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So far we have made the formalism. How to write down the Navier-Stokes equation, 

compute energy transfers compute the flux right the formalism of flux. So, you can also 

compute the flux given the Navier-Stokes equation, I can compute energy transfers but 

you need a profile right. Given velocity field you can compute flux. 

Now, we are going to do some theory. Given a profile of course I can compute flux, but 

like to know what happens in nature like within the atmosphere there is a flow is there a 

some property of the flux. And, turns out it is not very complicated you can understand 

what should be the nature of flux or what should be the nature of spectrum or energy of 

the Fourier modes, we can compute them we can give a theory of it. 

The first theory was the Kolmogorov’s which I will discuss right now, first theory for flux 

and spectrum, energy spectrum and flux for 3D hydrodynamics, we have to find it for 2D 

hydrodynamics or MHD (Magnetohydrodynamics) or convection, they show different 

behaviour.  

All of them you start from Kolmogorov’s theory or the formalism of Kolmogorov’s theory 

you see how they are different. So, it becomes cornerstone like the starting point for other 

fields as well including plasma turbulence and so on. Wave turbulence like water waves 

you know ocean there is a turbulence in that. So, lot of it starts from here then you make 

modifications, but idea of flux is very important know when I will show you how it is. 
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The outline for this set of lectures will be I will derive the Kolmogorov’s theory I will just 

explain what it is. In fact, I will derive it ok, but in our own way it is slightly different 

ways with different than what Kolmogorov did, but the result is the same. So, insights 

from Kolmogorov’s theory what can you say about fluid, so we can say more things then 

numerical verification.  

I will not get into experiments, but in computer simulations we can find the flux and the 

spectrum and we find that is very similar to what Kolmogorov’s products. And, then 

limitation of Kolmogorov’s theory and we can also generalize it to dissipation range and 

to also laminar theory ok. So, this is the outline, so we will do it probably in two lectures. 

(Refer Slide Time: 03:06) 
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So, let us start it, Kolmogorov’s theories for 3D hydrodynamic turbulence. 

 (Refer Slide Time: 03:11) 

 

So, this is the equation, see the above figure. This is shell spectrum not a mode spectrum. 

How do I convert mode to a shell spectrum to from the mode spectrum? I just sum over 

all the modes within the shell right, there are many-many modes you in the shell it has 

radius k and for in computer simulation we make the radius as 1.  

But in general you can choose dk as a variable dk difference between the radius of the two 

circles. So, here 𝐸(𝑘) is basically defined in the following way because we need for 

Kolmogorov’s theory, ∫ 𝐸(𝑘)𝑑𝑘
∞

0
 is a total energy if I sum over 0 to infinity.  

So, 𝐸(𝑘) is energy in the shell of radius 𝑑𝑘 So, that will be shells shell spectrum and that 

is what Kolmogorov’s five third theory. So, we should know exactly what is 𝑑𝐸(𝑘). So, 

what is the dimension of 𝐸(𝑘) by the way in Kolmogorov’s theory or in physics language 

see the divided by 𝑑𝑘. So, it is going to be energy dimension. So, this is a dimension right 

energy dimension divided by dimension of 𝑘. So, that will be k is dimension of one by 

length, so this is a dimension of energy times length or energy is what is velocity squared. 

So, I am not keeping mass in it mass is one, so it is L square by T squared.  

So, this is dimension of 𝐿3/𝑇2. So, that is what is meant by energy shell spectrum you 

must understand this is not energy within energy of the shell. But energy of the shell 

divided by it is thickness. For computer simulation for like in our code we would make 𝑑𝑘 

291



as 1 more quite often. If it is not then you divided by the width. Now, so this is energy of 

a shell well it is not really a shell, but I mean I have divided by dk throughout ok. So, this 

like in different in calculation we divide by 𝛿𝑥 so this is a density.  

Energy in the shell, as I told in the earlier classes, you can change by the flux, if flux goes 

out then energy decreases in the shell. I just want you to keep this in mind these are shell 

energy changing. So, the two fluxes flux coming from the inner shell inner sphere and flux 

goes from the outer sphere. It should be the difference of the flux. Flux is always for a 

sphere and I did tell you in the past that this flux is not like a flux energy going out per 

unit time per unit area. It is a scalar quantity it is not a vector quantity. It is a difference in 

the flux for the radius 𝑑𝑘 divided by 𝑑𝑘 this we derived in the earlier classes. That is why 

these are the partial derivative. Now this function of both 𝑘 and 𝑡 can change in time. So, 

that is why we have this 𝜕𝑡. Energy can also shell a change in a shell by some external 

force, external force could be buoyancy or some magnetic force you know there could be 

lots of forces that can change the energy of a shell or it would change by dissipation.  

