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So today we will discuss Turbulence in 2D flows ok. 

(Refer Slide Time: 00:25) 

 

So, my outline is so conservation laws. So, there are which we discussed before, but 

Kraichnan theory and then there are some subtleties in energy and fluxes, numerical 

results. But 2D flow is it real, I mean do you really see it in nature, it turns out real 2D 

flow difficult to get; but there are like Soap film know these people have done experiments. 

In fact, this one lab in IIT itself, Sanjay Kumar’s lab in Europe they do experiments in 

Soap films. So, you can flow from the top and it is coming down and you can make 

turbulence 

So, Soap film is 2D is velocity only in x y plane, but in it is in real flows like hurricane is 

almost 2D. So, you also seen this velocity field is like that, the main velocity field and the 

fluctuations within it. So, there are some 𝑢𝑧 components, but they are much small 

compared to 𝑢𝑥 , 𝑢𝑦 also that atmospheric flows in general. So, there is horizontal velocity 

is around you know, it would be 10 kilometre per hour, the wind blowing right now 



  

outside. It would be bit less, but during the monsoons it is quite high; but vertical velocity 

is much smaller. So, that is also considered to be quasi 2D, and lot of ideas we discussed 

for 2D flows are applicable to those flows. 

So, the 2 D flow is very clearly important role in many many systems, like in astrophysics 

strongly rotating stars or galaxies that typically 2D. And, I am going to show you that 2 D 

flows show strong structure formation, very strong formation and the reason will become 

clear after this presentation ok. 

 (Refer Slide Time: 02:23) 

 

So, what are the conservation laws which we did it before? So, can you name for the 

conservation laws for 2 D? 

Student: Energy conservation. 

And. 

Student: Enstrophy. 

(Refer Slide Time: 02:32) 



  

 

Enstrophy. So, one thing is energy total kinetic energy is conserved and enstrophy is 

conserved. From yesterdays lecture also you might have seen, the 2 D flows the (𝐮 ⋅ ∇)𝛚 

term essentially advects vorticity. It does not increase or decrease, this was stretching of 

vorticity in 2 D. So, this vortex are you should also keep in mind that vortex are 2 D lines, 

infinite lines there is no change along z. So, please remember that u is only function of x 

and y, and u is also only 𝑢𝑥 and 𝑢𝑦 component there is no 𝑢𝑧 component ok, is only 

function of x and y. 

So, if there is a vortex column it will be same along z. An analogy which I am not going 

to describe here, I think I did probably make a remark that current carrying wire, the 

infinity current carrying wire has magnetic field; the equations are exactly the same for 

velocity field and for 2D velocity field and this current carrying wires. So, this is 

approximately good analogy. So, you can have many current carrying wires and they will 

also attract repel; attract repel is not very correct analogy that is different which I will not 

discuss right now. But other than that is basically these are wires which are infinite wires 

and they are interacting. So, that is good analogy, but there is no change along z ok. 

So, the field lines are they are strong vortices; for if viscosity is tending to 0, then they are 

tending to 0 very tiny, but they must be small, but non-zero. Then you get very small this 

vortex and velocity field is there could be like that also ok. So, they are come in cyclonic, 

anti-cyclonic and they are point vortices, viscosity going to 0. Viscosity is not equal to 0, 

but finite; then this they get a flux, there is a core has some size this called vortex core, 

anyway that is not what I will discuss right now. 



  

 (Refer Slide Time: 04:50) 

 

So, given two conserve quantities you can have fluxes. In fact, all are quadratic quantities 

𝑢2, 𝜃2, helicity. Product of two variables you can define flux that comes from that, you 

have three products product of three variables and that defines flux. So, we have energy 

flux and enstrophy flux ok. 

So, energy flux is I already, the formula is exactly the same which is 𝑆𝑢𝑢(𝐤′|𝐩|𝐪) will 

−ℑ[{𝐤′ ⋅ 𝐮(𝐪)}{𝐮(𝐩) ⋅ 𝐮(𝐤′)}], I am not putting vectors 𝐤′ minus. So, this is for u to u 

transfer. And if I just sum over all the modes inside this sphere to modes outside this sphere 

you get kinetic energy flux. You also enstrophy flux, but this is only from 𝜔< to 𝜔>, since 

there is no stretching, there is no u to 𝜔 transfer there is only 𝜔 to 𝜔 transfer; and that is 

coming from 𝑆𝜔𝜔(𝐤′|𝐩|𝐪) is −ℑ[{𝐤′ ⋅ 𝐮(𝐪)}{𝛚(𝐩) ⋅ 𝛚(𝐤′)}], 𝛚 is a vector 𝜔 is a scalar. 

