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Lecture – 60
Equivalence of wave vectors k and k+G and reduced zone scheme

 

In the previous lecture,  we discussed Bloch’s theorem the nature of wave function in

periodic potentials and I had said that I will solve Kronig Penney model which is an

exactly solvable model. But before doing that I want to spend some more time discussing

the Bloch wave function and its properties and how states are counted and how this leads

to an understanding of semiconductors metals and insulators and their behavior. 
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So, we had discussed that in a periodic potential the wave function psi k x is of the Bloch

form e raise to i k x u k x I can put a normalization constant in front of it like C N and

confine my discussion most of the time to single dimension. However, in general also it

is true that in 3 d the wave function has psi k which is a vector quantity as a function of r

is of the form C N e raised to i k dot r u k vector r, where u k is periodic with the

primitive lattice vector.



So, we also express this vector again I come back to 1 dimensional case psi k x as equal

to summation G C k plus G e raised to i k plus G x and I showed you that this satisfies

Bloch form let us look at it again.

(Refer Slide Time: 02:19)

So, the wave function psi k x is equal to summation G C k plus G e raised to i k plus G x,

if  I  put  x  equals  x  plus  a,  where  a  is  the  periodicity  then  psi  k  x  plus  a  becomes

summation G C k plus G e raised to i k plus G x plus a. If you notice then e raised to i G

a is nothing, but e raised to 2 pi i which is equal to 1.

Therefore, a does not really affect the G part of the wave function and I end up getting

that psi k x plus a is equal to e raised to i k a summation G C k plus G e raised to i k plus

G x which is nothing, but e raised to i k a psi k x the Bloch form. So, it satisfies Bloch’s

equation. Now I am going to look at it from a different perspective and see, what the

wave function.
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Psi k x becomes if instead I consider psi k plus some reciprocal space vector G prime x

does it represent something else and what happens when I make this transformation and

let us look at that. When I substitute k by k plus G prime this wave function becomes psi

k plus G prime x which will be equal to summation G C k plus G prime plus G e raised

to i k plus G prime plus G x.

Now, take G plus G prime to be some other reciprocal space vector G double prime then

I have psi k plus G prime at x is equal to summation instead of G now I can add over G

double prime and I get C k plus G double prime e raised to i k plus G double prime x.

Since G double prime is being added over same thing as adding over G this is precisely

the same as psi k x. So, what do we conclude? We conclude the wave functions psi k plus

some G right G prime could be any G x and psi k x are identical; I am underlying this

identical they are identical what does it mean let us understand that.
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So, we have said that psi k plus some reciprocal space vector G if I add a reciprocal

space vector G to k this is same as psi k x. What it means is that k plus G and k are

equivalent, I can specify a wave function by k or k plus G where G is any reciprocal

space vector and this implies that k can be specified within the first Brillouin zone, let us

reflect on that a bit.
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So, suppose I have this case space extending from minus infinity to plus infinity and I

had this first Brillouin zone here minus pi by a to pi by a. If I have a wave vector let us

say at this point suppose this is a wave vector k, this would give me exactly the same



wave function if I subtract it 2 pi by a from this and brought it here. This point is for this

k, k minus 2 pi by a, in other words this is k plus G, where G is equal to minus 2 pi by a.

Let us look at another point let us say here even outside minus 2 pi by a let us say this

point is over here. I can translate it by adding 2 pi by a to this and if I do that, I would

have moved it somewhere here this is 2 pi by a this way. This point is some k and this

point would have been k plus 2 pi by a, I made a slight mistake here this point k plus 2 pi

by a does not come here. So, I am going to cut it with a fine pen it actually moves

somewhere here. So, I am going to make it again this point moves over here.

So, it is this point which is it is this k plus 2 pi by a. Nonetheless the point is that by

adding  appropriate  reciprocal  space  vector  I  can  bring  all  the  k  points  to  the  first

Brillouin zone and that is enough to specify a wave function. So, let us write it again we

can bring any k to an equivalent k point within the first Brillouin zone and that is enough

to specify a wave function. Now, this should remind you of something, let us write that

this.
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Reminds us of phonons; what happens in phonons? In phonons also k within the first

Brillouin zone was sufficient or enough to specify any phonons; any phonon. So, k and k

plus G gave exactly the same vibrational mode and this happens in electrons also.



 So,  this  is  a  general  property  of  waves  be it  vibrational  or  Schrodinger  wave in  a

periodic structure. So, if you have a periodic potential, periodic lattice constants since

like  those  k  within  the  first  Brillouin  zone  is  enough  to  specify  any  wave  in  that

structure. Let us now look at some examples through this.
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1st example of free electrons; remember what we have done so far in discussing free

electrons and after that the nearly free electron model is that if I look at the free electron

E k versus k curve and here is the boundary of the first Brillouin zone it is the second one

this is how the black curve this is how the free electron curve looks. And when I apply a

nearly free electron model the energy curve changes a bit near the boundary and I am

making it here schematically and then in the second zone it goes like this in the second

zone it will go like this and so on.

