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Lecture - 40
Reciprocal lattice vectors, Laue’s condition, and Bragg’s law for diffraction of

waves by a crystal

So, in our last lecture we had seen the concept of a reciprocal lattice, and you can define

points in the reciprocal space which is the Fourier transform of the real lattice. 
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And we are identified your reciprocal lattice vectors G, with which you can draw these

points.  So,  for  every  real  lattice  you can  also  make a  geometrical  construction  of  a

reciprocal lattice.  And the entire scattering process can be described in the reciprocal

lattice. For example, the incoming x-rays is represented with a vector whose length is

your incoming wave vector k and whose direction is the direction of the incoming wave

vector. And it gets scattered out with a wave vector k prime whose magnitude is the same

as k direction is different. So, in the reciprocal space you can draw this other vector

which is representing your k prime vector. 

And in the reciprocal space we came across the result that the real lattice planes which

are shown here as solid lines are cutting your reciprocal lattice vector perpendicular to it.



So,  your  perpendicular  reciprocal  lattice  vector  G,  this  vector  is  perpendicular  to

reciprocal lattice planes with millers indices h, k and l.

So, if you have real lattice planes with millers indices h, k and l, the reciprocal lattice

vector G which is given by G is equal to h g 1 plus k g 2 plus l g 3 is going to be a vector

perpendicular to these lattice planes. If theta is the angle between the incoming wave

vector  and the  lattice  plane  then  we  showed  that  the  Laue’s condition  gives  us  the

condition for diffraction of the scattered beam. The 2 d sin theta is equal to n lambda

where d hkl is the distance between the parallel set of planes which are characterized by

a millers indices h, k and l. 

So, the Laue’s condition gave us this condition for diffraction. And this condition also

came to be known as the Bragg’s law for diffraction of waves. So whereas, all of this was

done in the reciprocal space you can also look at this phenomena in real space. And in

real space what you have is these two planes which are have millers indices h, k and l;

have a spacing of d hkl. The incoming wave has got a wave vector k and the outgoing

reflected wave has a wave vector k prime. Theta is the angle between the incoming wave

vector and the lattice plane, and the reflected wave also has the same angle. 

Now, you have another wave which is parallel and strikes the parallel layer below it,

which is at a distance of d hkl from the upper layer, and so it gets also reflected. And then

these two waves will undergo interference. And whether you will observe a maxima or a

minima the diffracted beam, whether it will be a maxima or a minima will depend on the

path difference between these two beams.

And what is the path difference? This if d hkl is the distance which is also equal to this

distance between the planes, then you can show that the path difference between these

two beams will be twice of this distance. This is the extra distance which the beam is

traveling. With respect to the upper beam, this beam which is striking the lower plane is

traveling this extra distance. And this extra distance you can show is d hkl sin theta. So,

the  extra  distance  travelled  is  2  d  hkl  sin  theta,  and  the  condition  for  constructive

interference is n lambda. 

So,  2  d  sin  theta  is  equal  to  n  lambda,  this  will  give  you  your  Bragg  Diffraction

Condition which is also what we have obtained from our Laue’s diffraction. From the

reciprocals  lattice  consideration  when  we  wrote that  the  magnitude  of  the  vector  G



should be equal to 2 pi by d hkl. Then this gave us also, this condition which is nothing

else for the Bragg diffraction condition which we have seen in the real space.

So, the two are exactly equivalent and identical. And this for n is equal to 1 n is some

integer; n is equal to 1 it gives the first order maxima, the first maxima in your diffracted

beam. So, you see the importance of the reciprocal lattice and how to describe diffraction

of waves in this  reciprocal  lattice.  Whatever  I  tell  you for x-rays holds true for any

waves, whether they are coming from outside or are waves which are generated inside

the solid itself. And these type of waves you will study further. For example, one set of

waves is called as a phonon which is related to vibration of atoms inside the lattice.

Another type of waves which is not coming from anywhere outside, but it is there inside

the material are electron waves; which are related to propagation of electrons through the

material and these are like plane waves. 

So, how do they scatter of the atomic lattice or the lattice which is present inside the

crystal; that is also described by similar set of features, And similar set of laws which

govern the diffraction of those waves also. aAnd in relation to this scattering of waves

the  final  an important  aspect  which  I  will  introduce  now is  something called  as  the

Brillouin. 
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The concept of a Brillouin Zone. So, what is the Brillouin zone? Before we take a look at

what is the Brillouin zone let us go back again to our Laue’s condition for diffraction.



The Laue’s condition for diffraction of waves in a crystal; and what is that condition?