Now this we did before 𝛚 = 𝜔𝑧̂, along z ok. So, I do not need a scalar product sorry, 

ω(𝐩) ω(𝐤′). So, 𝑆(𝐤|𝐩|𝐪) by sum over modes inside to modes outside, I get these fluxes, 

good. So, we want to see whether in steady flows, well turns out in 2 D there is no steady 

flow. So, which will also become clear after this talk, that if you have somewhat give us 

some time for the flow to organize then it has certain properties; the flux is one show some 

properties and that is what I would like to discuss today. 

(Refer Slide Time: 07:00) 



  

 

So, these are standard equation for the energy, you know this we did before. So, energy of 

a shell can change regards the fluxes, external force, and dissipation. Enstrophy can also 

change by enstrophy flux, so this is important know. Now let us assume that is quasi steady 

at least, is not changing much. So, we will drop these, these terms then we can get some 

steady flow. And study is important, you know do not keep time dependency; that is like 

to it is already complex problem and you make it more complicated. So, study is force 

free, negligible dissipation.  

So, force free is I also turn it off and dissipation is weak; that means, I turn this off. So, we 

get basically 𝑑Π𝑢/ 𝑑𝑘 = 0 for kinetic energy flux. So, flux Πu , kinetic energy flux must 

be constant; it follows from this equation when I am not doing an assumption. Of course, 

assumption in this one, and steady state is an assumption, actually turns out steady state is 

an assumption. And, from the second equation I will get enstrophy flux to be constant, but 

kind of steady flow we will show this. So, now the question is, these two flux conserved 

quantities and let us see by the both of your positive and negative, where does it seen sign 

if it all. 

(Refer Slide Time: 08:33) 



  

 

So, this is what was discovered by Kraichnan. In fact, way back in 1964 or 62, I mean very 

I mean this like 60 year old theory, 50 year old 55. 

(Refer Slide Time: 08:50) 

 

So, what is Kraichnan’s theory say? So, these are wave number line. So, I forced at some 

intermediate scale, not at large scale; in 2D we force intermediate scale. So, like ocean, is 

huge. So, ocean you, ocean could be 1000 of kilometres, but your forcing could be your 

large scale is 1000 kilometre; but your forcing could be 10 kilometres ok, one hundred 

thousand size. So, my wave number is not normalize to one, well my box size is 2𝜋 then 

my lowest wave number is 1, right; 2𝜋/L is 1. But I will say I will force at 50, 100, 10; 50 

is more like it; so, you to get more space for both left and right. 



  

So, we will have wavenumber less than 𝑘𝑓 and wavenumber greater than 𝑘𝑓. So, according 

Kraichnan theory which is slightly detailed field theory and so on, which I will not prove 

it; but there are ways to show that it is reasonable, what is being told is reasonable by just 

the triad interactions ok. But I will not discuss it today. So, I will not say why, how you 

motivated, but is doable there are intuitive theory; if you want to look at you can look at 

by Lesieur’s book, Lesieur’s fluid mechanics, turbulence book. You will discuss this stuff. 

So, I have just state the result. 

So, you want to conserve both kinetic energy and enstrophy, you can discuss it is off; that 

will force you to have kinetic energy flux going backward. So, this thing you know, in 3D 

kinetic energy was going forward; that means, large scale to small scale, but here kinetic 

energy is going from small scale to large scale. So, what will that do, is something goes 

from small scale large scale; that means, large scale will become stronger.  

So, joint hurricanes are created by this. In fact, mechanism is this. So, energy is going from 

small scale to large scale, see if I force somewhere normally want energy to go to smaller 

scale you know, cascade to heat in 3D; or in 2D it goes other way round, it just becomes 

larger a large scale. And if that is how hurricanes are born, 2D structures are form and 

huge structures is if I will discuss maybe bit later. A rotating turbulence we get huge 

cyclones in our simulations, this big vortex going zooming fast ok. 

