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How does turbulence occur in fluids? It is a very wide topic, but I will take some examples 

and show you how it happens for some systems. Some of these problems are still unsolved. 

For example, people really do not know how turbulence occurs in pipes – even for a simple 

pipe flow. However, the examples which I show you here are somewhat better understood 

- like convection.  

 

So, first will be instability. In fact, the instability occurring here is very similar to what 

happens for a pendulum. As you know, a pendulum standing up is unstable - it just falls at 

the smallest perturbation. 



 

So, the same thing happens for fluids. For some parameter below a certain value, it is stable 

- there is no fluid motion, or fluid motion is very ordered. However, if we increase the 

parameter a bit, then fluctuations start to grow, and that is instability. But in real life 

systems, things cannot grow to infinity, that is, there cannot be exponential growth. In a 

pendulum of course, theta grows, but it is bounded. Its value cannot exceed 𝜋. Similarly, 

there is a bound on the growth here as well, and that happens by non-linear saturation. In 

fact, this is a linear stability. In this course, I am going to work only on linear stability. 

There are non-linear stabilities too, but we will not deal with them here. 

This is equation behaves linearly initially, but after some time, the non-linearity takes over 

and growth saturates. So, you could get a fixed-solution, or you could get an oscillatory 

solution. And beyond that, if you increase the non-linearity further, you will get more 

patterns, and then chaos. By the way, if you put more non-linearity, you may get a better 

pattern. In this example, putting in more non-linearity gives a stable solution. So, non-

linearity does not imply that more non-linearity gives more disorder. Non-linearity is 

complicated. After we get patterns and chaos, we get turbulence.  

So, first let us set up an equation. Let us set up a system which will act as a framework. I 

will not derive the full equation, but I will follow the example of convection. 
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So, the idea is that we have a hot plate below and a cold plate above. It is not like heating 

in a kitchen, where the top lid is open typically. Here, the water is full, and the top lid is 

closed. This approximation avoids the complexity of an air-water mixture, with air 

bubbles. Gravity is acting downwards as usual. There is a mean temperature in this system.  

Now convection means that the velocity field will start to turn around. Like the convection 

rolls (in above Figure). But if there is no convection, then the temperature will drop 

linearly. This is called a conduction solution. So, 𝜅∇2𝑇 = 0 is the equation you get by 

turning off 𝑑/𝑑𝑡 and the solution in 1D is T, and is linear in z. Now I need to set up my 

equations. To do this is, we make some assumptions. 

So, we assume that the conduction profile or mean profile, 𝑇̅, is linear. This mean 

temperature comes from the boundary condition - bottom plate is hot, top plate is cold. 

When convection is not present, the temperature is just 𝑇̅. When convection starts, there 

will be fluctuations in temperature. So, there will be temperature fluctuation added to the 

mean temperature. Here, 𝜃 = 0 means there is no convection, and 𝜃 ≠ 0 means 

convection. Instability will happen when 𝜃 grows exponentially in time. So, that is the 

solution we are looking for - instability. 
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In the final equations, 𝛼 is the thermal expansion coefficient, g is accelearation due to 

gravity and 𝜃 is the temperature fluctuation. Also, I have absorbed that mean pressure in 

𝜎. The 𝑇̅ has also been absorbed here. More of this is covered in the book – Buoyancy 

Driven Flows. 

Apart from the equation for velocity field, I need one more equation, for temperature. We 

still assume that ∇ ⋅ 𝑢 = 0. These is slightly surprising, because it implies that the density 

is constant. If density is constant, then buoyancy effects will stop. But I want hotter fluid 

to be lighter. So, it turns out that this is a first order approximation. So, variation in density 

is non-zero, but that occurs only here and that is higher order. This assumption is called 

Boussinesq approximation. This approximation is not good for sun. Also for Earth it is not 

excellent, but it is okay. 