And if you recall from the lectures earlier I can translate all this into the first Brillouin

zone  and  I  had  said  that,  I  owe  you  an  explanation  for  this  and this  is  what  I  am

explaining right now. So, let me make this figure more accurately in the next slide; we

tried doing that here.
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So, here is the curve and let us make the first Brillouin zone which is right here and the

second Brillouin zone which is right here and I said that the curve becomes something

like this, the actual energy curve and I do nearly free electron model in the second zone it

will again split here by 2 v g and it will become like this.

So, let us make it here will become something like this and when I translate this into the

first Brillouin zone. Remember how we translate the points the point out here would be

translated by two pi and it will go to this point right here. Similarly point out here will

become equivalent to this point and this will also come here. So, what happens now is

that this curve this point is translated here this point would be translated here by 2 pi, let

me make it more clearly this point out here on the right side gets translated here.

So, what you see now is that this curve will become like this and when the other part gets

translated it will  become like this. So, here is your band diagram or energy versus k

diagram in the first Brillouin zone. And if I were to extend let us say I want to say let me

also make these points this is k equals pi by a this is k equals minus pi by a, the blue ones

is k equals 2 pi by a, the blue one out here on the left hand side is k equals minus 2 pi by

a. If I were to see no let me see it in the whole k space then what I will do is k plus g is

equivalent to k and therefore, this curve would start behaving like this.

Because these all these points are equivalent. The orange curve the upper band would

start doing this. When I bring all the curve only within the first zone then it is called



reduced zone scheme, I am looking at all the bands in the first zone. If I plot them over

the entire k space although it is not fruitful, but sometimes it goes go to visualize things

this is the extended zone scheme.

If I remain within the reduced zone scheme so, suppose I do not look at left and right

here I would put the energy as E as a function of k, but it is as a function of k for each

band then I will label the band as E n. For example, the blue one here would be E 1 k the

orange one would be E to k and so on and the higher bands. So, it becomes E n as a

function of k within the zone. Let me now make this diagram once more to make things

clearly visible.
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So, I had this curve for E k equals h cross square k square over 2 m and in the reduced

zone scheme let me make this zone extended like this, I have these bands like this next

one will be again like this and so on this will be E 1 k, this will be E 2 k third one will be

E 3 k and so on. And if I want to extend them further they will go like this does not teach

me anything new, but nonetheless sometimes go to visualize what is happening.

So, either suppose I am going from left to right let me look at band 2. If I am going from

left to right let me make this arrow I can go to the right starting from point minus pi by a

to plus pi by a I can go to the right I am showing by this dashed line go to the right reach

the point plus pi by a in the extended zone scheme, I will go further and increase k or in



the reduced zone scheme I will say that this point which I am showing by a cross is again

equivalent to this.

So, I can come back to this point start all over again. So, I can keep repeating myself

periodically within the first zone because the point pi over a and minus pi over a are

equivalent. So, in the reduced zone scheme I go to pi over a and jump back to minus pi

over a because that point is equivalent to pi over a or in the extended zone scheme I can

keep extending k, but that is exactly the same as k minus pi by a; so, I can always come

back. So, this is how you look at k. If you have noticed carefully you must have seen that

when I made this graph.

(Refer Slide Time: 20:53)

I will just make the bands now within the first Brillouin zone. Since the band repeats

itself is either a minimum or a maximum at the zone boundary and therefore, E k versus

k has slope equal to 0 at zone boundaries very important point.

Now, I said this in the context of 1d the same thing happens in 2d or 3d also except that

this is slightly more subtle because you have to now think of the band structure in 3

dimensions, I will comment on that a little later.
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It will be interesting to see what happens if I look at the free electrons in reduced zone

scheme. So, let us do that I have this curve of free electrons in the reduced zone scheme

and the extended zone scheme and suppose now I say I want to bring it to the reduced

zone scheme. I may want to do that before I even apply the Bloch’s theorem or the

perturbation theory or nearly free electron model if I do that.

So, in the first zone the zone is shown here with blue lines. So, this is extending from

minus pi by a to plus pi by a, in the first zone which I have been making with blue the

energy diagram looks like I have shown with blue out here.