So, these primarily because of the inverse cascade, so this call inverse cascade of energy, 

of kinetic energy; forward is from large scale to small scale or small wave number to large 

wave number; but this other way round. Now what happens to 𝑘 > 𝑘𝑓this region. So, this 

region according to Kraichnan, enstrophy goes forward. So, kinetic energy is not going 

forward, kinetic energy move backward; but this region Π𝜔 is dominant, I will discuss bit 

later today. That there is a Π𝜔 here too Π𝑢, but that is weak; here Π𝜔 is strong here Π𝑢 is 

strong, this we can see in many different ways.  

But I will not prove it today, but you require some kind of you know field theory for 

rigorous proof, Kraichnan paper is field theoretic which I will not discuss in this lecture. 

Now, so this is a picture. So, enstrophy goes forward, kinetic energy goes backwards. Now 

these were the picture is. So, if I supply energy here. So, given force we supply energy, 

energy supplies 𝐅𝐮 ⋅ 𝐮 right that is energy supply, force times velocity that is power. So, it 



  

will go backward. So, this dissipation is weak here right, because dissipation is 𝑘2𝐸𝑢(𝑘), 

well if a strong 𝐸𝑢; then there is dissipation 𝜈𝑘2𝐮(𝐤), it is not the dissipation is 0. 

Student: (Refer Time: 13:25). 

But because 𝑘 is small, it becomes weaker. So, the dissipation is weak. So, that is why 

getting steady state is difficult, because energy is piling up at large scale. In fact, it keeps 

piling up and our computer simulations break, the energy just from keep going; and when 

energy velocity will very large, then computer is not able to time step and it just blows up. 

So, kinetic energy tends to go up in getting steady state is somewhat difficult for 2 D; but 

it is possible, in our code we do something, well our code we do not know anything, we 

just let it run it reaches quasi steady state, it becomes kind of, but it keeps increasing energy 

it does not blow up.  

But people normally tend to put some viscosity friction here, additional friction. So, put 

some additional friction at large scale and that also has a name. So, this called Ekman 

friction, friction at large scale; that is not neatly squared this is not of this type, but it could 

be constant, is just proportion to velocity field 𝐮(𝐤), −𝐮(𝐤), not 𝑘2𝐮(𝐤). Now, what is 

this spectrum? So, this is a flux, now let us imagine that flux is these two fluxes are 

constant; a kinetic energy flux is constant and enstrophy flux is constant. So, what do I 

expect for this spectrum, in the left we can, you can guess. 

Student: (Refer Time: 15:05). 

Left must be Kolmogorov, because Kolmogorov was derived truly from dimensional 

argument five third. So, I assume that any wave number here in between, the spectrum 

there will depends on the flux and wave number; if you do the dimensional matching is 

same as 3D derivation. So, in the left space spectrum is just Kolmogorov. What do you 

expect? So, this is, but the Kolmogorov constant can be different. So, the integrals involved 

you know, dimensional matching does not say anything about the constant. So, in 3D it is 

around 1.6, but in 2 D this is around 6, well 6 point something. 

What about right, right side I have to do the dimensional let us apply the same dimensional 

argument; but the dimension of Π𝜔 is different in dimension of Π𝑢. So, what is dimension 

of Π𝜔? It is 𝜔2 by time and what is dimension of 𝜔, is 1 by time. 



  

Student: 1 by time. 

Right 𝜔 is  ∇ × 𝐮, so, 1 by time. So, the dimension of 1 by T3. So, now, I will I am looking 

for 𝐸𝑢(𝑘), I will say that is Π𝜔
𝛼 𝑘𝛽. So, 𝐸𝑢(𝑘) is dimension of 𝐿3/𝑇2 right; that we did it 

before, this has (
1

𝑇3)
𝛼

, 𝑘 has dimension of 𝐿−1. So, that is very straightforward, 𝛼 is 2/3 

and 𝛽 is -3. So, my spectrum in the right hand side is Π𝜔
2/3

𝑘−3. So, the spectrum in the 

right hand side, 𝑘−3, so kinetic energy. 

What about 𝐸𝜔? 𝐸𝜔 is I multiply 𝑘2,𝛚 = ∇ × 𝐮. So, if I multiply 𝑘2 is going to be 𝑘−1. 