So, this equation is good for convection in the kitchen, but not for solar convection. For 

atmosphere this is a good equation. Buoyancy is feeding the velocity. The system will 

become unstable because something is giving energy. So, that is what this is going to 

happen - with significant energy, rolls start to form. 
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Now the non-dimensionalisation used here is slightly different from what was shown 

before. For Navier-Stokes, the standard velocity is mean velocity field that is used as 

velocity scale, and cylinder or box size is used as length scale. Here we make a slightly 

different assumption. 
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We take 𝑑, the box size, as the length scale, but the velocity scale is 𝜅/𝑑. Here, 𝜅 is thermal 

diffusivity. There are other types of scaling, but I am going to use this for my lectures as 

it is the simplest.  



What is the time scale? 𝑡0 =
𝑑

𝑢0
=

𝑑2

𝜅
. Similarly, you can also find the pressure scale. 

Finally, plugging it all in, we get a non-dimensional equation with two parameters 

Rayleigh and Prandtl. Rayleigh number is 𝑅𝑎 = 𝛼𝑔𝑑3Δ/𝜈𝜅. Here, Δ is the temperature 

difference between the plates.  

So, Δ = 𝑇𝑏 − 𝑇𝑡. And 𝜈 is the kinematic viscosity and 𝜅 is thermal diffusivity. Finally 

Prandtl number, Pr =
𝜈

𝜅
 . So, we will work with these equations under the assumption that 

∇ ⋅ 𝑢 = 0. So, it is still incompressible except for the buoyancy term. So, now we can use 

Craya-Herring to solve these equations. These are the equations for thermal convection. 

We will work on two more systems. One will include effects of rotation in it - rotating 

convection. Second will have magnetic field – magneto-convection. Rotating convection 

has just Coriolis force in it, as centrifugal force is absorbed into the pressure term, but 

magnetic convection is more complicated. We will start the instability calculation for 

thermal convection. We will see how the rolls will start coming in and how that happens 

because of buoyancy. 
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When the system is heated from the bottom, the light fluid tries to go up and heavy fluid 

tries to go down – this is how energy is fed into the system. However, viscosity tries to 

suppress this. The viscous term damps the motion, but when the temperature is strong 

enough, the viscous term can be overcome. 



We are focusing on linear stability. So, you must turn-off the non-linear term and see 

whether the linear system gives you stability. By the way, not every system gives 

instability. For instance, in oceans, gravity tries to pull the fluid down. So, it is a stable 

system, and we get only wave solutions which are not unstable. In the linear regime, it 

only gives you wave solution – these are gravity waves. 

(Refer Slide Time: 14:47) 

 

So, first we need to linearize our system. So, which are the non-linear terms in the equation 

in the above slide? Non-linear terms are the quadratic or higher order terms here - (𝑢 ⋅ ∇)𝑢 

and (𝑢 ⋅ ∇)𝜃. We must drop these and retain rest of the terms. Now we have a vector 

equation, scalar equation and a constraint equation. 

Now, we will work in Fourier space. What is the stationary state? It is the state where 𝑢 =

0 and I want to see the perturbation over this state. Stationary state is different for different 

systems. For pipe flow, there is a mean velocity profile. This linear/viscous solution is the 

stationary state for pipe flow. 

Now, if we increase the pressure gradient, we expect that at some point, the system may 

become unstable. Similarly, 𝜃 = 0 is a stationary solution, 𝜃 ≠ 0 is the non-stationary 

solution for this problem. So, if 𝑢 = 0 and 𝜃 = 0, the whole equation is 0 equal to 0, 

pressure also will be 0, pressure gradient will be 0. We thus get a trivial solution. 
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This solution implies that there is only conduction, no convection. These are stable 

solutions. One important idea in all instability calculations is to use Fourier modes. I want 

to convert these PDEs to ODEs. And ODEs are much easier to solve, and then we look for 

some growing solution in ODEs. One standard way to do convert PDE to ODE is, to use 

Fourier transform.  