Dissipation always will decrease the energy. So, this 𝐷𝑢(𝑘) is negative, minus 𝐷𝑢(𝑘) is 

decreasing. Kolmogorov’s assumes that we as we force the large scale this is an 

assumption which is made in Kolmogorov’s theory. So, what does it mean? I take a bucket 

of water and stir using a big stick like this a large scale you do not force a small scale ok. 

It is possible that I can have small scale I mean I have charged particles I shine 

electromagnetic field that will force it small field. But that is not what Kolmogorov’s 

theory is, I force a large scale and large scale means size of the box of the order of size of 

the box, it could be one fifth half like but it is box size. So, it is important to keep in mind 

large scale and we divide we make a notation is 𝑘𝑓 is a forcing scale with the order of 1 

by length of and L is a box size. 

Now, what about dissipation? So, dissipation is defined like this 2𝜈𝑘2𝐸(𝑘). We know in 

fluids that it is it will be some kind of energy at large scale but it keep decreasing, this will 

decrease with 𝑘. So, 𝑘2 is a positive, is increasing function, it turns out all of this one this 

quantity is 𝑘𝛼, 𝛼 is positive for intermediate and large scale. 

So that means this function is increasing with 𝑘. 𝐷𝑢(𝑘) increases with k. So, dissipation is 

more and more if you go to higher and higher k and that basically comes from the gradient, 
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you know 𝜔2 this is coming from the ∇, ∇2 is giving 𝑘. So, it is small scale the gradients 

become stronger and stronger. So, dissipation is active more and more active at small scale 

in hydrodynamic turbulence. Situation may be different in others other physical system.  

But in hydro 3D if I take a bucket of water stir it very fast then you find that it is only that 

this is a situation. So, this is  active more at small scales and so I am going to make a 

picture. We have forcing as well as dissipation. I wait for some time, so that the system 

becomes quasi equilibrium that means this energy of the shell fluctuates, but fluctuations 

around the mean.  

If you wait for some time you keep stirring it then bucket water will keep you say average 

energy will be constant it will fluctuate in time, this is called steady state. But it is not 

steady state in the sense that it is constant, but it is steady state in the sense that its average 

is constant. 

(Refer Slide Time: 12:21) 

 

So, make this assumption steady state where I can drop the 𝜕/𝜕𝑡 term, this is fluctuating 

on this one but is changing very slowly. I make instead of partial derivative make a 

ordinary derivative or total derivative like this.  

If outgoing flux is more then ingoing flux under steady state. How this is possible? I mean 

my energy this energy does not change here know. So, if somebody is like giving more 
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money to people you know donation or whatever. So, it is guaranteed that that person has 

more income and less spending otherwise they cannot sustain it right. 

So, what does it mean if this is positive then my 𝐹𝑢 must be bigger than 𝐷𝑢 from this 

equation is straight forward. So, 𝐹𝑢 is earning and 𝐷𝑢 is dissipation, spending. And, Π𝑢 is 

like giving to others or taking from others ok. So, these like taking in the left arrow and 

this is going giving to others you know. So, this is what is so if you give more, then that 

means you must have more income under steady state ok. 

So, this equation for flux, so in fact we I call this variable energy flux is a very nice idea, 

it is a very simple idea but it is very useful idea we can we can really say a lot with this. 

Now I make an assumption of the inertia range. What is the inertia range? So, I define two 

ranges one is forcing scale, where forcing function will be determining the fluid behaviour 

like in bucket I just stir this. 

So, at large scale there is a forcing, so that is how I stir it that will determine the energy at 

that scale. The small scale where dissipation is more active dissipation is everywhere, but 

dissipation is strong at small scales. But, these range of scales in between that is called 

inertia range. And is in the assumption that inertia range it does not know much about 

forcing neither about dissipation. So, inertia range is a universal function, the spectrum in 

the inertia range is a universal function that is independent of forcing as well as 

independent of dissipation. 

So, you can see it kind of intuitively in what I am going to say. So, inertia there is a scale 

in between, so we have forcing this wavenumber. So, small scale will be forcing it small 

case for it small scale large scale and this is a dissipation this F and this is a dissipation. 

What happens in between, there is no forcing right in this also dissipation is weak. So, in 

the inertia range I can say that both are negligible. 

