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In this lecture, I am going to conclude the Route to Turbulence, how turbulence arises. The 

route to turbulence is example specific. How turbulence arises in a pipe, in Rayleigh-

Benard convection, in stars, etc., are all different, but there is a certain pattern. We first 

observe instability, then we get non-linear saturation. Instability will make the mode grow, 

but nonlinearity will come over and saturate it. Then patterns appear and chaos ensues. 

In this lecture we focus on how patterns appear in Rayleigh-Benard convection, and how 

turbulence arises subsequently. After that, we will start studying the physics of turbulence 

- Kolmogorov theory, and so on. But for now, we will cover these three topics on Rayleigh-

Benard convection and of course, it is a huge topic. 

I am going to take simple examples of Rayleigh-Benard to demonstrate this. This is 

covered in-depth in the book, Physics of Buoyant Flows, in chapters 7 and 8. It can be 

used as a reference for these topics - instability, saturation and patterns, covered here. 

 



 

Saturation is a critical point, and this is common in many systems. As we saw previously, 

non-linearity tends to saturate, and prevent modes from growing infinitely. Such 

unconstrained growth is unphysical. We will first look at something called secondary 

bifurcation. What is bifurcation? As mentioned previously, bifurcation is a change in 

behavior of a dynamical system. In some sense, it is like a road splitting into two separate 

roads.  

From the previous lecture, we already have studied two behaviors - instability and 

saturation. However, we can have more complex behaviors. In the Lorenz equations, the 

mode 𝑈"" was 0 for 𝑟 < 1. Later it started varying as √𝑟 − 1. So, it was initially a constant 

value mode, but it did not remain constant throughout when I increased Ra. This parameter 

that we vary here denotes temperature difference between the plates. But the important 

thing to note here is that things start becoming time dependent as the parameter is varied. 

However, we need a more sophisticated model. Lorenz equation does not give realistic 

bifurcation. There is a bifurcation of Lorenz equation. In fact, at around r equal to 24.7, 

there is a bifurcation called Hopf bifurcation. After this bifurcation, the dynamics become 

becomes chaotic. But we will look at a better model that has a more realistic bifurcation 

for large Prandtl numbers. We call it the seven-mode model. 



 

What modes should we pick to derive the seven-mode model? Previously, in 2D, we had 

(1, 1) and (0, 2) modes, which can be written as (1, 0, 1) and (0, 0, 2) modes in 3D (since 

we had neglected y component to make out system 2D). These are in fact wavenumbers. 

Corresponding to (1, 0, 1), we had 2 modes. We focused on 𝑈"-" and 𝜃"-" modes. 

Note that 𝜃--/ was brought in for non-linear saturation. Instability needed only 𝑈"-" and 

𝜃"-" modes. Now we introduce two more modes - wavenumbers (0, 1, 1) and (1, 1, 2). So, 

what is (0, 1, 1) mode? Now (1, 0, 1) mode has components along 𝑘1 and 𝑘2. So, it has 

variations in 𝑥𝑧 plane. Similarly, (0, 1, 1) has components along 𝑘5 and 𝑘2. So, 𝑘5 = 1 

and 𝑘2 = 1. It is therefore 𝑦𝑧 dependent. 

So, one mode depicts a roll in 𝑥𝑧 plane, aligned along 𝑦 axis. The other mode is a similar 

roll aligned along 𝑥 axis. Clearly, we now have a 3D structure, where 2 rolls are aligned 

along perpendicular directions. These modes will interact non-linearly. So, we include the 

seventh mode which mediates this interaction. This happens through mode (1, 1, 2). 

Note that these three modes form a triad: 

(0, 1, 1) ⊕ (1, 0, 1) = (1, 1, 2) 

This non-linear coupling between 𝑘", 𝑘/, and 𝑘9 will give you a rich set of patterns. We 

now look at the results. More details on its derivation can be found in the book. 



