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Route to Turbulence  
Nonlinear Saturation Lorenz Equation 

 
So, now we studied instability, but next is what happens when nonlinearity kicks in and 

when it starts taking over. So, one thing we discussed already is that nonlinearity will 

saturate the growth. So, things cannot keep growing exponentially, energy cannot keep 

coming in, and in fact temperature cannot keep growing, because the system will melt. So, 

nonlinearity comes and saturates. 

We will see this through Lorenz equations. I am going to derive Lorenz equation, but my 

normalization is not like that of Lorenz. This derivation is quite different. Again, I will use 

Craya-Herring basis. But the equations are same, apart from the factors, since they are not 

normalized in the same manner as done by Lorenz. 

We will study non-linear saturation using Lorenz equation, which is the simplest 

derivation for non-linear interactions. Moreover, this is for Rayleigh Benard convection. 

So, there is no rotation, and no magnetic field. 

 



Before I discuss Lorenz equations, I need this interaction 𝑢 ⋅ ∇θ. This is the non-linear 

term and all non-linear interactions is via this term. So we need to write it in Fourier space, 

like how we wrote for 𝑢 ⋅ ∇𝑢. 

 

So, we had done exercises and homework on this. Now we need to do the same thing for 

𝒖 ⋅ ∇𝜃. So, I am just going to show you how to do this and I will do it right now for Lorenz. 

So, the 𝒖 equation remains the same. There are new terms like 𝑅𝑎𝑃𝑟𝜃𝑧̂	viscous term, but 

non-linear term is the same as before. So, we need to worry about what happens for scalar. 

So, scalar non-linear term is 𝒖 ⋅ ∇𝜃. And then there are the linear terms - 𝑢. and ∇/𝜃. 

Using incompressibility of fluid, we can derive the term in Fourier space, for 𝒖 ⋅ ∇𝜃: 

𝑢 ⋅ ∇𝜃 = 𝑢1𝜕1𝜃 = 𝜕13𝑢1𝜃4 ⇒ 𝑖𝑘1 ⋅8𝑢1(𝒒)𝜃(𝒑)
=

= 𝑖8[𝒌 ⋅ 𝒖(𝒒)]𝜃(𝒑)
=

 

This is similar to the non-linear term that was derived for velocity equation in Fourier 

space. Instead of 𝒖(𝒑), there is 𝜃(𝒑) here. In fact, this is simpler, since one of them is a 

scalar. So, this is my non-linear term and the linear terms are straight forward. 𝑢. will give 

𝑢.(𝒌), and ∇/𝜃 will give −𝑘/𝜃(𝒌). So, we need to compute this for a triad interaction, 

the way we did for 𝒖 ⋅ ∇𝒖. 

For the triad we write 𝒌B + 𝒑 + 𝒒 = 𝟎. So, they are symmetric. So, the convolution 

becomes a sum in Fourier space and the sum has only two terms now, because for a triad 

right hand side will be involving only two terms. 



 

There is no need for Craya-Herring basis yet since 𝜃(𝒌) is a scalar. This is merely a number 

sitting at the wave number k. However, reality condition imposes that 𝜃(−𝒌) = 𝜃∗(𝒌). 

Although Craya-Herring basis is not used, we can still solve this numerically using a code. 

 

We move on to derive the Lorenz equation. In 1963, Lorenz simplified the Rayleigh 

Bernard equation and retained 3 terms, or 3 Fourier modes. Velocity field must be 

incompressible. This in fact, we have seen it before, gives 

4𝑈HH(𝑥J sin(𝑥) cos(𝑧) − 𝑧̂ cos(𝑥) sin(𝑧)) 

This satisfies the free slip boundary condition. So, there are free slip walls along z 

direction. So, is the same thing what I did for an instability. I do not want to disturb my 



earlier analysis. So, at the walls, the vertical velocity must be 0. Hence vertical velocity is 

0 at 𝑧 = 0, and at 𝑧 = 𝜋. To make my calculation simpler I choose a box with dimensions 

𝜋 × 𝜋. Otherwise there will be many terms with 𝜋 in the equations.  

So, 𝑢S = 0 at both side walls. Now sin(𝑥) is 0 at 𝑥 = 0 and at 𝑥 = 𝜋. Hence, it satisfies 

this boundary conditions TUV
T.

= 0 and TUW
TS

= 0 at the walls. This is a free slip boundary 

condition, and the equation satisfies the free slip boundary condition. 

