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Lecture - 4 

Basic Hydrodynamics: Conservation Laws 
 

So, last 2 modules, we covered basic equations and vorticity right. Now I will cover 

conservation laws in the third module for hydrodynamics, okay.  
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So first we will look at quadratic quantities which are very important for describing fluid flows. 

Quadratic means product of two fields and there, just with velocity, we can construct several 

quadratic quantities.  
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So first one is kinetic energy density. So I am going to be specific uh for the definition okay. 

So u is the velocity field, right. So we call 1/2, I put a factor 1/2 that by convention, no, so for 

particle of mass m, !
"
𝑚𝑣". So similarly, we just say kinetic energy density is !

"
𝑢". Now density 

is 1, since density is constant, I don’t carry density okay, so density is assumed to be 1 and this 

is in fact we can think of small, so since u is changing everywhere, so 𝑢" will change 

everywhere. 

 

So you can think of even take a small volume dv, then energy content in that volume will be 
!
"
𝑚𝑣" times z, so that is why it is called density per unit volume where the volume is small 

okay. So this is kinetic energy which everybody knows, but it is important to keep in mind this 

definition. Kinetic helicity. So you studied vorticity. So using vorticity and velocity field, you 

can define this helicity: 𝐮 ⋅ 𝝎, and factor 1/2, which is I, well, some books may not keep factor 

1/2, but in my notation I always keep 1/2. So !
"
𝐮 ⋅ 𝝎. 

 

So 𝝎 is a vector, note please 𝝎 is the vector. In 2D, it is only along z direction, but is a vector, 

is ∇ × 𝐮, so 𝐮 ⋅ 𝝎 is a scalar. So all these quantities are scalar which I am going to cover today 

and third one is called enstrophy and which is !
"
𝜔", so |∇ × 𝐮|", okay. Now you may say why 

you have 𝜔" and 𝑢"separately, it turns out is it is useful to think in terms of 𝝎 on many 

occasions which I will describe today okay a bit later. Now given that we have density, we can 

also construct total kinetic energy in a volume. 
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So given volume, you can construct total kinetic energy okay, we should just integrate our 

volume. So this means integrate over whole volume. Now volume could be periodic box or 

box with walls. So this is, the volume I have not specified, but total means over the whole 

volume. So similarly, you can construct total kinetic helicity which is again integral over the 

whole volume of 𝒖 ⋅ 𝝎 factor 1/2 including and similarly to total enstrophy, it is this. So density 

in totaled you must differentiate and when I say conservation means for the total. 

 

So 𝐮" will change, but if I sum over whole volume, I will show that 𝐮" total kinetic energy for 

some conditions will be conserved okay. So now we have this quantity, so we can write down 

evolution equation for this. How does 𝐮" change with time okay, so that is my next objective. 
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Equation for kinetic energy density okay, though I didn’t write here, but kinetic energy density. 

So how do I derive this? So all these can be derived from Navier-Stokes equation, you can 

derive from the first principle. So I have the Navier-Stokes equation, this one, right, I dot this 

with u. So what is the first term by the way, so this is .
./
0𝐮 ⋅ 𝐮

1

"
2 by product rule. it is easy to 

derive for incompressible flows. So, I am - let me use tensor notation okay. The tensor notation 

is very useful and should just do some exercises. So in fact for some of earlier derivation, no, 

I said curl of ∇ × (𝐀 × 𝐁), now those big expression. 

 

Now you can derive this from first principles or using tensor analysis. So that will be one of 

the exercise I am going to give you okay. So, I will show you how to do this for with tensor 

analysis uiuj. So I want to construct write this in tensor notation, ij notation. So ui and so this is 

ith component and this will dot with this, so ui here. Now but then no index should repeat more 

than twice, if you do it, then you are making mistake. Two means sum, it already has been 

contracted, now you can’t put another i because that will be wrong. 

 

So now I have another dot product between u and ∇, so what do I do with the u and ∇? Should 

I use same ith index, no I should not use the same index, different index because two i’s are 

already covered, so use j, 𝑢7𝜕7, so these are second index. You can use as many indeed you 

want, but dot means that those index should be repeated okay. Now this is what I got. Now so 

𝑢7𝜕7, now I can use product rule. So this 𝑢", so u I can go inside like this because if I expand 

this what will I get. You can expand this one okay. 