So, enstrophy spectrum is 𝑘−1, and kinetic energy spectrum is 𝑘−3 ok. So, let us see what 

you get in. So, the sketch is this, this from simulation which she is doing some of the 

simulation. So, the -5/3 in the left is kind of nice line minus five third, this five third is 

here ok. Right side is not quite -3 right, because minus 3 is this line and we are getting 

steeper and that is because of dissipation.  

So, there is a dissipation of enstrophy and the dissipation is steepening; dissipation will 

always take energy out there, somebody constant flux is giving you some spectrum. If you 

increase dissipation, if you add dissipation then energy will be steeper; because somebody 

is just eating up the energy you know. So, there is not -3, if you want minus 3 which we 

are trying to do that we need to increase the range in that direction. We need a bigger grid 

or you force somewhere here, you shift the forcing range; then you get enough dissipation 

range sorry enough inertia range and that is where we expect minus 3 ok.  

So, this is Kraichnan theory. So, I did not prove it the derivation of fluxes, but you can 

look at this book ok. 

(Refer Slide Time: 19:10) 



  

 

Now, there is certain problems. 

 (Refer Slide Time: 19:16) 

 

Now, of course, Kraichnan theory tells you about Π𝑢 and Π𝜔; but question is I would like 

to know what is Π𝑢 in the right hand side? So, what is Π𝑢, and what is Π𝜔 in the left? So, 

there are quite a few papers with several, Π𝑢 is 0 here, and Π𝜔 is 0 here or very small and 

that is not quite correct ok. In fact, both of them are not constants simultaneously; one way 

to see this is the following ok. So, this is what we would like to answer, what are this Π𝜔 

in the left and Π𝑢 in the right. 

(Refer Slide Time: 19:52) 



  

 

So, let us look at these two equation which I did it before, assuming steady state that is a 

difficulty; but we will assume steady state. Now if I take the ratio of these two, if I take 

the ratio what will I get. So, by the way this will cancel 𝜈𝑘2, but I get 𝐸𝜔/𝐸𝑢, and what is 

the ratio of 𝐸𝜔/𝐸𝑢; 𝑘2. So, this is the ratio. So, the ratio is 𝑘2. So, both of them can not be 

constant at the same time. So, one of them should be decreasing, when one guy is constant. 

So, something like that should happen. So, this is telling us that we should start with these 

formulas and try to derive the other one. 

In fact, for me I am very fond of these equations, under steady state use the flux, variable 

flux equation we call this variable flux know. So, the name is variable flux and here 

dissipation is changing the flux; whereas the force is there in a small band. So, force is 0 

for the initial range, both left and in the right. So, let us try to solve them. So, let us work 

out the flux and spectrum already showed you. So, let us look at the fluxes, both the fluxes 

𝐸𝑢 and 𝐸𝜔 to left of 𝑘𝑓. 

 (Refer Slide Time: 21:29) 



  

 

So, we are forcing it 𝑘𝑓, to left of 𝑘𝑓 and to the right of 𝑘𝑓 ok. Here Π𝑢 is constant; here 

Π𝜔 is constant. So, if Π𝑢 is. So, 𝑘 < 𝑘𝑓, Π𝑢 is constant. So, this is. So, this we satisfy this 

relation right; but as I said I am interested in both dissipation, and well I am interested in 

solving this more general equation. So, if you make it 0, then I get Π𝑢 constant; but if I 

have the dissipated term, then I will get more general formula which will be not constant, 

but it will be some function of 𝑘.  

So, the two unknowns Π𝑢 and E𝑢. So, then we will apply Pao’s from Pao’s model and 

according to. So, I will just modify Pao’s model in 3 D. So, what is the Pao’s model Π𝑢/𝐸𝑢, 

or E𝑢/Π 𝑢 is only function of 𝑘 and dissipation rate or flux is independent of 𝜈 or forcing 

ok. So, this is. So, E𝑢/Π𝑢 is only function of 𝜖𝑢 and 𝑘 and of course, proportionality 

constant is also there. So, this basically follows from the spectrum and assumption ok, this 

is an assumption we could depend on 𝜈 know when, but it does not depend on 𝜈 this 

assumption was made. 