Now temperature fluctuation (𝜃) is 0 at the plates. Remember that I removed the 

conduction temperature profile, 𝑇YZ[T. So, the temperature at the walls are 𝑇\Z]]Z^ and 

𝑇]Z=. And there is a linear conduction profile for conduction state. So, 𝜃 is a fluctuation 

over it. Hence 𝜃 = 0	at the plates for conducting plates. 

The primary mode is (1,1) mode. Only 𝑘S and 𝑘. are considered since 𝑘a = 0 for a 2D 

system. This gives us 𝑈HH and 𝜃HH modes like before. Earlier we had derived for 𝑘Y =
b
√/

 

and 𝑘. = 𝜋 but now I am not using those wave numbers. If you look at Rayleigh critical, 

it was a function of 𝑘Y. Here, 𝑘S = 1 and 𝑘d = 1. Earlier, 𝑅𝑎Y was b
√/
≈ 2.22. 

Now the formula for 𝑅𝑎Y is h
i

hjk
 and we need to know 𝑘 for the primary mode. Now since 

𝑘S = 1 and 𝑘. = 1, we know that 𝑘 = √2. Also, we know that 𝑘d = 𝑘S = 1. From this, 

we get 𝑅𝑎Y = 8 

 



Now, these were the modes which would get excited for this box. This is also an illustration 

that 𝑅𝑎Y is not the same for all boxes. For this box, at Rayleigh critical of 8, convection 

will start. 

Now, in addition to the primary mode which is (1,1), I am having another mode called 

𝜃m/ and it will be sin(2𝑧), because there is no 𝑥 dependence. With sin(2𝑧), it must be 0 

at the walls. Now, what are the Fourier modes present in the system? 

For mode (1,1), there will be 4 combinations of (±1,±1). And for (0,2), there will be 

(0, ±2). To understand why we use mode (0, 2)	and not any other number, we must look 

at the picture. Firstly, from the given equations, we can compute 𝑢S, 𝑢. and 𝜃, as we did 

before. We can write 2 sin(𝑥) = 𝑒pS − 𝑒qpS. We focus on the modes (1, 1), (−1, 1) and 

(0, −2), and compute the amplitudes for these modes. For instance, one can easily see 

from the formulae 𝑢S(1, 1) =
rss
p

. 

𝑢S = 	4𝑈HH sin(𝑥) cos(𝑧) = 4𝑈HH t
𝑒pS − 𝑒qpS

2𝑖 u t
𝑒p. + 𝑒qp.

2 u =
𝑈HH
𝑖  

From the earlier derivations in the course, we can also see that 𝑢. for this mode will be 

−rss
p

. That is how 𝑢S and 𝑢. are related. And this is because of the incompressibility 

condition, where 𝒌 ⋅ 𝒖(𝒌) = 0. The (0, 2) mode has no velocity component because there 

is no 𝑈m/. This is due to the incompressibility condition. So 𝒌 ⋅ 𝒖(𝒌) = 2𝑈m/ = 	0. 

Therefore 𝑈m/ = 0. 

 



Now why did we choose these 3 modes like this? Because they form a triad. 

(1, 1) ⊕ (−1, 1) ⊕ (0,−2) = 0 

A triad can interact and pass energy across its modes. And this is how new modes are 

generated. 

 

These triads can be drawn to form a triangle as shown in the figure. Now, we can do Craya-

Herring analysis. So, I need to get 𝑛J and 𝑧̂. Choose 𝑛J to lie along 𝑧	direction. So, I am not 

following the earlier notation that 𝑛J = 𝒒 × 𝒑. Instead we say 𝑛J = 𝑧̂. 

Now for mode (1, 1), what is 𝒆𝟏? Well, 𝒆𝟏 = 𝒌 × 𝑛J. So, it will be a unit vector pointing 

out from the plane as shown. We also know that 𝒆𝟑 lies along 𝒌. Finally, we get 𝒆𝟐 as 

𝒆𝟐 = 𝒆𝟑 × 𝒆𝟏. 

For the mode (−1, 1), 𝒆𝟏 points into the plane, and 𝒆𝟐 lies to the left of 𝒌 and not to its 

right as before. This can be seen in the figure. As a result, the vectors do not satisfy the 

circular dependence as before, and this poses a small difficulty. This is due to the change 

in 𝑛J. 

My computer program generates these vectors and performs all the calculations using 

SymPy module of Python. We need 𝒆𝟐 because there is no component along 𝒆𝟏 since the 

velocity field is in the 𝑥𝑧 plane. 