In fact, all my previous exercise was to use the Fourier mode to derive equation for the 

mode which are all ODEs. Now, there are too many Fourier modes. Which one will I 

choose? I look for the one which is most excitable, the most unstable mode. We will find 

which is the mode which gets excited fastest and that will set the criteria. So, when I heat 

the fluid, not everything is excited at the onset itself, some are getting settled later, but the 

one which is most unstable gets excited first, and that mode will come out of the 

calculation. So, I will keep a general k and we look for one k which will be coming out 

first when the instability sets in.  
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So, for our calculation, so there are many different boundary conditions, but free-slip 

boundary condition is one of the simplest. 

(Refer Slide Time: 19:11) 

 

So, in the horizontal direction, I assume periodic BC. Remember, Fourier is good for 

periodic, we showed that, but in the top and bottom, I use a wall. Without that, I cannot 

set up convection. Then you can see that my vertical velocity should be 0, right? At the 

wall, you hit the wall and you must have 0 velocity. So, this means 𝑢 ⋅ 𝑛̂ = 0, for both top 



wall and bottom wall. But this is only in one component, what about other two 

components? 

In a realistic boundary condition, for hard surfaces, all the 3 components must become 0. 

But the calculation for that is quite complicated in Fourier space. We use a simpler 

boundary condition called stress free BC. So, if I go along z direction, my horizontal 

velocity must be 0. This means 
𝑑𝑢𝑥

𝑑𝑧
=

𝑑𝑢𝑦

𝑑𝑧
= 0. How does stress come? If the velocities 

are not same in two layers, then there is stress, but if velocities are same, there is no stress.  

If two runners are just running in the same direction, and you tie them with a rope, they 

would just run. Only when there is a difference in velocities, they tug on the rope. This 

implies that horizontal velocities when I go near the wall, I get the same velocity. 

Horizontal velocity is still non-zero. 

So, this is stress free condition. And my conducting wall means temperature of the full 

plate must be constant, like copper plate, temperature is constant. So, temperature 

fluctuation on the plate will be 0. So, temperature at the top plate is 𝑇𝑡. If you recall, 𝑇 =

𝑇𝑐 + 𝜃. So, 𝑇𝑡 = 𝑇𝑐 at the top wall. So, 𝜃 = 0 at the top wall. So, these are the conditions 

on the walls, and of course, the sidewalls are periodic. 

If the plates are let us say, 1 centimetre apart, but in the horizontal direction, I have, let us 

say 20 centimetres, periodicity is a good assumption. These calculations were done by 

Rayleigh first, then the standard reference given book is Chandrasekhar's book, but my 

calculation is simpler than Chandrasekhar's book. 

So, I need to choose the velocity field, I am choosing a Fourier mode. We should satisfy 

this boundary condition. Now, you choose your basis function. So, 𝑢𝑥, I want this 𝑢𝑥, 

∂𝑢𝑥

∂𝑧
= 0. So, if I take partial 𝑢𝑥 what will I get? I will get 𝑠𝑖𝑛 𝑛π𝑧. After non-

dimensionalisation box height is 1, because my unit is 𝑑. So, in the unit of 𝑑, my box 

height is 1, I choose these to be 𝑧 = 0 and 𝑧 = 1. 

So, if I take the derivative, I get sin, a sin = 0 at both the walls, so straightforward. So, it 

is 𝑧 = 0 and 𝑧 = 1. I need to satisfy these boundary conditions. Same thing for 𝑢𝑦, what 

should I use z component for 𝑢𝑦? Sine or cos? This one, 
∂𝑢𝑦

∂𝑧
= 0 again. I should use cosine. 

Function in z is cos and this is exponential because of periodicity - 𝑒𝑖𝑘𝑦𝑦 + 𝑒𝑖𝑘𝑧𝑧. 



Now, 𝑢𝑧 is sine, because I want to make 𝑢𝑧 = 0 at the wall. This will satisfy the boundary 

condition, that is the beauty of this. You can use sine cos to work with free-slip basis 

function. If all 3 components are 0, you cannot use sine cos. That is why free-slip is easier. 