 

So this expansion will be uj is silently sitting outside, 𝜕7𝑢9𝑢9 + same thing again, so twice okay, 

so you get again ujuiui, so I should put factor 1/2 that two of them, so I should put 1/2 factor to 

get, no not 1/2, ya ya 1/2 here. So, I want to get this one, so I put a factor 1/2, so this will be 

same, so this basically half - half of this will go okay, this is same as what I have written here, 

these two are equal. So what is this object 𝐮 ⋅ 𝐮 ⋅ ∇𝐮, no, 𝑢7𝜕7 is 𝐮 ⋅ ∇, right and this uiui/2 is 

:1

"
. 

 

So this is how you can derive quite easily using tensor notation. Now what about the next term 

−∇𝑝 ⋅ 𝐮? So since, ∇ ⋅ 𝐮 = 0, so this is what you should keep in mind, ∇ ⋅ 𝐮 = 0, so using ∇ ⋅

𝐮 I can simplify this further. This one can be simplified further, so I think before I go to ∇𝑝 ⋅ 𝐮 



or 𝐮 ⋅ ∇𝑝, let me simplify further. Can I push u inside, u vector? For incompressible flows, can 

I push u inside, yes you can push inside. So in fact, you start form here okay, we start from 

here. So this can be done as 𝜕7𝑢7 and this :
1

"
. 

 

In fact, these are scalar quantity, this one. Now apply a product rule again. So one term is equal 

to that and second term will be, if I expand this one, it is :?.?:
1

"
+ :1.?:?

"
 . What is 𝜕7𝑢7? 0, since 

∇ ⋅ 𝐮 = 0, so this goes away. So these 2, this one and this one, these 2 are equal. So in fact, you 

can write this object u dot this thing as divergence of u vector :
1

"
 dot, this is scalar okay, is that 

fine? Now what about this minus 𝐮 ⋅ ∇𝑝, can you go inside, so I am interested in this versus 

this, dot product. 

 

In fact, yes, it can go inside, where again you apply the product rule, you will find that ∇ ⋅ 𝐮 =

0, so this will be there. This term gives you this. Next term is 𝐮 ⋅ 𝐅:, keep same, and the last 

term is 𝐮 ⋅ 𝜈∇"𝐮, is a viscous term, which can be further simplified which I will show you 

below. So, I am going to erase this, this stuff because I think some equation is going to appear 

below. So this term is divergence of :
1

"
𝐮, this is what will appear okay. 

 

So these are 2 very important products, this one and this one will play very important role in 

conservation law okay and I am not putting sum, but sum is implicit. When I write this one, 

this means 𝑢C𝜕C + 𝑢D𝜕D + 𝑢E𝜕E. So this is Einstein notation, if I have repeated sum then is 

added, so this is what I have written. So this is this one and this is divergence stuff, so which I 

have written on the top, this is coming as the pressure term, this is in fact this is force field. 

Now what is force times velocity? for particles? It is work done, no, work done for unit time is 

power input. 

 

So is a power energy supply per unit time by force to unit volume okay. So this is called energy 

injection rate, kinetic energy. So you can write kinetic energy injection rate okay. The last term 

is dissipation because viscous times velocity is viscous force, so dissipation by viscosity. So 

we can simplify further which this identify I will not prove it, but is there in the notes. So it is 

nice to rewrite this one 𝐮 ⋅ ∇"𝐮 as this –𝜔" and that, okay, and many times you see this 

appearing in the dissipation term. 



But this 𝒖 ⋅ ∇" is not equal to −𝜔" okay, so this derivation in notes, it is quite simple to derive, 

you will find thus two case, so replace this by −𝜈𝜔" and this divergence is one of the term 

which is absorbed here, divergence here. So this will become you can write either in terms of 

𝐮 ⋅ ∇"𝐮	or in term of −𝜈𝜔" okay. So you will find that there. This term, divergence term will 

become 0 if integrated for whole volume okay. So I am going to come to that in next slide. 
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So the integral form, so what I showed you in the differential form, derivatives, but integrate 

this - the old form - to any volume, any volume okay, not the total volume, integrate to any 

volume. So the first term is d/dt. So this is coming from the old slide. Now by the way, I am 

not using partial, why I am not using partial, I am using total because this is not function of x 

anymore, this is energy of a given volume okay. So, I use total of a given volume. Now, what 

about the next term? 