So 𝑢H is along −𝑦 direction. However, there is no component of velocity field along 𝑦. So, 

𝑢H is 0. For all these fields I can say 𝑢H = 0. After all we have only two modes - (1, 1) and 

(−1, 1), and their negative counterparts - (−1,−1) and (1, −1). We need to focus on only 

one of these triads to get the equation of motion. 

So, you will work for this triad and solve the full non-linear equation. We will need to do 

that because there is a coupling now. In linear stability analysis, there was no other mode 

to couple. So, there was (1, 1) mode, and there was (−1,−1) mode as well, but they were 

not coupled. It was not able to pass energy, but now it can pass energy. 

So, the triad is clear? That is why Lorenz chooses this triad. This is by necessity. Now let 

us proceed. So, I am going to work out the equation for 𝜃m/. So, we have the same triad 

again. So, I have this equation. 

𝑑
𝑑𝑡 𝜃

(𝒌B) = 	−𝑖[𝒌B ⋅ 𝒖(−𝒒)]𝜃(−𝒑) − 𝑖[𝒌B ⋅ 𝒖(−𝒑)]𝜃(−𝒒) + 𝑢.(𝒌B) − 𝑃𝑟𝑘B
/𝜃(𝒌B) 

 

I am using 𝒌B since we are using cyclic notation between 𝒑, 𝒒, and 𝒌B. We first focus on 

mode (0, 2). For this mode 𝑢. term is 0 since there is no velocity field for mode (0, 2). 

Now 𝑘B/ = 4 for the mode. So, the linear term is 4𝑃𝑟𝜃(0, 2). Now the non-linear term 

will be given by my computer program.  



Instead of using terms with (−𝒒), we can use their complex conjugates. So, 𝒖(−𝒒) =

𝒖∗(𝒒). Similarly, 𝒖(−𝒑) = 𝒖∗(𝒑), 𝜃(−𝒑) = 𝜃∗(𝒑) and so on. We can use the table to get 

values of 𝒖(1, 1), 𝒖(−1, 1) and so on. 

So, now from the table, I can just plug in the numbers. In fact, you can do this problem by 

hand. So, there is a linear term which is −4𝑃𝑟𝜃m/. So, you now start plugging in from the 

table. There will be cancellation of 𝑖, then we will get a real equation for 𝜃m/. It must be 

real because my temperature field was 𝜃m/ sin(𝑧) and temperature is a real field. 

Similarly, 𝑈HH and 𝜃HH are real. So, if I plug that in, then I will get the required equation. 

This is also what my computer program gives you, but we can do it by hand, and this is 

what I get: 

𝜃̇m/ = 4𝑈HH𝜃HH − 4𝜃m/ 

This has a diffusion term and a non-linear term. If the non-linear term was absent, then 

what happens with 𝜃m/? It will decay to 0. 

So that is one thing that when non-linearity is off, this mode will go to 0. Now this is for 

one mode, now we must do the same for three modes. The remaining 2 modes are 𝜃HH and 

𝑈HH. 

 

We move on to repeat the steps for 𝜃HH. In this case, the 𝑢.(𝒌B) term is not 0. So, we get 

the following equation: 



𝑑
𝑑𝑡 𝜃

(1, 1) = 𝑁�(1, 1) −
𝑈HH
𝑖 − 2Pr

𝜃HH
𝑖  

Here 𝑁� is the non-linear term. Like before, we can derive that 𝑁�(1, 1) = 2𝑖𝑈HH𝜃m/. 

Substituting and cancelling 𝑖, we get: 

𝜃̇HH = 	−2𝑈HH𝜃m/ − 𝑈HH − 2𝜃HH 

So, this is my real equation which tells you the time dependence of 𝜃̇HH. If the non-linear 

term is off, then I will get −𝑈HH − 2𝜃HH. Now that we have equations for 𝜃m/ and 𝜃HH, we 

derive the third equation for 𝑈HH. 

To derive this, I take dot product of velocity equation with 𝑒/� (𝒌B). This will yield T
T]
(𝑢/). 

Non-linear term can be worked out like before. 

 

Note that velocity field for mode (0, 2) is 0. As a result, 𝒖(−𝒒) (or 𝒖(−𝒑) depending on 

choice) will be 0, and the non-linear terms will vanish. Now 𝑒/� (𝒌B) ⋅ 𝒌B = 0. Hence the 

pressure term goes away. 