You must use more complex special functions like Chebychev functions. What about 

theta? What should I use for z direction? 

Sine, because I need 0. So, theta has same as this one. And along x and y I use this, ok? 

Now, I use a hat here. Hat is when it is a mixed basis. This is sine and this is exponential. 

So, I used a special name, hat, without hat, it is exponential for all 3 directions. I hope this 

point is clear. These are called free-slip Fourier basis, but I can always convert this to 

exponential. 

So, what will I do for converting to exponential? I say (𝑒𝑖𝑛𝜋𝑧 − 𝑒−𝑖𝑛𝜋𝑧)/2𝑖  and 2 will 

cancel, so i. So, I had absorbed this i. So, what should I do? 
𝜃̂

𝑖
. So, how do I convert from 

𝜃 to normal Fourier basis function? So, I write it here, it will be 𝜃(𝑘). So, this is 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 

but I want exponential in all 3 directions. So, I have to divide by i, I have to absorb i along 

with 𝜃 to get 𝜃, because I have this.. Craya-Herring requires Fourier, ok? 

Do not get mixed, with mixed basis, Craya-Herring may have problems. So I want to 

convert it to Fourier, ok? And it is straightforward. This is the technology. Cosine, you do 

not need to do anything, for sine you need to divide by i, and of course, there is a symmetry 

you must keep. So, this has these two modes connected by minus sign. So, this 

bookkeeping must be kept in mind. So, that is why I do sin(𝑥) cos(𝑧). So, all the modes 

have certain relations among them. It is imposed by the boundary condition. 
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So, now, I put exponential, without hat. This, I am going to apply with Craya-Herring on 

that. So, 𝜃(𝑘), I take a Fourier mode, of course, I understand that the minus k is. This has  

𝑘𝑥, 𝑘𝑦, 𝑘𝑧, but −𝑘𝑧̂ is related with 𝑘𝑧. 

Now, I want to plug this in. So, we already know how to write the Fourier equation. I do 

not need to do the full algebra. Just write down equation for the Fourier. So, this my 

equation in Fourier. So, these terms, you are familiar with.. viscous term is.. so there is Pr 

sitting in front, like 𝜈𝑘2, you know? That is 𝜃(𝑘𝑧) . So,  𝜃(𝑟), becomes 𝜃(𝑘), and theta is 

scalar. 

So, from 𝑅𝑎𝑃𝑟𝜃(𝑧̂) I get 𝑅𝑎𝑃𝑟𝜃(𝑘𝑧̂). So, here this 
𝑑

𝑑𝑡
 is acting on 𝑢(𝑘, 𝑡). In Fourier space, 

there is nothing called grad. So, non-linear term is off, and hence convolution is off, 

because I linearized my system. So, I write down for 𝜃. So, the term which has come is 

𝑢𝑧, and I have 𝑘 ⋅ 𝑢(𝑘) = 0. This is the set of equations.. After that.. So, I focus on single 

k, there are many, many k's but I focus a single k, ok. 

So, let us do Creya-Herring. Are you ready for Creya-Herring? So, this k. So, I fix the k 

which is in let us say a particular direction. 
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So, here.. my k vector is here, but my only problem is that new term, buoyancy term, 

otherwise I know. All the algebra I did in the last example is exactly same algebra. In fact, 

I do not have non-linear term, this is straightforward. I need to worry about this buoyancy 

term. So, buoyancy term is 𝑧̂ which is in that direction. I need to resolve the  𝑧̂ along 

𝑒1, 𝑒2, 𝑒3. When I use polar coordinate, then I need to resolve along the three unit vectors. 

So, what is 𝑧̂ along 𝑒3? So, this is 𝜁. This is also 𝜁, so 90 − 𝜁. (Refer figure) 

So, 𝑧̂. So, I just take the component, like this, 𝑒3, and this is.. this is along 𝑒3, and this is 

along −𝑒2. So, basically 𝑧̂ is this plus this, right? Vector addition. So, there is a component 

along −𝑒2 and component along 𝑒3, and this is related by cos and sine. So, this 

straightforward exactly; so, along 𝑒2 it is −sin (𝜁) and along 𝑒3 it is cos(𝜁). 