In total, we have 4 wavenumbers. Out of them, 3 have both velocity field and temperature 

fields associated with them. According to Craya-Herring basis, each wave number has 2 

velocity modes – 𝒖𝟏 and 𝒖𝟐. But we consider only 𝒖𝟐 for the current derivation. We take 

into account 𝒖𝟐 and 𝜃 for the 3 modes – (1, 0, 1), (0, 1, 1), and (1, 1, 2). This gives us 6 

modes so far. Mode (0, 0, 2) has no velocity component. Like how we saw in 2D, 

incompressibilty condition dictates that there is no velocity component for this, and we 

keep only 𝜃. So, there are 7 modes, and they will have seven differential equations 

associated with them. These 7 equations are shown in the slide. 

 

Now, these modes are used with a box dimension √2 × √2 × 1. Its length is √2 because 

if you remember, instability condition gives you 𝑘> =
?
√/

. That is the lowest wave number 

associated with the lowest Rayleigh number for instability. Hence the dimensions of the 

box help simplify the equations by eliminating some factors. 

To study the behavior of this model, we take Prandtl number unity and vary 𝑟. Remember 

that 𝑟 = @A
@AB

. For 𝑟 < 1, what is the solution of these equations? We see that the stable 

solution has all zeros. So, there is no convection, only conduction. As soon as 𝑟 becomes 

greater than 1, we get these solutions shown on the slide. One of the 3 modes is (0, 0, 0), 

which is unstable. But the other modes are stable. These were derived in the last lecture. 

Here, 𝑏 is a parameter, and we are already familiar with the term √𝑟 − 1. 



 

Note that the first 2 components of the 2 stable modes are negative of each other. Perhaps 

the most famous aspect of the Lorenz equations is the butterfly pattern. We will see this 

pattern soon, but right now, we have fixed-point solutions. 

In the model, till 𝑟 = 13, we get stable solutions. After that, the behavior of the system 

changes, and the modes start oscillating. This means that the modes are time dependent 

now. Now we can plot the modes in a time series, as a function of time. This way, when 

we plot the velocity mode 𝑈"-", we see that it is oscillating around the value of 0.5 units. 

Note that these are all non-dimensionalized. 

 



However, the modes 𝑈-"" (green line) and 𝑈""/ (dark blue line) oscillate around 0. These 

two modes were 0 previously. But now it is like they are getting born and killed, born and 

killed. 

I have also plotted one temperature mode, namely 𝜃"-". It is like 𝑈"-" except that it has a 

factor 𝑟 multiplied to it. Like 𝑈"-", 𝜃"-" also oscillates around a finite value. So, all these 

modes are starting to oscillate, even 𝜃--/ oscillates. 

This change in dynamics is called a Hopf bifurcation. The first one, where modes changed 

from zero to non-zero values, is called supercritical pitchfork bifurcation. Hopf bifurcation 

is named after the Austrian mathematician, Eberhard Hopf. If 𝑟 is increased further, then 

the system becomes chaotic. Then the dynamics will display more rich features, but we 

will not explore them for now. 

 

Before moving on to chaos, let us understand the physical interpretation of these 

oscillations. We take the physical domain that we are looking at, and take a mid-plane cut, 

perpendicular to the 𝑧 axis. If we plot the temperature on this plane, we see the patterns 

shown on slide. Note that in this view, the hot plate is below the screen and the cold plate 

is above the screen. 

Now red regions are hot and blue regions are cold. In the red regions, the fluid is rising out 

of the screen, since the fluid is hot. Conversely, in the blue regions, the fluid is falling into 

the screen, since the fluid is cold. From this, we can infer that these strips of red and blue 

in the plot depict circulating rolls of fluid. These are 2D rolls, and if you look at them from 



the side view, you will see circular rolls. But from the top view, we see hot and cold strips 

of fluid. 

Note that we do not see a clean hot strip, but there are variations. There are undulations 

along the length of the strips. What can you make out of this? It implies that there is another 

set of rolls aligned perpendicularly to them. So, there are two cross rolls, giving rise to a 

3D structure. 