Keeping in mind that mode (1, 1) makes an angle of 45° with 𝑧̂, we get 𝑒/� (𝒌B) ⋅ 𝑧̂ =

cos(135°). Note also that both are unit vectors with magnitude 1. The final term on right-

hand side is −Pr 𝑘B/ 𝑢/(𝒌B). Since 𝑘B/ = 2, this term becomes −2Pr 𝑢/(𝒌B). This leaves 

us with the equation: 



𝑑
𝑑𝑡 𝑢/

(1, 1) = −
𝑅𝑎𝑃𝑟
√2

𝜃(1, 1) − 2𝑃𝑟	𝑢/(1, 1). 

Finally from the table, we use the values 𝜃(1, 1) = �ss
p

, and 𝑢/(1, 1) =
√/rss
p

. This gives 

us the required equation for evolution of mode 𝑈HH. 

𝑈̇HH = −
1
2𝑅𝑎𝑃𝑟𝜃HH − 2𝑃𝑟𝑈HH. 

We now have 3 equations – two equations for temperature involving 𝜃m/ and 𝜃HH, and one 

equation for velocity, involving 𝑈HH. 

 

Note that while 𝜃̇HH and 𝜃̇m/ have non-linear terms, 𝑈̇HH does not. If non-linearity is turned 

off, 𝜃m/ decays to 0, while the other 2 remain coupled. Now can we estimate Rayleigh 

critical as 8 from linear approximation of these equations? For linear stability, 𝑈̇HH and 𝜃̇HH 

both should be 0 – no growth in neutral mode means no growth. 

So, from the first equation it gives 𝑅𝑎Y𝜃HH = −4𝑈HH, where 𝑅𝑎Y is the critical Rayleigh 

number. From the second equation, we get 𝑈HH = −2𝜃HH (since non-linear term is off). 

Substituting this in the first equation, we get 𝑅𝑎Y = 8.  

We see that this is consistent. Next, we look at the fixed points of the full non-linear 

equation. What is fixed point? 



The solutions to the equations when I set their time derivatives to 0 are called fixed points. 

So, fixed point is a point where things do not change with time. It could be stable or 

unstable. For instance, one fixed point is when all the modes are 0. So, if I set 𝜃HH, 𝜃m/ and 

𝑈HH all to 0, that is a fixed point. That is when there is a conduction state and no convection. 

So that is a solution, but there are in fact, two more solutions. 

What are the two solutions? You have three equations and three unknowns. You can easily 

solve them. Their solutions are: 

𝜃HH = 	±
1

√𝑅𝑎
�2(𝑟 − 1);											𝑈HH = 	∓

√𝑅𝑎
4

�2(𝑟 − 1);											𝜃m/ =
1
2
(𝑟 − 1) 

 

Here, 𝑟 = ��
���

. Note that, these solutions are meaningful only if 𝑟 > 1. For 𝑟 = 0, the 

solutions are all 0. Hence 𝑟 = 1 is a transition point, since 𝑅𝑎 = 𝑅𝑎Y at that point. 

I plot them as function of 𝑟 with 𝑟 on x-axis, and one of the modes along y-axis, for 

instance, 𝜃HH. We get a parabolic curve defined as √𝑟 − 1, multiplied with some factor, as 

seen in slide. There are two solutions and before the onset, there is 0 solution. Before onset, 

there is conduction solution. Once convection starts, there two solutions with a change in 

sign. 

Note that the 0 solution still exists when the 𝑟 > 1. This conduction solution always exists, 

but through eigenvalues analysis you can show that they are unstable. If you substitute the 

values for 𝑟 > 0 into the eigenvalue corresponding to conduction solution, it will have a 



positive real part, implying that the solution is unstable. The other 2 modes are stable, 

however. 

I will give you a simple example. Let us consider the equation 𝑥̇ = 𝛼𝑥. It has a fixed-point 

solution 𝑥 = 0. Is it stable or unstable? It depends on 𝛼. If 𝛼 < 0, then the solution comes 

to 𝑥 = 0, if 𝛼 > 0, the solution grows. In fact, 𝛼 is an eigenvalue. So, the eigenvalue of 

the matrix of your linearized equation can predict the stability of the solution.  

From linearized equations, we can get a matrix, but suppose I have non-linear equation, 

then what do I do? For instance, with 𝑥̇ = 𝛼𝑥 − 𝑥/, there are two solutions, 𝑥 = 𝛼 and 

𝑥 = 0.  