 

So remember it was divergence of u squared u, so now what is the theorem, it is called Gauss 

theorem. In the Gauss theorem, I have replaced the volume integral to surface integral okay. 

So if you recall that was divergence of :
1

"
𝐮. Now I integrate over volume. So by the way dr 

means volume, this is the notation which you follow, various people follow various notation, 

it is in physics, this is quite common that where dr that means is a volume integral. So it is 

dxdydz. 

 

Some people write dv, but I don’t want to use it because the v some people will use for velocity, 

no, so I just follow this dr, this means volume. This is coming from Gauss theorem, so this is 



divergence of a vector, dr is vector dot ds and this is over the close, full closed surface, this 

this this means closed surface. So, I do this flux over full surface. I had to integrate over the 

full surface. So by the way, this is flux of kinetic energy. 

 

This is important which I am not going to emphasize in present course due to lack of time, but 

for any scalar quantity or any vector quantity, you can define flux by 𝜙𝑢H , this for fluid 

mechanics, now in electrodynamics is there the different definition. For fluid, this flux is the 

scalar quantity or the vector quantity carried by velocity field. So it will be the quantity crossing 

per unit area per unit time okay. So this is flux of the quantity in real space, I will do some 

other flux which is energy transfers will be in Fourier space but that will be different okay. 

 

So this is flux. So instead of 𝜙 this :
1

"
, you have put this kinetic energy flux okay, density is 

one. Again, I reemphasize density is one, so :
1

"
 is kinetic energy okay, that clear. Now this one 

is ∮(𝑝𝐮) ⋅ 𝑑𝐒, so is a pressure flux. Pressure is convective. So pressure has in the 𝜌 = 1 

language. It has same dimension as energy. Pressure is 𝜌𝑢"- 𝜌 is 1 okay. Now, this is energy 

supply rate by external force and this is viscous dissipation. So, these all integral form, the 

earlier one is called differential form.  
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Now, we can go to conservation laws. So this integral I am going to do the whole box, kinetic 

energy integral. So let us take a special case when the external force is 0. External, I particularly 

mean one which is not pressure, other than pressure gradient and viscous okay. They are also 

a force on a volume, a force on the fluid element, but we mean this 𝐅: means some gravitational 



force or magnetic force. So this force, I mean 𝐅: okay. So this, any external force in engineering 

they call body force okay. This force is 0 let us assume that and we assume that viscosity is 0, 

so that means dissipation time is gone. 

 

With this, what do I get. So this is called inviscid approximation, viscid is viscous, inviscid 

means without viscous okay, inviscid, this is the technical name. Now integrate this for the 

whole volume. Now this volume is full volume, not arbitrary volume. This could be box, 

cylinder, sphere, whatever you may like, this full volume okay. Now these are the 4 terms 

which you had, but these anyway are 0 because I make the assumption, this 𝐅: and 𝜈 will just, 

this is copied from the old slide. Now you have only 3 terms. 

 

“Professor – student conversation starts” Yes? Are we assuming that volume we are 

considering is not changing the time. Yes, it is a total volume, volume doesn’t change the time, 

yes. So that is why the d/dt does not act on dr indeed. “Professor – student conversation 

ends.” 

 

So now we will make another condition. So one condition, these 2 conditions already there, so 

in addition to these 2, we make another condition on the boundary condition. So this QR 

cylinder, we assume that periodic boundary condition. A cube is easy to see, for cylinder it may 

not be easy for like cylindrical wall, but vanishing means the velocity is 0, vanishing is u=0 at 

the wall, at all walls. 

 

Periodic means for cube is easy to see this wall and this wall has same velocity at a given point, 

right, periodic function, say if I just go along x direction by box length, I get the same value 

along y, along z or you could also have a combination. So periodic along x, but vanishing along 

y or vanishing around z, so any combination of this. So if I have this, then what happens, it 

already got vanished. So what happens to this term. Any vanishing is easy to see. This term 

will be 0 because u is 0 at all the point, right. 

 

This term also will be 0 because both p and u are vanishing, well only u is vanishing sorry, u 

is vanishing, so both the terms become 0. So vanishing will easily see these 2 sums gone. What 

about periodic, periodic whatever contribution I get from one wall gets canceled by the other 

wall. For one wall, velocity is going out, another wall velocity is coming in. So this integral u 



one has positive sign, other one has negative sign okay. So this cancels, so that is how period 

wall also gives zero contribution. 