If I, now I have two equations this equation, this equation I can solve for both. Now please 

remember the minus sign here, because a spectrum is positive, but flux is negative. So, put 

a minus sign, because minus minus will become plus, this minus and minus when I 

substitute 𝐸𝑢 here, so I will get function of Π𝑢 right. So, I replace this by 𝜖𝑢

−
1

3 𝑘−
5

3, this is 

𝑘2 already and Π𝑢. So, I get 1 D, first order ODE in Π𝑢 ok, and this 𝑘2 and 𝑘−
5

3 gives you 

𝑘
1

3; but is a plus sign, remember this plus sign I am not writing 𝜈 and so on.  



  

So, plus sign makes Πu  increase with 𝑘, not decrease with k. So, is easily solvable is 1 D. 

So, I will escape all the algebra. So, Π𝑢 is exponential, because is one third integrated this 

will get k four third and this minus sign here. So, because I know the flux is negative ok. 

So, this is the minus sign. And so, 𝑘𝑑 is much bigger than 𝑘 ok. So, this exponential term 

is not very large, is it is one actually, order one; because 𝑘𝑑 is large. So, 𝑘/𝑘𝑑 is 

approximately 0, but it shows some effect, fit is better with this. 

Now, what about spectrum, once I know Π𝑢 I can substitute and I get 𝐸𝑢, so 

straightforward. So, it is again minus five third, but there is a correction exponential 

correction, but it comes the plus sign; in 3D it is comes as a negative sign. And what is 

𝑘𝑑? 𝑘𝑑 is usual, because is the derivation is exactly same as 3D, except the minus sign has 

become plus sign. So, this is a plus sign inside and this because of this minus sign ok. So, 

this is a formula. So, I will show you in computer simulation this seems to be a better fit. 

What about Π𝜔? So, I solve for Π𝜔 using similar equation is this. So, we also have pi 

equation for Π𝜔. So, what is the equation for Π𝜔, this equation. 

 (Refer Slide Time: 25:28) 

 

So, let us try to find out what is Π𝜔. So, equation is dΠ𝜔/d𝑘 is −2𝜈𝑘4𝐸𝜔(𝑘), but 𝐸𝜔(𝑘) 

is 𝑘2𝐸𝑢(𝑘). So, you get this equation. Now see I know u k, so I substitute, so −2𝜈𝑘4. So, 

Kolmogorov constant, 𝜖𝑢
2/3

 two third know; actually this is not Kolmogorov constant, this 



  

where Kolmogorov constant, but for 2 D. So, is around 6 not 1.5, 𝑘−5/3 exponential apart 

from constant is (
𝑘

𝑘𝑑
)

4/3

 ok. 

Now, this five third will correct this four to seven third, now I integrate this. So, it is best 

to do in a computer 𝑑Π/𝑑𝑘 is −2𝜈, all the constants come out K u k Kolmogorov integral 

d k k seven third exponential k by k d four third, well this is if you want mathematical 

formula. So, what is the formula, which function is this; right side function where do you 

want to look in a table. Earlier this kind of integral where there was no computers, so 

people used to look in a table. So, which table we should look at. 

Student: (Refer Time: 27:03). 

Well you will go from 𝑘0 to k. So, I must write pi omega half k k 0 ok; but 𝑘0 can be 

assumed to be small ok. So, this is if you see it is a gamma function, you can relate into 

gamma function. 

Student: So exponential. 

Right. So, exponential is there, but gamma is a positive argument; but gamma can be 

positive and negative. So, you have to make a change of variable. So, I just want to make 

you give you a idea. So, four third we should write as x. So, the right hand side is the 

constant C k know. So, we basically worry about x. So, replace k four third by x. So, it 

become exp(𝑥) and 𝑘7/3 will be. So, I have to say what is k seven third, is going to be 𝑘0. 

So, k by k by k naught is x.  

So, these together will come out outside will come out, all remove get all the dimension 

out, these another trick for do integral. All the dimensions outside, so I should remain take 

the 𝑘, 𝑘 has dimension of 𝑘𝑑. So, 𝑘 the natural unit for 𝑘 is 𝑘𝑑. So, they will come out and 

make it k towards 10/3 and everything now is 𝑘/𝑘𝑑. So, (
𝑘

𝑘𝑑
)

7/3

 will be actually tell. So, 

the one k, yeah this is what is going to come; this is going to give us x to the power three 

quarter into 3 by 7 by 3 7 by 4, I get 𝑥
7

4𝑑𝑥 and this goes up to 𝑥 so, 0 to 𝑥. 