Now which is stable, and which is unstable? If 𝛼 > 0, then would 𝑥 = 0 be a stable 

solution or unstable solution? First you linearize around 𝑥 = 0. Then check if a small 

perturbation around 𝑥 = 0 will grow or not. We can see that 𝑥 will indeed grow. But what 

happens for this solution? So, you must now do perturbation. So, how will I do the 

perturbation? 

 

The best thing to do first time is just put in 𝑥 = 𝑥B + 𝛼, where 𝑥B is a small number. 

Substituting this into the equation, we get 𝑥̇B = 𝛼(𝑥B + 𝛼) − (𝑥B + 𝛼)/ = 𝑥B/ − 𝛼𝑥′. 

Since 𝑥B is a small number, 𝑥B/ can be dropped. Thus, we get 𝑥̇B = 	−𝛼𝑥′. Now, if 𝛼 > 0, 

the solution is stable and 𝑥B will decay to 0. That is how you linearize around the solution 



and this is for a 1D equation, but you can also do the same for matrices. For matrices, you 

need to de look at the eigenvalues. 

So, the summary of the story is that for 𝑟 < 1, the stable solution is that all modes, 𝑈HH, 

𝜃HH, 𝜃m/ all decay to 0. For 𝑟 > 1, I get these non-zero solutions, where 𝑈HH and 𝜃HH vary 

as √𝑟 − 1, and this is called a pitchfork bifurcation. 

Now the solution for 𝜃m/ is interesting as it varies as 𝑟 − 1 and not √𝑟 − 1. So we know 

that for mode 𝜃HH, the growth stops instead of growing indefinitely as predicted by linear 

stability. For a given 𝑟, I know what value 𝜃HH will tend to. It will grow in the beginning, 

but it will saturate to a value. So, in convection, there are rolls that are circulating around, 

but their amplitude gets fixed to a value. It is not increasing anymore. So, the velocity field 

is a function of 𝑥, and not time. It is a steady roll, and temperature field is also steady. 

So, what we have achieved is that we suppressed the growth by non-linear interaction. So, 

𝜃m/ took that energy away.  

Now we will study how the energy is transferred. You can compute how much energy is 

being transferred at any time. So, a given mode can get energy from thermal convection. 

Meanwhile, it can lose energy by non-linear transfer, where it gives energy to another 

mode, and it can lose energy by dissipation as well. So, a fixed stable solution means they 

all balanced. So, without nonlinearity, a mode was getting more energy than it lost through 

dissipation. So, it was trying to grow fast, but because of the non-linear interaction, there 

is a balance. So, that is the fixed-point solution. 

In the Lorenz equations, if you increase 𝑟 further, the solution becomes chaotic, at some 

point. For a value of 𝑟 24 or 25 it becomes chaotic. So, there is another bifurcation, called 

Hopf bifurcation and that causes this. So, if you increase the parameters, there will be more 

dynamics. 

So, we have seen the Lorenz equation which is the simplest equation that gives you 

saturation. I had to include only one mode, (0, 2) here. I could include more modes. In 

fact, there are many people who have worked with more modes and with more modes, you 

get different patterns.  



In the book Physics of Buoyant Flows, you will find an example where there is a 3D 

structure which has (1, 0, 1), (0, 1, 1) and (1, 1, 2) modes. You can see that they form a 

triad. There is also an additional (0, 0, 2) mode for temperature. With three velocity modes, 

and four temperature modes, it is called the seven-mode model, and it has a 3D structure 

comprised of rolls. These rolls compete with a complex set of dynamics and form 

interesting patterns, which we will study later. 

Also note that Lorenz equation is valid for large Prandtl number. Because the viscous term 

is dominant and non-linear term for velocity field is 0. When does the non-linear term 

become 0 for velocity field? When the flow is laminar. 

So, non-linear term is dropped. Hence, it is basically valid for large Prandtl number where 

the viscosity is high. So, these are basically good for Pr > 10 near the onset, but if Prandtl 

number is small, Pr ≅ 0.001, then non-linear term will grow and dominate the velocity 

field. 

So, 𝒖 ⋅ ∇𝒖 term cannot be dropped. If there is some perturbation this term will become 

important. So, that is why Lorenz equation is not very good model for small Prandtl 

number flows. 

Here we suppressed the non-linear term in the velocity field and kept the non-linear term 

in the temperature equation. However, we will have to go the other way round for small 

Prandtl number flows – you keep the non-linear term in the velocity field and suppress the 

other.  

So, we can really do a lot of stuff once you consider the non-linear term. Then, interaction 

starts coming into play – patterns, chaos, and so on. We will look into them in future 

lectures. 

Thank you. 