The thick red and blue patches correspond to the regions where both the rolls reinforce 

each other. The thin regions are places where the two rolls counteract each other. This 3-

dimensional structure of thin and fat strips is called asymmetric square. It is called 

asymmetric, because one roll is stronger than the other roll. Here we see that the 𝑥𝑧 roll is 

dominant, while the other roll is coming and going. 

This can be observed in the time series in the previous slide. The dominant roll corresponds 

to mode 𝑈"-", which is oscillating around 0.5. The other roll, 𝑈-"" oscillates around 0, and 

hence keeps appearing and disappearing. Some effect of mode 𝑈""/ is also there, but it is 

not discernible here. 

This is the interpretation of the structure that we see from our simple 7 mode model, and 

this is also seen in experiments. Of course, physical experiments have more complexity, 

but the 7 modes capture these basic features. That is why these models are not just for the 

sake of constructing them. They have a physical meaning and shows the non-linear 

interaction of terms. Knowing how to compute this non-linearity is important and useful. 

 



In the slide, we see a 3D picture of the interaction of modes. This is called a phase space. 

The earlier picture was real space picture. The 3 axes of this phase space are 𝑈"-", 𝜃"-" 

and −𝜃--/. 

The butterfly pattern is visible here, but it is not the same butterfly pattern as seen from 

Lorenz equation. This representation is more realistic since there are more modes, in real 

life there are many more modes, but seven modes is reasonably accurate. This structure 

will then differ, but qualitatively we will see same behavior. Now you have a good picture 

of the seven-mode model. 

 

We now look at some results. We look at a paper written from our lab. Here we made a 

model which has more modes, and we also perform simulations for large Prandtl numbers. 

Now, Prandtl number is defined as 𝑃𝑟 = F
G
. 

For high Prandtl number (> 	1), the system behaves one way. And for small Prandtl 

number (≈ 0.001), the system behaves differently. This is mainly because the viscosity 

becomes very small at low 𝑃𝑟. Of course, 𝜅 also has an influence. For 𝑃𝑟 ≈ 10 and so on, 

the model described in this paper presents a good picture. The model uses 20 modes. First, 

we observe the bifurcation diagram from this model. 



 

As 𝑟 is increased, we first see pitchfork bifurcation. Before that, FP stands for fixed-point, 

and this pitchfork bifurcation is supercritical. In the model, this happens at around 𝑟 ≈ 	25. 

Subsequently, we get Hopf bifurcation, after which there are oscillations (denoted as OS). 

Specifically, these are asymmetric square oscillations described earlier. Then the system 

becomes quasi-periodic (QP). 

What is quasi-periodic behavior? If we consider a torus (which can be visualized a cycle 

tube) there are two frequencies associated with the motion on its surface. A circular motion 

along the outer periphery of the torus will have one frequency (𝜔"). But there is also a 

secondary frequency (𝜔/) associated with the motion encircling the band of the torus. 

To elaborate further, for a tube, there are two radii - 𝑟" and 𝑟/. Associated with each radius 

are the angles 𝜃" and 𝜃/ respectively. So, every point on the tube has a unique pair of 

angles. Now imagine that a point will move on the surface of the tube as a function of time. 

If 𝜔/ is 0, so that 𝜃/ is fixed, while 𝜃" varies with a constant 𝜔", then the point will trace 

a circle around the outer periphery of the tube. 

However, if 𝜔/ is non-zero but 𝜔" is zero, then 𝜃/ varies while 𝜃" is constant. In this case, 

the point will again trace a circle around a section of the tube. Moreover, if both 𝜔" and 

𝜔/ are non-zero and equal, then the point will trace a helical path around the tube. 



Finally, if the ratio between 𝜔" and 𝜔/ is an irrational number, then the point never returns 

to the starting point. The path will just cover up the whole surface of the tube if we wait 

long enough. Such a motion is called quasi periodic. It is not periodic, but it looks periodic. 