 

So the surface integrals vanish for periodic or and vanishing boundary condition. Equal also 

have combination, but combination is periodic along pair, so it is periodic along x, so for that 

means periodic has to have periodic in which direction, x direction or y direction or vanishing 

along z direction. So combination is also used. So we use that combination. 

 

“Professor - student conversation starts.” Sir vanishing means it is like some confinement 

or. So in this room, velocity at the surface is 0, so the fluid flow inside this room is confined 

okay. You know velocity must be 0 at a viscous wall. Viscosity makes the fluid flow having a 

0 velocity at the wall okay. In fact it is natural way and vanishing boundary condition is natural 

for solid walls. But velocity may be tangential to the wall may be. 

 

No for viscous boundary layers and for real solid walls all the components of velocity must be 

0, all 3 components. The vertical velocity, okay let us take a wall, vertical velocity must be 

anyway 0 because it cannot penetrate. The horizontal velocity here is because of viscosity, so 

viscous stress makes the velocity 0 at the wall okay. Of course, away from the wall, it becomes 

finite, but at the wall viscosity makes it 0. “Professor - student conversation ends.” 

 

So as a result, what do I get for so these 3 conditions, force external force 0, viscosity 0, and 

we have this boundary condition, then we get u squared/2 dr ∫ :1

"
𝑑𝐫 is the integral over the full 

volume is 0. What does it mean, :
1

"
 integrated over the whole volume is a constant okay, so that 

means kinetic energy in a box is conserved, means it doesn’t change with time, okay, it will 

remain the same. 

 

So this is conservation of kinetic energy for fluid flows which are inviscid that means viscosity 

0 and there is no external force and of course is vanishing and/or periodic boundary condition. 

Actually it should be, it can’t have both at the same wall but ya it should be and/or okay. So, 

this we should, I can’t have periodic as well as vanishing at the same time. So this should be 

clear, no, but anyway this is a technical English part, okay clear this derivation, it is important 

derivation, but these are the steps involved.  
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Let us look at kinetic helicity. So I gave the definition of helicity, it is !
"
𝒖 ⋅ 𝝎, I have to integrate 

for the whole volume, this one. Now, I need to take the derivative. Since my dr is not changing, 

this dr volume, so I take a small element. Since dr is not changing, I do not take derivative with 

relative to dr, but I take total derivative with related to the function 𝒖 ⋅ 𝝎 okay, but this is total 

derivative D, capital D okay. 

 

So again, I apply product rule, so product will be 𝝎 then this is d/dt of the first function, this is 

product rule right, when 𝝎 ⋅ P
P/
+ 𝐮 ⋅ PQ

P/
. Now what is D/Dt, now again inviscid approximation. 

So assume force 0 and viscosity 0. So what is D/Dt? So again look at your notes, is ∇𝑝. So this 

is 𝐮̇ + 𝐮 ⋅ ∇𝐮. So this −∇𝑝, the viscous term is 0, F is 0 right and 𝜌 is 1. So this one is −∇𝑝, 

first one, and what about second term. 

 

So it is, we have done this before, is no no it is not 0 for 3D, stretching term, 𝝎 ⋅ ∇𝐮, this one, 

𝝎 ⋅ ∇𝐮,	this is the term okay. So, this is −∇𝑝 and this 𝝎 ⋅ ∇𝐮. Now what about this first term, 

this one. Since ∇ ⋅ 𝝎 = 0, right, because divergence of curl of a vector is 0, so if any of these 

condition is there and divergence free vector can be pushed inside okay, a simple algebra that 

taken also push both inside. 

 

So this can be written by following the similar steps which I did for the last derivation, these 

divergence of :
1

"
𝝎 okay. So this I will leave it for you to derive, it is following pretty simple 

steps, but please cover this, do it yourself. So this is what we will get. So this is the first term 

is here, second term is here. Now, I apply Gauss theorem again. So divergence of this dr, what 



will that be, by Gauss theorem it is :
1

"
𝝎 ⋅ 𝑑𝐒 okay and the first term will give you, this one will 

give you this, it is Gauss theorem. 

