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So far I have shown you that the atoms in a crystal vibrate and they create something

called the normal modes. These are two kinds, acoustic modes and optical modes. And

again in these I can have transverse and longitudinal modes. Same thing in the optical

modes, I can have either the transverse or longitudinal modes. So, this we have worked

out.  Now, what  normal  modes  are?  So,  normal  modes  are  vibrations  of  a  particular

frequency.
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And if I want to describe in general motion; a general motion of a lattice that means, one

atom could be moving like this, one atom could be moving like this and so on and need

not be like a wave, then general motion will be a linear combination of different normal

modes. Just like if I have a string; its normal modes are the vibrations of given frequency

like this. But, if I give a general displacement to the string, let us say like this, this is a

linear combination of normal modes. So, this is what we have covered so far.
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With  this  background,  we are  now ready  to  understand  how these  modes  affect  the

thermal properties of a crystal. So, what we are going to study now, how the vibrations of

a  crystal  determine  the  thermal  properties  of  crystal?  Because,  after  all  what  are

vibrations,  vibrations  are  atoms  moving  around  and  these  carry  energy.  And  these

energies are given by the thermal energy in the background. So, thermal properties are

determined by these vibrations.

Let me just recall that in the previous part of this course, Professor Satyajit Banerjee

derived the specific heat of electrons and mentioned that the ions in the background give

a different kind of specific heat. In particular, what he said was that the specific heat of

conducting electrons goes as linearly as T for low temperatures, whereas the specific heat

of background ions due to vibrations goes as T cube. And this is what I am going to show

you, how it comes about. 

Now, I had also told you earlier that experimentally it is found that the vibration should

be treated in a quantum mechanical manner. Let me now come back to it and show why

it should happen. If we treat vibrations classically, then this implies that each mode will

carry energy 3 k B T, where k B is the Boltzmann constant and T is the temperature at

temperature T. It is not 3 by 2 k T, but 3 k B T, because there are two quadratic terms in

the energy. One the kinetic energy term, and the potential energy term and both are 3 by

2 k T.

And this immediately implies that C v is going to be 3 k B. And experimentally, this is

not found to be the case. If I were to plot the specific heat, let us show it schematically

here. As a function of temperature C v, according to this what is known as the due long

period law, it should be a constant 3 k B T like this as a function of the temperature.

But, insulators you find that it goes as T cubed at low temperatures. And that is it goes as

T cube and goes to 0 in particular at 0 temperature. And that is explained only if you treat

vibrations  quantum mechanically,  so  it  is  absolutely  essential  that  the  energy of  the

vibrations be treated quantum mechanically and that means, the energy of vibrations be

treated as the energy of a harmonic oscillator in the quantum mechanical sense.
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So, what we understand is that energy of a normal mode of frequency omega will be

given  as  n  plus  half  h  cross  omega,  which  is  the  energy of  harmonic  oscillator.  In

particular, what we will be focusing on the excitation energy and this comes in units of h

cross omega, because I will ignore the ground state energy half h cross omega for that.

So, the excitation energy is either 0, h cross omega, 2 h cross omega and so on.

So, now we pretty much know what the energy of the system is going to look like. And at

temperature  T  the  average  energy  of  an  oscillator  at  frequency  omega  is  given  by

Planck’s formula and this comes out to be h cross omega over e raised to h cross omega

by k B T minus 1, this I will derive a later also, but right now let me just mention this.

So, as far as the energetics are concerned, we know all about what the energies of these

normal modes are and everything.
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Now, if I want to calculate things for a crystal, so for calculation for a crystal, it requires

number 1 energy of a normal mode and this is number 1. And it also requires number of

normal modes at frequency omega, so I require two things. The first part I have done. 

So, it is the second part that I am going to focus on in this lecture that is what we are

going to  count,  what  we are going to  do is  count  the number of  modes at  different

frequencies.  You have done this in the past in connection with free electrons,  we are

going to repeat pretty much the same thing, but this is going to be in the context of

vibrations.

And when I count the number of modes at different frequencies, let me remind you what

you did in terms of free electrons. We are going to introduce something called the density

of states D omega, so that D omega time’s delta omega gives you the number of modes

between frequency omega and omega plus delta omega.
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So, let me now write this delta D omega delta omega gives the number of modes, these

normal modes between frequency omega and omega plus delta omega. And D omega

therefore is  known as the density  of states.  These are not  new definitions,  you have

encountered those in connection with free electron theory that Professor Banerjee did in

the first part of the course. I am just going to reiterate the whole thing in the context of

phonons.

At the same time when I want to do D omega, a concept that will be more useful. And we

will lead to D omega; let me call it D k, so that D k delta k gives me the number of

modes or number of states between wave vectors k and k plus delta k. So, D k I am going

to call density of states in k-space, I do not want to use too many notations, so I am just

calling with D k and D omega. And these two are going to be related, let us see how?
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If I have let say one k and slightly away from it k plus delta k and there are these states in

between some number. Corresponding to k, there is an omega; corresponding to k plus

delta k, there is a omega plus delta omega. These are corresponding to this k and k plus

delta k and all these states are in between, so that the omega times delta omega and D k

times delta k gives you the same number of states.

