can you say about 𝐸2(𝑘). So, it 

can depend on function of Π4, where Π4 is crossing this regime, right, inertial range is 

seeing Π4. Inertial range also says Π2, it also sees 𝑘. So, its function of three quantities.  

Please refer to the slide below for the derivation of scaling of 𝐸2(𝑘) 
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Thank you.  

 