Now, this we can see in a table for gamma function, but computer can do it better and I 

would like to. So, we do not know, I mean this is what we want to; if assuming steady state 

which is not extremely clear whether it is steady state, earlier state we should get these 



  

behaviour, this is a minus sign here. So, Π𝜔(𝑘), now I am not, well we are not sure what 

is Π𝜔 at small value.  

Normally expect with 0, what is a 2 D; the big vortex sitting there, it may give some vortex 

flux. So, these are something which we are trying to investigate ok. So, this one, so what 

is this form? So, I will show you numerically what you get, but this model is what we like 

to fit, if it fits; but this is being discussed or this is being investigated that is what we are 

doing right now clear. 

 (Refer Slide Time: 30:00) 

 

So, this for 𝑘 < 𝑘𝑓; for 𝑘 > 𝑘𝑓 too we are sure about one thing that Π𝜔 is constant 

approximately. If there is enough range for enstrophy flux; but dissipation will also start 

playing a role so, the equation to solve is this equation right. Now let us assume Pao’s 

model again works, you know also. So, is in theory this what you try, you try to see whether 

you are model you can extend that model to something else.  

So, in mathematics by the way there is another. So, if you, if you talk to on computer 

science or computer science specially; you want to solve a problem then you see a problem 

which already solved, and then use that solution to solve this problem ok. So, there are 

tricks solve a general problem then use it takes special case, or solve a special problem 

generalize it. So, one idea if you know how to solve one problem, then you try to use a 

solution elsewhere; or a code works then you use a code recycle it for something else.  



  

And it uses the same idea which seems to work, it is quite nice for this model that we use 

Pao again. So, 𝐸𝜔/Π𝜔 is independent of 𝜈, is only function of 𝜖𝜔 and 𝑘  now. Since 𝐸𝜔 is 

𝑘−1 right 𝐸𝑢 is Π𝑢(𝑘)𝑘−3. We proved that spectrum in the right side. So, this 𝑘 > 𝑘𝑓 , in 

this region Π𝜔 is constant and 𝐸𝑢(𝑘) is Π𝑢(𝑘)2/3𝑘−3k minus 3 5 omega two third. So, E 

𝐸𝜔 will be 𝑘−1, because we multiply 𝑘2. So, this is what we will get, for from dimensional 

analysis from Pao’s model. 

Now, I substitutive it here, so I will get only 1 D, ordinary differential equation first order. 

So, which is straightforward and now see the power; power is 𝑘−1 will here, come here 

and k into k k in to k minus 1 is k. So, I will get basically this. So, if I integrate this, I will 

get 𝑘2. So, now, exponential k squared with a minus sign. So, this one is minus. So, the 

solution is Π𝜔 is exp (−𝐾2𝑑
′ (

𝑘

𝑘𝑑2𝐷
)

2

). So, this is a constants ok, which I will show you 

right now, and is and this Π𝜔 is positive flux; that means, goes from large scale to small 

scale.  

And 𝐸𝜔 will be once I know Π𝜔 then I know 𝐸𝜔, and once I know 𝐸𝜔 I know u which is 

k minus 3 and what is 𝑘𝑑2𝐷, 𝑘𝑑2𝐷 is this it comes by non-dimensional is this, well basically 

it comes from this equation ok. Now, what about Π𝑢? So, we can compute Π𝑢 by same 

trick which we did before. So, I know 𝐸𝜔 I know 𝐸𝑢. 

(Refer Slide Time: 33:20) 

 



  

So, I will use this equation. So, this is general, only thing we assume is steady state; there 

no forcing, we are beyond forcing. So, integrate this. So, how will I integrate, this is 

−2𝜈𝑘2, now 𝐸𝑢 is 𝑘−3. So, 𝜖𝜔
2/3

 and they are constants which I am ignoring. So, this 

becomes 1/𝑘. So, integrate this. So, Π𝑢 is k is integral well sorry, I forgot exp (− (
𝑘

𝑘𝑑
)

2

). 