And therefore, what I have is density of states in omega delta omega is equal to density

of states in k delta k or the omega is equal to D k delta k over delta omega, which is

equal to D k divided by delta omega over delta k, recall that delta omega by delta k is the

group velocity, so this D k divided by v group.
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So, what we found is that density of states D omega is equal to D k divided by d omega d

k, I am just replacing the delta by the differential which is equal to D k over v group, this

is how I find the density of states. Now, D k is easy to find, so we worked in terms of D k

and then using the formula given here we obtained D omega. So, once I find D k, I get D

omega, which is equal to D k over d omega d k, which is D k over v g.

So, all now I need to do is find D k, find the number of state between k and k plus delta

k. And to do this to find the number of states between k and k plus delta k, we need to

count them and what we use make use of as make use of periodic boundary conditions.

Again the same tricks that you used in terms of electrons, now we are going to use the

same tricks here in terms of phonons.
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What are periodic boundary conditions? So, let us take in one dimension a long chain of

atoms shown by blue here and so on. So, I have 0th atom, the first atom, the second

atom, the sth atom, s plus 1th atom and so on. The wave or the displacement is given by

e raised to i k s a minus omega t. I am right now going to ignore e raised to minus omega

t part, because it is not important for periodic boundary conditions and focus only on this

displacement at a given time.

So, displacement  is  given by e raised to i  k s a.  And in applying periodic boundary

conditions, so to apply periodic boundary conditions, I look at this chain and consider n

atoms, so again I am going to show them by blue 1, 2, 3, 4 all the way up to N and N

plus 1th atom. If this distance is a, the length of the chain is L is equal to N times a,

because they are going to be N gaps between first and N plus 1th atom.
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And then what we do is so what we are discussing is periodic boundary condition for

which I have considered this atoms 1, 2, 3, 4, all the way up to N plus 1th atom, so that

the length is Na, a being the distance between neighboring atoms. 

And to apply periodic boundary conditions, we demand that displacement of N plus 1th

atom, the same as that of first atom. If that is the case, then what I am going to have

remember displacement is given by I e raised to i k s a. So, what I am asking for is e

raised to i k s a be equal to for s equals 1 be equal to e raised to i k s a for s equals N plus

1. This is the condition that I am demanding for periodic boundary condition. 
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So, what it gives me, I am asking for e raised to i k a for s equals 1 is e raised to i k a be

equal to e raised to i N k a times e raised to i k a or e raised to i N k a be equal to 1. And

this gives me N k a equals 2 n pi plus or minus. And therefore, k is equal to 2 n pi over N

a plus or minus, which is equal to plus or minus 2 n pi over the length over which N

atoms are there. Because, recall we had L equals Na and in this n are integers greater

than 0 or 0. I could also have written this as k equals 2 n pi over L with n being equal to

0 plus minus 1, plus minus 2 and so on.
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So, what we have found by applying periodic boundary conditions over a length L is that

k equals 2 n pi over L with n equals 0, plus minus 1 and so on. Now, recall that k equal to

0 is same as k equals 2 pi by a or equivalently when we define the Brillouin zone is the

same thing k equals minus pi by a is the same as k equals pi by a.

And therefore, we have number of case independent k points is k equal to 0, 1 plus minus

1, plus minus 2 and so on right. So, this gives me N k points. You going to say, it is n

minus 1, it is not n minus 1, because 0 is also included. So, there are N independent k

points and what are their values.
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So, k equals 2 n pi over L, L equals Na. And k equals, therefore 0, plus minus 1, plus

minus 2, and so on. N independent k points and the values are k equals 0 comma plus

minus 2 pi by L comma plus minus 4 pi by L comma plus minus 6 pi by L and so on. So,

if I were to draw a line from minus pi by a to pi by a in the k-space, so if I were to draw

this line in the k-space, there is 1 k value, let us say this is k equals 0, then 1 k value

every 2 pi by L, this distance is 2 pi by L, this distance is 2 pi by L. So, there is 1 k value

for delta k equals 2 pi by L. 
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So, in this line between minus pi by a to pi by a, this is k equal to 0. Every 2 pi by L

there is one k value, for delta k equals 2 pi by L. Now, in applying boundary conditions

periodic boundary conditions, we always keep in mind that L is tending to infinity is very

large. So, delta k is almost going to 0, so these k values are quasi-continuous.

 So, they are not like huge distances away from each other, they almost very close to

each other, because L is tending to very large value and delta k is almost 0, so they are

quasi-continuous.  And therefore,  it  makes  sense  to  define  density  of  k  values.  So,  I

argued, why I can define density of k values and what will it be its very simply. There is

one k value for every L by 2 pi, so it will be L over 2 pi per unit delta k. 



(Refer Slide Time: 25:19)

So, let us write it again. So, density of k values is going to be 1 k value every 2 pi over L

delta k, this is equal to L over 2 pi. So, I can now say that number of k points in an

interval of delta k is going to be equal to L over 2 pi delta k or in the limit of delta k

going to 0, this is equal to L over 2 pi d k. And this immediately tells you that D k is

equal to L over 2 pi. So, this is the first result that we have gotten. Having obtained this,

the next job is going to be to get D omega from this.