So, my flux will be constant and this is assumption of Kolmogorov’s theory, well it is a 

derivation of a Kolmogorov’s theory. In fact, so if I am energetic I can say the flux will be 

constant. Of course, flux is fluctuating but on the average it will be constant. 
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This is a my conclusion in the inertial range. And, if I am not really making any assumption 

really I start from energetic and it derive flux must be constant. But, as I said this flux will 

be fluctuating in time, so if I just take this flux so it will fluctuate the time. But, if I just 

ignore the fluctuation then my mean value average two are slightly longer time is constant.  

This is a shell, is my pink region in the shell is the 3D is a cut, so its radius is 𝑑𝑘. Now I 

make this in this if it is 𝑘 is in the inertial range, then my injection by external force is 0. 

This is assumption now by Kolmogorov’s theory that I force only the large scale not the 

intermediate scale. So, these what I force only the large scale. So, you see these are 𝑘 is a 

one by length.  

So, this 𝑘𝐷𝑖 is where dissipation starts to become very dominant, in 𝑘𝜂 I am going to define 

where basically kinetic energy is very small after k equal 𝑘𝜂. So, this region has hardly 

any kinetic energy. So, I was telling the last class, so there is energy spectrum if you draw 

then energy is almost 0 for k greater than 𝑘𝜂. So, this region has negligible energy. Now 

negligible in computer simulation will be 10−8 in non dimensional unit. 

So, this is a region where flux is constant and these called inertia range. So these inertia 

range is here dissipation in this called dissipation range or dissipative range and this is a 

forcing range. So, we are know that flux must be constant. So, it is true in a bucket of water 

I supply energy at large scale then it is cascading, cascade means this is going down in 

scale it is not going on in real life I mean real space. If you are look at this thing there is 
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no energy equal is going from one scale to other scale. In some sense is very similar to 

money flowing from large scale to rich people to small middle class then too small, so it 

is going down like that. 

So, very similar analogy and it very small scale this is a transfer to the heat and after that 

scale there is no kinetic energy. So, if I if you look at zoomed view of the velocity field 

you see this big vortex, then smaller vortex smaller vortex. But after some time you just 

becomes a fuzzy blob. There is no definition of velocity field at that scale ok, you just 

diffused structure it very tiny scale and you cannot define velocity. If there is no motion 

large scale motion, well I want to this more no motion at there is no visible motion. 

Now visible need not be my eye, but visible is like if I make a coarse grained picture in 

continuum picture I take many 50 particles and see whether there is a mean flow. If there 

is no mean flow at that scale then you say 0 velocity. So, this is the k eta, now I will not 

discuss this but these are interesting physics. This is not my mean free path length, the 

particles please do not mistake this one this is not kinetics a mean free path length it is 

where my velocity field loses meaning that is what it is k eta ok. 

It is that my velocity field 𝑢(𝑘𝜂) is tending to 0, that is my definition of 𝑘𝜂. Now given 

flux can I get a formula for the spectrum. Now, what do I do? One idea is to use 

dimensional analysis. So, let us do dimensional analysis. 

(Refer Slide Time: 21:11) 
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So, it just very straightforward from here, so what is the dimension of 𝐸𝑢(𝑘). So, 

dimension is this, I derived this I told you in the last slide. 

Now, what could what could 𝑢 depend on? So, let see u now we make an assumption that 

in this intermediate range flux is constant, I say I believe that it will not depend on how I 

force the system if irrespective of forcing. It also it does not depend on how it is dissipated 

how energy is dissipated. So, it is independent of viscosity or how kinetic energy is being 

dissipated, so it does not depend viscosity as well. 

So, it can depend on this flux which is cascading down. So, it has the information of how 

much energy is being fed at large scale which is cascading. Now because locally I know 

this is coming down and when it goes through me. So, any scale shell knows that how 

much which is cascading now ok. So, it has information about how much flux is going 

through. So, 𝑘𝛽 and local way number is this local scale know. So, it depends on 𝑘, so 𝑘𝛼. 

So, these two quantities I assume is an assumption that depends on flux and local wave 

number, it does not depend on viscosity it does not depend forcing this why it is called 

universal. Now, if I can find it. Now what is dimension of so let us say I will do dimension 

analysis ok.  

I can write down the formula, for energy spectrum 𝐸𝑢(𝑘) = 𝐾𝐾𝑜Π𝑢

2

3 (𝑘)𝑘−5/3 , 𝐾𝐾𝑜 is a 

dimensional constant, 𝐾𝑜 means Kolmogorov’s. 