So, 
1

𝑘
exp (− (

𝑘

𝑘𝑑
)

2

)d𝑘, −Π𝑢(𝑘0). So, −Π𝑢(𝑘0) is this and this 𝑘0 to 𝑘. 

This function we can again relate it to some known function ok. So, one thing is to make 

a change a variable (
𝑘

𝑘𝑑
)

2

is  𝑥, similar idea. So, this becomes. So, d𝑘/𝑘 is dimension less. 

So, you can easily check that these d𝑥/𝑥 exp (−𝑥). So, now this also this is name for this 

function know, this is not well this is not called gamma function is called exponential. So, 

this integral is this ok, I mean I already made some more simplification, k is k is squared 

is 𝑥 ok. 

Now, this does fit well because there is identity. Now I let me just tell you that, this call 

integral exponential integral, it has a name called exponential integral and E𝑖(𝑥), well this 

exponential integral, this is an identity well it is a asymptotic, it is not a and it is called 

asymptotic for large experts of behaviour. So, E𝑖(−𝑥); so, in the tables it is given for 

exp(𝑥) /𝑥, not for −𝑥 . So, I made a change of variable. So, 𝑥 to −𝑥 so, this is minus of 

this is exp(−𝑥) /𝑥 ok. So, if this function goes is 1/𝑥, but x is already 𝑘2. So, 1/𝑘2 ok. 

So, this is what we are asymptotically claiming therefore, large 𝑥 it will be this will be this 

formula ok 

So, Π𝑢 is not Kraichnan theory is silent, Π𝑢 it does not tell you Kraichnan pi u it only says 

Π𝜔 is constant. So, it using Pao’s formula and this equation to compute Π𝑢 and now let us. 

So, is that clear. So, this derivation is just algebra; but we now have all, energy spectrum 

of course, in that in turn gives you enstrophy spectrum as well as Π𝑢 and Π𝜔 in both the 

regimes. Now we will try to see whether it fits with the simulation data. 
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So, this is a spectrum. So, we are forcing it 𝑘 equal to 100, 𝑘𝑓 is 100, around here 𝑘𝑓 is. 

So, we are falling somewhere here, this why this line is somewhere here well 10, 20, 30, 

40 actually this is not 100 is this is a new run this is a 2001, 2, 3, 4 40 is force at 40 change 

of year is 40 not 100, 100 was some other run. 

Student: It is 50. 

50, 20, 30, 40, 50, sorry yeah 50; now to the left this line is the dash line is the fit ok. So, 

it is 𝑘−5/3exp ((
𝑘

𝑘𝑑
)

4

3
 ). You can see that viscosity small, so 𝑘𝑑 is large and it is not 

changing much this is five third line; right side since you are forcing at 50 and maximum 

wave number is around 1000, there is not enough range for 𝑘−3 spectrum. Right side 

expected 𝑘−3 spectrum you know, but I do not get a power law, it is dropping 

exponentially.  

And this one is 𝑘−3exp (− (
𝑘

𝑘𝑑2𝐷
)

2

). So, exponential is dominating, there is minus 3 parts, 

but there is a domination of exponential part. So, it steepens further ok; so, 𝑘 > 𝑘𝑓 is 

dominated by the exponential. We need to make a run where the force somewhere here, 

let us say 𝑘 equal to 10; then you will get a large range for minus 3 regime and we should 

expect minus 3 ok, is that clear to everyone. So, minus 3, to get minus 3 you need 

simulation which has enough scope of getting minus 3. 
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So, let us look at the spectrum now, a flux, so that spectrum. So, flux Π𝑢 is not constant 

all over, but it is fitting nicely Π𝑢 this one. So, this is what is a Π𝑢 spectrum and we are 

getting constant here, Π𝑢 I expected to go increase know negative why is it pi constant 

minus. So, it is minus of that ok. So, is it is constant. So, is 𝜖𝑢 minus exponential of that. 

So, it should have, in a case this part is constant; but it should be, if I take a mod it should 

increase with k we need to check, so this part.  

So, mod means this if I take a mode if I come here it should have increased. So, it should 

have gone through that ok. So, this part is needs to be seen, this right side is that Π𝜔 is 

constant here; right side Π𝜔, Π𝜔 is expected to be constant in the right. And Π𝑢 is 

decreasing in 𝑘, 1/𝑘 constant by k squared moderate by exponential. In fact, even though 

we do not get 𝑘−3 spectrum, but we are reasonably getting Π𝜔 constant, and this part is 

that part ok. 