For the second zone I will bring this fellow back by 2 pi by a and fellow from the left

hand side to right moving it by 2 pi by a and the curve would look like this. In the third

zone again I will do the same thing and as I will leave for you to see the curve would

look like this. So, this is what I made within this is free electron energy in reduced zone,

let me repeat it in the next slide.
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So, what I have done is I have taken these free electron energies and plotted them in the

first zone by translating all the energy curves. So, they look like this the third zone look

like this and so on. Now let us see what happens, when I turn on the perturbation or turn

on that weak potential this curve starts developing a gap I am showing it by black now a

gap near the zone boundary the upper one will go up and it becomes smooth near the

zone boundary.

The  next  one  again  will  become  smooth  near  the  zone  boundary  and  become

perpendicular to the zone boundary its o slope near the zone boundary. So, this is E 3 k E

2 k E 1 k and here are the gaps here is the gap. So, you see very clearly if I put all this

nearly free electron model free electron energy in the first zone, and then I apply the

perturbation or the periodic potential how the bands evolve within the first Brillouin zone

itself. And then of course, if you want to make it in the extended zone scheme you can

always extend it.

So, I have given you a picture of how we can think of all the wave functions in a periodic

structure being equivalent if they are wave vectors k differ by a reciprocal space vector I

have shown it in 1d and 3d also the same thing happens. So, in 3d psi k vector r is

equivalent. In fact, the same right as psi k plus G r and therefore, I can make all the

pictures energies and everything within the first Brillouin zone.



So, let us write that also and this implies all calculations etcetera can be done considering

k within the first Brillouin zone two for 3d also having discussed this.
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Now, let us understand the significance of wave vector k in 3d and k in 1d. Question in

free electrons k or h cross k to be precise gives the momentum of the electron under

consideration. Because here when I have psi k r which is some normalization constant e

raised to i k dot r if I apply the momentum operator to psi k r this is h cross over i

gradient of C N e raised to i k dot r it gives me h cross k times the wave function psi k r.

So,  this  is  a  momentum eigen function and therefore,  it  gives the momentum of the

electron. On the other hand if I look at momentum operating on psi k of the block form,

it is h cross over i del operating on e raised to i k dot r times u k r and this is not equal to

some vector p 0 let us say times psi k r.

Therefore its not a momentum eigen function. So, question is in the free electron this

gives h cross k gives the momentum of the electron what happens in a block electron

case. So, let me complete this question.
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So, what does k specify in case of an electron in a periodic potential I am continuing this

question from last slide. So, I will just previous slide, so, I will just say this is question

continue. So, we just saw that in case of free electrons h cross k is the momentum of an

electron and the question we are raising it what about when the wave function is psi k of

the form e raised to i k dot r u k r or in 1d it is of the form e raised to i k x u k x in 1d.

I am right now not proving anything, but the answer to this is h cross k behaves exactly

like the momentum of an electron or the particle in a periodic lattice;  so, that is the

answer.
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So, although p operator psi k r is not equal to some p 0 which is the eigenvalue for the

momentum psi k r for psi k equals e raised to i k dot r u k r. So, its not a momentum

eigenstate still h cross k behaves like a momentum of an electron whose wave function

we are writing or a particle in periodic potentially what does this mean? So, question is

although I am saying that it is behaving like the momentum what does this mean?

This means that if I take d by dt of h cross k for an electron or particle moving in a

periodic system, this will be equal to the external force. And let me tell you why I am

calling this external force this is external to the system; that means, its not including that

periodic potential, but the force that I am applying from outside, it could be the electric

field for example, an electric field.

So, that is one way that you know think of this as a momentum. The other thing is that, it

is conserved if I have some impulse imparted to this electron through phonons through

whatever right this will give you h cross k 2. So, it is in these two ways that it behaves

like momentum and we will see examples of this later when we do little bit of transport.



(Refer Slide Time: 32:57)

So, to conclude this  lecture,  we have shown that k within the first  Brillouin zone is

enough to specify the wave function psi k r or psi k plus g it does not matter the wave

function of a particle in a periodic potential. Number 2 what we have shown is therefore,

bands of energies are labeled as E n k; k is in the first Brillouin zone each band now is

given this index n; n equals 1 2 3 and so on.

And we showed through the example of the free electron and nearly free electron energy

curves how everything gets reduced in the first Brillouin zone and the wave vector k

behaves as momentum quantum number that is h cross k can be thought of as momentum

of particle in the system.

And therefore, h cross k now let me give you the name also is given the name h cross k is

given  the  name  of  crystal  momentum.  So,  we  have  introduced  the  idea  of  crystal

momentum also. So, let me on the side show this, this part is the wave function and

energy in the reduced zone scheme and the second part is the introduction of crystal

momentum of a particle in periodic potential.

So, these are the new things that we have introduced, in the next lecture, we will see how

we count the number of states in a band and how the gaps lead to the behavior of metals

insulators and semiconductors.

Thank you.