So, with two frequencies (𝜔" and 𝜔/) we get quasi periodic dynamics. However, the 

Lorenz butterfly is chaotic. Even in chaos there is filling up of a region of the phase space. 

However, in chaos, a third frequency is required in the system. This is the reason behind 

the quote “period three implies chaos”. Those who have read the book Chaos by James 

Gleick might be familiar with this phrase. 

We are focusing on turbulence, which is in fact more complex than chaos. We need to 

increase out parameter further to see turbulence. One commonly asked question is, “What 

is difference between chaos and turbulence?” There is no one answer. There are several 

answers, and here we look at some of them. 

The number of modes in a chaotic system will be large, but generally small. Even 3 modes 

are enough to produce chaos. But chaotic systems may have 10, 20, or more modes. But 

we need more than 2 modes to observe chaos, and this was proved by York. It is not 

necessary that a 3D system will be chaotic. It can be quasi-periodic or periodic, but if there 

is sufficient nonlinearity, and you satisfy the properties for chaos, then the system becomes 

chaotic. 

One common definition for chaos is the system’s sensitivity to initial conditions. This 

means that if I take 2 points in phase space which are close to each other, say separated by 

a distance 𝜖. If the system starts evolving with this initial condition and if you wait for 

some time, then the points will start diverging and this gap between them will increase 

exponentially. So, it will be some form of 𝑒QR, but they simply do not diverge towards 

infinity due to saturation. 

So, the region of phase space where they move around is a finite region. If it is diverging 

and going to infinity, then that will not show interesting physics. It is merely a divergent 

system, with no chaos. Nonlinear saturation prevents this from happening. But the distance 

is on the average expanding for small times as an exponential function. 

In turbulent systems however, the number of degrees of freedom is huge. So, typically you 

can have 1 million degrees of freedom. People do not even think of the phase space picture 



for turbulent systems. But you can take two particles in a turbulent system and see their 

divergence. I mean two smoke particles in a turbulent system move such that the distance 

between them, Δ𝑟, goes as Δ𝑡9//	. 

One of them is exponential, other one is a power law. One is 𝑥V, other one is 𝑒1. Which is 

faster? This can be judged from Richardson law. So, turbulence typically has more degrees 

of freedom, and obeys power laws. Energy spectrum of turbulent flows, which will be 

covered later, is a power law in turbulence. In chaos however, you should use exponential 

laws. 

To see this, we can look at 𝑢(𝑘) for some Fourier mode, 𝑈"" or 𝑈//, If we plot the energy 

of this mode against 𝑘, the energy will typically decrease as you go to higher wave 

numbers, exponentially. In turbulence also the energy will decay, but according to a power 

law like 𝑘XY. We know from Kolmogorov theory that alpha is 5/3. We will investigate 

this in future lectures. 

To summarize, we typically get chaos, then turbulence. The system keeps generating more 

and more modes, tending towards more and more disorder, and stronger interactions. 

 



 

Now, we can look at small Prandtl numbers. We will first look at what happens with zero 

Prandtl number. This is again a work done at our lab around 10 years back and is quite 

interesting. 

Previously in the bifurcation diagram we were moving from left to right. First came fixed 

point, then periodic, then quasi-periodic, and so on. But for zero Prandtl number, it was 

wiser to go from right to left. So, we start from a large Rayleigh number and decrease it. 

The critical 𝑅𝑎 here is 657. We start at an 𝑅𝑎 of 1.4 times 657, that is 𝑟 = 1.4. This is 

because zero Prandtl number flow is extremely chaotic. Viscosity is basically very small, 

it is not 0, but very small. And with small viscosity there is fluid turbulence. Zero viscosity 

means if you give the system any energy, it just becomes very violent. 

So, the system is chaotic at the onset itself as we started from the right. It starts with a 

square pattern (SQ). So, in the first picture, at 𝑟 ≈ 1.35 you can see the square patterns. 

As before there are two rolls, and both have equal amplitude. Remember that asymmetric 

square had unequal amplitude. Here we can see the difference from asymmetric square 

pattern. 