Now, Π𝜔 to the right is looks ok, but to the left is very strange; left what has both positive 

and negative parts. So, either it is some steady state assumption is not correct. So, this is 

summed over, now this plot and this plot are different; this for a single frame and this 

averaged who had many frames where around 100 frames, where I am not sure well many 

frame. 

Student: And left one is also average. 

This is also averaged. 



  

Student: Average. 

So, these two are average, and this is single frame you wanted to see whether it is 

fluctuating vortex indeed fluctuating and we are getting positive according to theory it 

should be negative this 𝜖𝑢 ; unless there is a big flux at 𝑘 = 0. So, this part we do not 

understand ok. 
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So, we need to see what is happening here. Shell to shell is also surprising, but we know 

from theory. So, this was what I did in Pramana 2003 I think; so, energy in 2D, so this is 

for 𝑘 < 𝑘𝑓. So, though energy is going backward all full energy, but there is a local forward 

cascade. So, what is local forward cascade? So, if I look at shell 4 it gives positive energy 

to shell 5 it 4 gives, but 6 what is 4 to 6, now it is distant; actually 4 to 6 also positive, but 

small, but 4 to 7 is inverse.  

So, 7 is giving to 4, 8 it is giving to 4, 9 is giving to 4. So, all these people are giving 

energy backward. In fact, there lot of energy mode which are shells which are giving 

energy backward from. So, this is next shell, this next to next. So, this will be 5, this is 6 

if m is 4 ok, and this is 7, 7, 8 all the way up to something like 18, 15 or so, here for this 

particular this from analytical theory, this called field theory. We compute this stuff, which 

I will not tell you how to compute them, but this gives you negative. 



  

So, though I give energy, so if I look at right side I give to labour; but I get lot of it from 

the small shops. So, I had to give to my neighbour, but I get lot of from the right side. So, 

on the whole money is flowing from right to left; so, for each shell is just flowing 

backward, if I sum up all of it. So, this submission you can see in this theory, if I assign 

the book as well I believe I did that. 

Now, this is what is plotted from simulation. So, simulation is 𝑛 to 𝑛 + 1 is positive, but 

in simulation right away these are negative ok; except the black which is negative with the 

for the next itself, rest are all this is positive then negative, red is positive than negative, 

this for different 𝑚, 𝑚 − 𝑛 sorry different m. So, this is not visible here, but for I. So, this 

is 𝑛 − 𝑚 know. So, I choose different m, then I get different different plots. So, for m 

equal to 5 I get 6 7 like that, m equals 6 I get 7 8 9 10 like that. So, in the right this called 

data collapse. 

So, this theory is not, where the simulation is not very resolved and probably the lot of 

fluctuations ok. This 2 D seems like the steady state is not, assumption of steady state is 

not very very robust. So, that is why here there are not collapsing to single plot, single plot 

collapse we should have all of them should have fit on the same plot; then would have 

been stronger theory. So, this theory is not very solid. 
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So, we can also look at density plot. So, what is the density plot give you. So, if you look 

at shell, let us say this one. So, this shell diagonal, so which one is this shell 0 1 2 3 4, so 



  

the shell 4. So, this index is not ok, shell 4. So, shell 4 to 4 is 0, I do not give money to 

myself. So, 4 to 5 is positive, 4 to 6 is almost 0, green is 0, red is positive; but then it search 

getting negative this blue. So, it is negative. 

So, like what we saw. So, I gives to next neighbour, but I get from more distance 

neighbours and the negative side is also telling you. So, these guys getting from negative, 

not the giving to negative. So, 4 is giving to 3, 4 is giving to 2. So, I give to my left; that 

means, the things are going flowing backward that is inverse cascade. So, energy is flowing 

to n equal to 1, all energy is going basically towards n equal to 1, so this consistent with 

inverse cascade of energy, kinetic energy ok, so 𝑢2. 

Now, we want to do the same thing for enstrophy. So, enstrophy should forward, but not 

clear whether it be there be non-local component, local component. So, this energy 

transfers give you lot of insights; how energy is flowing, and who is getting more energy 

ok. So, shell to shell give us that information ok. So, stop. 

Thank you. 