 

Now for vanishing boundary condition or periodic boundary condition, what this will be. So u 

is 0 or 𝝎 is 0, periodic boundary condition will give you okay, and so this thing is 0, this term 

is 0 for periodic or vanishing boundary condition okay. So, we get 0. So, kinetic helicity 2 is 

conserved for 3D flows okay. So, this is for 3D, what about 2D, in fact 2D, what is 𝐮 ⋅ 𝝎 is 0. 

So, kinetic helicity itself is 0 trivially okay, so 0 remains 0, it doesn’t change, so that part is 

obvious okay.  
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So go to the next slide. So left go get enstrophy, is it conserved or not. So we will go step by 

step. So we start with enstrophy equation, well we start with first vorticity equation. This I 

derived it in the last lecture. I dot product this one with omega. So the first term is 

straightforward. So, first term is added okay. Now, in fact I have to save steps, so I already 

written in the integral form. So this is this term. This term will give you this one, now I am not 

deriving it, but you can easily derive, and the third term is this. 

 

Now, this term can be written as divergence of vector and that is how it converted using Gauss 

theorem two of suffice term, but this term cannot be written divergence of that form okay. 

There was u, it would have gone in, but this 𝝎 ⋅ 𝝎, you try it, you cannot convert it to 

divergence of a vector okay. So for periodic and vanishing boundary conditions similar way, 



this term will go to 0 okay. This term conserves, but for conservation you want both the terms 

to go to 0 for the whole volume. 

 

The first term will go to 0 for periodic and vanishing boundary condition, but the second term 

does not. In fact, second term is the vorticity stretching term. As I said, you know, the vorticity 

if the velocity field that will stretch the vortex, so that way vorticity becomes thinner and omega 

speed increases, the vortex tube becomes thinner. So this, the second term does not become 0 

for the whole volume and that is called vortex stretching term. So that is why in 3D, this Q
1

"
 

integral is not 0. So enstrophy is not conserved in 3D okay. 

 

It is straightforward this one, but is it conserved in 2D. So what happens, what is this term, 𝝎 ⋅

∇𝐮? 0, because 𝝎 is along z direction and grad is along x direction no, so this 𝝎 ⋅ ∇ is 0, so in 

fact this vortex stretching does not happen in 2D, these are infinitely long vortex tubes which 

can only move, there is no use to stretch it. So for 2D, the vortex stretching is 0. As a result, Q
1

"
 

is 0 integral. So Q
1

"
, this integral is constant in 2D. 

 

So enstrophy is conserved in 2D okay, in 2D conserved, but not in 3D. So summary is kinetic 

energy is conserved for both 2D and 3D, kinetic helicity is conserved in 3D, of course it is 0 

trivially in 2D, but enstrophy is conserved only in 2D, not in 3D okay for pure hydrodynamics, 

inviscid hydrodynamics. Now, these are 3 very important quadratic conserved quantities. So, 

you saw all of them are product of 2 vectors. 
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Now there is a quantity called circulation which is not product of 2 vectors. It is a very 

important quantity and so it is defined like this. For closed and co-moving contour, co-moving 

means it moves along with the fluid. So just think of you know this cigarette smoke and you 

just follow that smoke, one fluid parcel, so make a contour, so I am just I have a picture here. 

So this contour your particles are sitting here of the fluid elements and when the fluid element 

moves, your contour also move with it. 

 

So this contour moves along with the fluid parcel. I will not call particle, we are not thinking 

of particle, but it moves with the fluid. You tag this fluid element, it is called co-moving, you 

move with the fluid okay. You hang onto the fluid and move. So for this contour, I have velocity 

field at every position, this is a velocity field, u field here. So I take a dot product. So ∮𝐮 ⋅ 𝑑𝒍 

integral over the whole closed loop, it should be closed loop, this is a closed loop here. I 

integrate over the whole loop, ∮𝐮 ⋅ 𝑑𝒍 and this is called circulation. 

 

So circulation of velocity you can think of. So velocity you have to integrate at every small line 

elements and you just sum it up. I can use Stoke’s theorem, what does Stoke’s theorem say? 

This line integral where the closed loop equal to surface integral for any surface whose edge is 

this contour, is not a closed surface, is an open surface. So you can think of a cap, so the cap’s 

edge is what we have here, cap’s edge, and the cap surface which can be moved anywhere you 

like, if this really is a topological result, is true for any surface as long as the surface edge is 

same as this closed curve. 

