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Lecture – 80
Understanding quenching of orbital angular momentum in transition metal ions

We had earlier considered both lanthanides and transition metals, where we considered,

where we calculated the paramagnetic moment of these atoms.
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And let me just recall  that lanthanides are atoms with open 4f orbitals  and transition

metal ions or transition metals and which is also the iron group are atoms with open 3d

orbitals. And the difference between the two was that in lanthanides the effective Bohr

magneton number was given by g square root of J J plus 1 whereas, in the transition

metal ions it was given as g square root of S, S plus 1. And we said this is because the

orbital angular momentum gets quenched and here the values of g therefore, becomes 2

square root of S, S plus 1.

So,  in  this  lecture  I  want  to  come  back  to  crystal  field  orbital  angular  momentum

quenching and understand it from the point of view of Hamiltonian because we have

already written it for the magnetic systems in the previous lecture.
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So, the quenching of orbital angular momentum meant that L z expectation value is 0.

Recall that in atoms, where I have the orbital n l m m s. We give the quantum numbers

for the total angular momentum as L and the component in the z direction as m because

the expectation value of L x and L y already is 0, in this basis the important point about

quenching is that expectation value of L z also becomes 0. And therefore, in this case mu

due to orbital motion which will be mu equals L x i plus L y J plus L z k. If I take its

expectation value this will be 0 and therefore, it comes only from the spin of electrons.

Now, we want to understand where does this quenching arise from. I had indicated a bit

in the lecture earlier on this topic, but now let us look at the Hamiltonian of the system. 
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When it is put in a magnetic field and this we had already derived there is nothing, but

summation i, i sum over electrons p i square over 2 m plus V ri plus there is spin orbit

coupling  L dot  S  plus  there  is  paramagnetic  term L plus  2  S  dot  B  and  there  is  a

diamagnetic term Z e square A square over 2 m.

V ri in this case is the potential seen by electrons. And in the case of atoms V ri is a

spherically symmetric, and as a consequence the L square and L z are good quantum

numbers this I mean numbers; that means, they can be specified to give an orbital.
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However, as I commented earlier if these atoms are sitting close together then for an

electron in an atom say there is an electron which I show by this  orange colour, the

potential need not be severely symmetric. There is going to be influence due to potential

of other atoms and the surrounding areas. And the net field that comes because of this I

am going to call crystal field. 

Now, if crystal field is small I mean the effect. So, I should not write crystal field I will

cut it and write it again, if the effect of other atoms is small on this field then we can say

that the potential is nearly spherically symmetric. Now, what do we mean by small that

has to be specified? On the other hand, if the potential deviates from the atomic potential

substantially then the quenching takes place and let me explain how that happens.
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So, let me write this Hamiltonian without the applied B field because what I am really

concerned with right now is the effect of crystal field and this was equal to summation p

i square over 2 m plus V and I will put vector on top V ri plus C L dot S. 

And let me decompose it further, as summation i pi square over 2 m plus V atomic. And

let me write this as ri without the vector, so that it is fairly symmetric plus summation i,

delta V ri and this all right as a vector plus C L dot S. And let us look at each term

separately. When I look at this part of the Hamiltonian the one which is shown right now

by this curly brackets, this is a spherically symmetric. So, l and m are good quantum



numbers and what that means is that for each electron l and m are specified and they give

you the corresponding angular momentum component.
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So, let me go to the next slide and show H equals H atomic plus summation i delta V ri

which is arising because of the crystal, the structure of the crystal because of the other

atoms in it and plus C L dot S. So, this part we have already said that the state is n l m, m

s. 

Consider this scenario 1, when summation i delta V ri is much much smaller than C L dot

S. That means, the effect of atoms other atoms in a crystal is much smaller than the spin

orbit coupling within the atom. So, this part is within the atom. So, in the first instance I

can ignore, right. So, I can ignore this term i delta V ri in comparison to C L dot S and

therefore, what is going to happen is that C L dot S is going to give states which will be

combination of l and s. So, specified by J L and S. So, they do not have J, L and S as

good quantum numbers and in this case the magnetic moment mu will be g square root

of J J plus 1 mu B. So, these are the lanthanides or systems with 4f electrons.
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On the other hand, in this Hamiltonian H atomic plus summation i delta V ri plus C L dot

S, if summation i delta V ri is much larger than C L dot S then in the first instance I have

to take care of delta V ri, but I can ignore L dot S. So, one can ignore C L dot S in

comparison to summation i delta V ri.  So, this delta V ri  summed over is called the

crystal field and this is much larger than the spin orbit coupling.

So,  electrons  are  not  going  to  get  coupled.  Now,  this  is  strong  and  therefore,  the

symmetry  is  broken.  This  means the potential  is  no longer  is  spherically  symmetric.

However, we are going to take this delta V ri still in the perturbative sense, in the sense

that let us say that this V atomic ri still dominates this is much larger than summation i

delta V ri. So, in the first instance I can say that each electron has an angular momentum.