This happens when 𝑈"-" is equal to 𝑈-"". Then the system bifurcates into ASQ - 

asymmetric square, but this asymmetric square is not a function of time. It does not change 

with time and is fixed in time. In ASQ, one mode is bigger than the other and remains that 

way. 



If you look at the fixed point, initially the modes 𝑈"-" and 𝑈-"" were symmetric. Then 

they became asymmetric by bifurcating. Going further to the left, we get closer to the next 

onset (the red lines). At this point, the pattern starts to oscillate in time. So initially the 

patterns were not oscillating, but now they start oscillating and they oscillate exactly like 

what we saw in the previous case. 

In the phase space picture what was initially two points will become a pair of closed curves. 

This can be seen in the slide. As you can see, the phase space is constructed from 𝑈-"" and 

𝑈"-". Note that they oscillate around a mean value and not around 0. 

So, this is bit different than what we were doing before, it oscillates around this mean 

value. By looking at which of the two modes is bigger in the phase space, we can say 

which roll will be stronger. So, the strengths of the 𝑥𝑧 roll and 𝑦𝑧 roll varies according to 

what we see in the phase space. Like before, the fixed point also exists, but it is unstable.  

In the language of non-linear dynamics, the two closed curves in the phase space of 𝑈"-" 

and 𝑈-"" are called limit cycles. One should keep in mind that these limit cycles are in fact 

projection of a higher dimensional phase space onto the space spanned by modes 𝑈"-" and 

𝑈-"". The full phase space structure is bigger, and it is not only a circle. In fact, the full 

phase space has dimensions since this is a 13-mode model. 

This dynamic with two limit cycles touching each other, is called oscillating square 

(SQOR). In fact, the two cycles are touching at the black dot shown in figure. This is a 

fixed point, and there is a lot of interesting things happening there. It is called a homoclinic 

tangle. These are all non-linear dynamics terms. If you do a course on it, you will be 

familiarized with them. 

You can also see these two limit cycles merging to become one limit cycle. So as the two 

rolls get dominant and diminished alternatively, in between they are symmetric. This gives 

a square pattern in between. This symmetric back and forth between the two rolls is called 

relaxation oscillation square pattern (SQOR). 

This can be seen in the movie shown in the video lecture. Note that the domain has a 

periodic boundary condition. Hence these rolls extend infinitely. Once we go beyond 

SQOR we get chaos. The thin region to the extreme left of the bifurcation diagram shows 



chaos, which has some different types of behavior. The dashed line denotes a fixed-point 

which is important. 

 

Again, this interaction between fixed-point and chaotic dynamics is called a homoclinic 

tangle. So, we have seen the pictures for large Prandtl number, and small Prandtl number 

now. We have studied how the system becomes chaotic in both cases. 

 

Now, we summarize all this in the next slide - Route to Turbulence. This is a plot of 𝑅𝑎 

vs 𝑃𝑟 which was made by Ruby Krishnamurty. For a large Prandtl number, say 10, as we 

increase the Rayleigh number, we have conduction state till Rayleigh critical. No 

convection, then convection, then steady roll. Steady rolls have no time dependence. Then 

comes oscillating rolls. That is where we see the asymmetric square patterns. Then we 



have two frequencies, which leads to quasi periodicity. After that we see chaos, and after 

that, turbulence. So, it gets more and more complex with more modes. 

Now if we look at small Prandtl number we see that the region has shrunk. If we trace the 

evolution for 𝑃𝑟	 = 	0.01, we get turbulence at a relatively smaller Rayleigh number. 

For larger Prandtl numbers, we need to go to a higher Rayleigh number to see action. This 

is because of the higher viscosity - there is too much friction. So, you need more power to 

overcome it. At smaller Prandtl number, the fluid is less viscous and there is less friction. 

So, for low Prandtl number systems the flow is more turbulent typically for a given 

Rayleigh number. 

Thank you. 