 

So this is 𝝎 ⋅ 𝑑𝐒, and this 𝑑𝐒, the surface, actually whole surface is the one whose edge is the 

contour, is not a closed surface okay. So, I am not writing a closed stuff here, it is open surface. 

Now this is circulation. It turns out for inviscid flows, viscosity is 0, this quantity is also 

conserved, but this is not a quadratic invariant, but this is very at least one of the important 

theorems and this conservation law goes to Kelvin okay, so this is called Kelvin circulation 

theorem and according to Kelvin circulation theorem, d/dt of 𝐮 ⋅ 𝑑𝒍, this one, in fact shown to 

be 0, the proof is quite straightforward. So there is one difference between the earlier proof and 

the present proof, either this 𝑑𝒍, this 𝑑𝒍 line element is changing with time that is because my 

fluid element is also changing. So my time derivative will act on 𝑑𝒍 as well, earlier my 𝑑𝐫 was 

fixed when I was doing integral, my quantities were changing with time, but here now 𝑑𝒍 itself 

is changing. (Refer Slide Time: 32:27) 



 
 

So we need to, we have 2 terms, first one is what used to be there in the first earlier 3 slides, 

the second term is coming from d/dt acting on dl. So by product rule, I have to apply d/dt on 

both, whatever the changes, right, I mean this straightforward product rule. So now, we can 

just put in okay, but this is straightforward, no, d/dt of −∇𝑝, it is easy, but what about this 

second term. Second term is a bit tricky, so the derivation I will show you one derivation. 

 

This is dl okay, dl vector, so that 2 points at the two ends A and B, so what is the dl, it is 𝐫U −

𝐫V. If I take the time derivative will be 𝐮U − 𝐮V. Now what is 𝐮U − 𝐮V for small element, is du 

and velocity changing at these 2 points which is 𝑑𝒍 ⋅ ∇𝐮 okay. 

 

So u is changing, how much does it change with dl, this is dl dot, so you can look at dux, how 

much dux changes, it is .:W
.C
𝑑𝑥 + .:Y

.D
𝑑𝑦 + .:[

.E
𝑑𝑧, right, this dx is changing is, this is okay. 

Now what is this one? this is 𝑑𝒍 ⋅ ∇𝑢C, same thing for uy and uz. So this precisely what I have 

written here okay, so this is the stuff. So I have already got the answer for this one. So now let 

us combine these2 sums. So, I will get first one is −∇𝑝 ⋅ 𝑑𝒍, second one is I just written it here. 

 

Now, first one is taken, this guy, no, what is this one −∇𝑝 ⋅ 𝑑𝒍, so this is a gradient and I go 

dismiss dl, made into any direction, this gradient could be here. So −∇𝑝 ⋅ 𝑑𝒍 will be dp, this 

become vector algebra, but no, this is fine or not fine okay. So this .]
.C
𝑑𝑥 + .]

.D
𝑑𝑦…	like this, 

what is this, this is just dp change at p at two positions. So this is a straight vector stuff. So first 



one is –dp. Now, I have to sum up this dp over the whole close contour dp dp dp dp if I go 

over, how much will I get, what is the net change? 

 

I go around, go around, I come back to the same point and these are vector sums, sorry well 

algebraic sum, not not, algebraic sum. So 𝑝U − 𝑝V, then 𝑝_ − 𝑝U and so on and finally I come 

back, so this term is 0 when integrated over the closed loop. This one is straightforward is 𝑑𝒍 ⋅

∇ :1

"
, this one, so u can be pushed inside, now be careful, sometimes can be pushed, sometimes 

it can’t be pushed, so here the u inside and u outside and can be pushed, you can check yourself 

and so this will be basically 𝑑 :1

"
, same idea, go around, you come back to same point. 

 

So this df at any scalar is 0 when I sum over the whole loop. So this sum is 0. So what is it 

mean, this circulation does not change with time, is conserved quantity okay. So this is also 

useful result, which we will use it later when I do more of MHD, in fact we will use some of 

this in MHD and so on. Okay, so these are the 4 conservation laws I discussed today, kinetic 

energy, kinetic helicity for 3D, then kinetic helicity and enstrophy for 2D, then circulation. So 

this ends, thank you. 