However, the effect of this delta V ri is going to be that is going to mix the states such

that the components are not well defined. Let me explain that.
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So, H I am going to write as H atomic plus this crystal field i delta V ri these are still

specified by n l m and there is this spin component which I am not so much worried right

now. And then when I include this something is going to happen. The orbitals are going

to  get  distorted  due  to  summation  i  delta  V ri  which  is  known as  crystal  field  and

therefore, they may not remain eigen functions of the angular momentum anymore.

For example, if I look at p orbitals and this is often given example in the book orbitals of

H atomic. And let us say I take principal quantum number to be 2 then I have the orbitals

of the form some R and L equals 1 which is a function of r alone, and then I have this

spherical harmonic 1 1 which is a function of theta and phi. Then I am going to have the

next orbital R n 1, r y 1 0 theta phi and then finally, I have the orbital R n 1 r y 1 minus 1

theta 5.

This orbital has l equals 1, m equals 1. This orbital has l equals 1, m equals 0. This

orbital  has  l  equals  1,  m  equals  minus  1.  And  therefore,  this  is  also  equal  to  the

expectation value of L z. It is an eigen value of L z and therefore, expectation value also,

so this is expectation value of L z, this is expectation value of L z because this is an eigen

values it has a well defined expectation value.
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Now, because  of  delta  V ri  summed  over  i  these  states  get  distorted  and  the  first

approximation they are mixed with each other. So, I can have an orbital p x r theta phi

which is given as a combination of p orbital with m equals 1 plus p orbital with m equals

minus 1 and this comes out to be x R nl, where l equals 1. 

Similarly, I have p y r theta phi which is also a combination of p m equals 1 and p m

equals minus 1, and this is why R nl r, again l equals 1. And finally, of course, I have p z

which anyway earlier also was equal to p m equals 0 which is nothing but z R nl r. 

Now, it so happens that for p z, L z with respect to p z anyway was 0. The new thing is

that when I take the expectation value of L z with respect to p x this also will come out to

be 0 because it is a combination of equal probabilities of m equals 1 and m equals minus

1 and similarly p y L z p y comes out to be 0. Again, a linear combination of m equals

minus 1.
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So, because of this crystal field what has happened is that I have L x anyway was 0 and y

anyway expectation was 0, the new thing is that I also start getting L z expectation value

to be 0 and that means, this can be no contribution of these 3 orbitals to the angular

momentum. So, angular momentum mu which is mu B times L its expectation value will

be 0 with respect to these states and therefore, no contribution to paramagnetism from

orbital angular momentum. 

If  that  is  the  case  if  there  is  no  contribution  to  paramagnetism from orbital  angular

momentum the only place  where mu comes from is  S 2 mu B S and therefore,  the

effective magneton number becomes equal to 2 the square root of S S plus 1. 
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If  you again go back to the Hamiltonian picture,  I  had this  Hamiltonian  which is  H

atomic plus the crystal field delta V ri plus C L dot S. Now, these two together give you

states with L vector expectation value equals 0 and therefore, there is going to be no

coupling between L and S because there is no L, so no J, only S. So, you straightaway go

from this to the paramagnetic term if you go there the paramagnetic term was mu B L

plus 2 S dot B, this in this case goes over to mu B 2 S dot B and it explains everything.

Sometimes  this  is  also  given  as  a  vector  model.  Now, the  vector  model  of  angular

momentum is a sort of classical way of looking at the angular momentum of systems and

the way it works is when we look at a state n l m ignoring spin right now and the capital

L and L z are good quantum numbers. 
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The model we make is that this, angular momentum vector possesses about the z axis.

So, that is projection on the z axis, L z remains a constant and its projection on the x y

plane averages out to 0 L x expectation value and L y expectation value comes out to be

0. What is happening when we include the crystal field is that this precession does not

take place only about the z axis because of this crystal field, so delta V ri summed over i

strong, because this crystal field this vector now starts moving all over the place. It may

precise about this, it may precise about this, it may precise about the y axis. 

So, it is going all over the place. With the result that L z also becomes 0 and that is the

quenching of angular momentum. So, hopefully with this I have explained to you how

the quenching arises, now the question is why quenching takes place in transition metals.
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And the reason is that the transition metals we have 3d orbitals and in lanthanides we

have 4 of orbitals. Lanthanides have larger z, so 4 f orbitals are smaller they are smaller

in comparison to 3d orbitals which I will write larger. So, you may kind of if you look at

an  atom with  large  z  4f  maybe you know inside,  but  the with smaller  z  3d for  the

transition metals could be larger this could be 3d. And larger orbital means it feels the

potential  of other atoms in the crystal  and therefore,  it  gets  affected much more and

therefore, orbital angular momentum for these orbitals gets quenched.
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So, to conclude what we have shown is if crystal field there is large and large and small

is determined by the spin orbit coupling. So, I will let me write in comparison to L dot S

term. Then, quenching of orbital  angular momentum takes place and in this  case mu

effective becomes equals 2 square root of S S plus 1 mu B.

Thank you.