This is a prediction for the energy spectrum formula from this energy argument, derived 

from dimension analysis but it is great I mean this. So, it turns out this formula works for 

all flows as long as hydrodynamic, if I put magnetic field there is some indication that it. 

So, that is different part MHD or convection. So, somewhere also it works, but in 

hydrodynamics in 3D it works people have done experiments on ocean atmosphere in labs 

in various internal stuff, so this is seen everywhere. 

And that is quite is called it is independent of your forcing mechanism how is so. So, 

whether I turn like this turn like that or to left to right it does not matter how we do it this 

will always be there or whether it is water or air or liquid helium or whatever fluid, 

viscosity is not in this. So, it is independent of which fluid you apply. So, it is like 
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Newton’s law, Newton’s law does not care whether you are applying Newton’s law to 

stone or to star or so Newton’s law works at classical scale. 

So, these are universal theory that means it works for all fluids, all fluid means 

hydrodynamic with water or mercury and it works for all sorts of forcing in the 

intermediate range not in forcing range. So, when in the picture which I had shown before, 

so there is a forcing band this is the dissipation band in 𝑘. So, in this band there will be 

−5/3 in the intermediate, this region could be depend on forcing this region could also 

depend on dissipation. 

It is Kolmogorov’s constant, has also been calculated by experiment simulation and also 

by theory, there is a theory, field theory it is around 1.6 to 1.7. So, if these are not like fine 

structure constant or in turbulence, we cannot get a number with some three decimal places 

it does not work. There are fluctuations there are effects of the forcing so this is not very 

precise.  

I must say that in real life, of course there is a dependence on. So, I am going to show you 

this theory has it is own limitations is not exact theory. There are some so if I make 

experiment on grid and simulation, then this Kolmogorov’s depends on what grid 

resolution I am using, but that is experiment limitation. What Kolmogorov’s says that new 

going to 0 limit, that means the Reynolds number going to infinity limit this is true.  

But, no experiment can claim that it is I am infinite Reynolds number. Asymptotically you 

have to wait for steady state, so these are mathematics theory. So, in experiment there 

always will be some difference, but in many experiment even though they claim you know 

great accuracy every experiment has experimental error bars is so on. So, this is a theory 

of Kolmogorov’s which is this called five third theory you know the spectrum is −5/3. 
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Now, so let us do some more analysis so about the flux. Now under steady state so this is 

the under steady state now this formula I just showed you in the last slide. If I do the 

integral over full space full wave number space, so what happens to this 0 to ∞. So, there 

will be flux at infinity minus flux at 0. So, what is flux at infinity? 

Student: 0. 

Because there is no more outside to give energy to right I mean this is basically nobody no 

taker of your modes. So, flux at infinity is 0. So, left hand side will be 0. 

The integral is an energy supply rate, so my energy supply rate by external force. So, then 

you supply rate and what is this integral 0 to infinity is a dissipation. So, under steady state 

is obvious that whatever I supply energy must be balanced by total dissipation, but this 

one is 0 to infinity so this exact result. And now we call 𝜖𝑢 is the dissipation rate this total 

dissipation rate. 

Now, I can do some more, so the region where there is no force. So, I start from the region 

where so this was forcing here. So, I start from 𝑘0 where force is not there anymore. So, 

this is I turn off the forcing, forces well now I do not turn it off, I go to the wave number 

region where forcing is 0 for 𝑘 > 𝑘0. Here, 𝑘𝑓 is a forcing wave number we should left of 

𝑘0.  
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So, let us go now I will integrate this, but I integrate from 𝑘0 to ∞. So, that will give you 

Π(𝑘 = ∞) − Π(𝑘 = 𝑘0). So, I am going to relate the flux with the dissipation rate, this is 

relating input energy with the output energy this one, but I want to relate it to flux. 

So, this is constant flux, where forcing is basically not affecting anymore. I can say that 

𝜖𝑢 must be bigger than Π𝑢 because, Π𝑢 is 𝑘0 to infinity integral and 𝜖𝑢 is 0 to ∞ integral. 

So, in your simulation we should test whether you must keep in mind that 𝜖𝑢 must be 

bigger, your flux will be always smaller than 𝜖𝑢, flux will fluctuate a bit. But, flux does 

not really a fluctuate a lot in simulation which is average to are many-many modes. So, 

this is one condition which I encourage students to test when you do the simulations. So, 

I think this is about the first set of slides. 

Thank you. 
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