So, I take the component of my velocity field along these two. Like exactly like what I did 

in the last example. So, that will give me 𝑢1 and 𝑢2, but does the force have component 

along 𝑢1? Along 𝑒1? It has no component along 𝑒1, it has only along 𝑒2 and 𝑒3. So, what 

does 𝑒3 component match with? Non-linear term is off. So, −𝑖𝑘𝜎(𝑘) + 𝑅𝑎𝑃𝑟𝜃(𝑘)𝑧̂ +

𝑃𝑟𝑘2𝑢(𝑘). This is what I am writing slightly small, but 𝜎(𝑘). This has component along 

𝑒1 and 𝑒2. Along 𝑒3, it has no component along 𝑒3. So, if I take a dot product of this with 

𝑒3, then only thing will give contribution is pressure. So, pressure will balance with this 

one, 𝑒3, which I told you in the linear example, pressure will balance with the force in the 

z direction, forcing 𝑒3 direction not z, 𝑒3 direction, ok? 



So, I do not need to compute pressure, that is one interesting part. Pressure is off, gone, 

and pressure is managed by the.. this part, ok? 
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So, now we are ready for writing for.. I take this dot product with 𝑒1 and 𝑒2. So, 𝑢1 has no 

component along force. No, 𝑢1 has no contribution coming from force. So, in fact, it is a 

decaying equation, right? This is coming from here and this coming from here, so 𝑢1 will 

decay in time. 𝑢̇1 =  −𝑢1, 𝑢2 gets contribution from here.  

So, 𝑒2 component, which was in the force, so this is the sum, and this is coming.. This is 

coming from the force 𝑢2 component and this is coming from viscous term. And 𝜃̇ is 𝑢𝑧. 

Now, I write 𝑢𝑧 as 𝑢 ⋅  𝑧̂ because 𝑧̂ has component along 𝑒2 and 𝑒3. So, 𝑒3 will give you 

0. So, 𝑢2 will give you this, ok? So, 𝑢 ⋅  𝑧̂ that is it you just compute then this. So, I got 3 

equations, and I do not need to worry about 𝑢(𝑘), 𝑘 ⋅ 𝑢(𝑘) = 0. So, I need to solve this. 

So, what does the first equation tell you? I look for asymptotic solution. Wait for some 

time, ok? 𝑢1 will go to 0. What is solution for this? 𝑢1(𝑘, 𝑡) is 𝑢1(𝑘, 0)exp (−𝑃𝑟𝑘2𝑡). So, 

this goes to 0. So, do not worry about. In fact, my field becomes two-dimensional, because 

only 𝑢2 is present, 𝑢1 is 0. So, if I look at this k vector, remember 𝑢2 is in the same plane, 

as 𝑛̂ which is in z direction. So, this is x direction and this is z direction. So, my 𝑒2 is like 

this. So, my velocity field has component along 𝑢2. 



The azimuthal component is 0. Azimuthal component is in that direction. Remember, this 

one, that goes to 0. And this, I can predict from here, like in Chandrasekhar's book he will 

not.. He will work with stream function and he will not talk about this, assumes 2D field. 

But here you can say that 2D will come by derivation.  

Now, how do I solve this equation? Now I have two variables. By the way, u2 k is one 

variable, it is not.. I have fixed k. So, I have two ordinary differential equations. So, I can 

write them as a differential equation, like this. This is my equation. Now, what is sin (𝜁)? 

This angle is zeta. So, 𝑘⊥/𝑘. So, this is a matrix equation, 𝑢2, 𝜃. So, matrix equation. So I 

solve the matrix equation, ok? So, this is where we will start in the next class, ok? So, we 

stop. 

Thank you.  