The condition states that the reciprocal lattice vector has to be equal to the scattered

vector K scattering vector K which is equal to k prime minus k; k is the wave vector of

the scattered wave vector of scattered wave and this is the wave vector of the incident

wave. 

And so, I can rewrite this expression as k prime is equal to k plus g. And if I take the

square of this; so from here I can write this. And if I take the magnitude of both sides

then I will get k prime square is equal to k plus G dot k plus G. And you will get k prime

the whole square is equal to whole square plus. But the magnitude of k prime is equal to

the magnitude of k which is equal to 2 pi by lambda, because we are looking at elastic

scattering of waves. 
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And therefore, you will get 2 of k dot g plus k square is equal to k prime square; these

two will cancel which will give me 2 k dot  G plus whole square is equal to 0. Now

whatever  this  expression,  whatever  is  satisfied by  G is  also equivalently  satisfied by

minus G.

So, in a reciprocal lattice whatever is satisfied by the wave vector G is also satisfied by

negative of that wave vector. So, if you substitute that here you can write this as 2 of k

dot G. So, you replace G by G prime, you replace G by minus of G the equation remains

unchanged  equation  remains  valid  basically  because  the  Laue’s  condition  is  valid



whether k is equal to G or k is equal to minus of G in both conditions is valid. So, this a

trick becomes convenient to write this as once you replace minus G out, you will get a

minus sin and therefore it becomes possible.

Now, divide it by 4 this equation and you will get the condition that k dot half of G is

equal to half of G the whole square. So, the Laue’s condition for diffraction; the Laue’s

condition for diffraction is also expressed as k dot half of G is equal to half of G whole

square.

So, let us look at the physical interpretation of this equation.
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So, what is the physical interpretation of k dot half of G is equal to  G by 2 the whole

square or half of G the whole square? The Laue’s condition, what is the expression what

is the physical interpretation of this Laue’s condition. 

So, let us go to the reciprocal space and look at the reciprocal lattice of a real lattice. So,

given a real lattice corresponding to some crystal you have a real lattice and you can also

make its reciprocal lattice. So, let us look at the reciprocal lattice of a crystal. 

so let us For example, into dimensions I am just making a simple reciprocal lattice as an

example. So, these are all reciprocal lattice points. And now in this space from any point

I  can  draw a reciprocal  lattice  vector  G.  So,  two points  in  my reciprocal  lattice  are

connected by the reciprocal  lattice vector  G, then this condition that k dot half of G



corresponds to all the wave vectors which fall. So, I can draw the perpendicular bisector

of this reciprocal lattice vector. So, this is my perpendicular bisector of G. 

The Laue’s condition which is given here suggests that for any vector k; starting from

this point any vector k of a wave which terminates on the perpendicular lattice vector,

this wave is going to get scattered following the Laue’s condition or this wave we will

undergo a diffraction. 

So, all the wave vectors which terminate on this line which is the perpendicular vector of

G, all these wave vectors will satisfy the diffraction condition. Namely, this is just one

wave vector, but I can have multiples of wave vectors; I can have another wave vector

like this ok. All these wave vectors which are terminating on this perpendicular bisector

we will satisfy, all these k’s we will satisfy this condition namely they will give rise to

diffraction Laue’s diffraction. So, they will all give rise to Laue’s diffraction. All of these

wave vectors which are satisfying we will satisfy the equation k dot half of G is equal to

half of G the whole square.

You can show that all these vectors which are terminating on all this wave vectors which

are falling on this perpendicular bisector of g satisfy the Laue’s diffraction conditions.

So, these waves which are going to get reflected from here we will undergo a diffraction

as they get reflected from this plane. 

(Refer Slide Time: 15:04)



So, the idea is that if you have these lattice planes in the reciprocal lattice, if you have

these points in the reciprocal lattice. Then, if this is your reciprocal lattice and you draw

the perpendicular bisector of the reciprocal lattice which divides it into two equal parts

and is  a perpendicular  to  this  reciprocal  lattice  vector, then all  the waves which are

falling on this line which is the perpendicular bisector of G; all the waves with a wave

vector k which terminate on this line satisfy the. All these wave satisfy the Laue’s or

equivalently  the Bragg’s diffraction  condition.  And they will  get  scattered  of  with  k

prime.

So, all of this k’s we will satisfy this equation. And what is the minimum set of planes?

So, in this direction I can draw this, and similarly I can get multiple set of planes which I

can draw and different directions in this reciprocal lattice. I can take different directions

and  I  can  draw reciprocal  lattice  vectors  from each  of  from this  point,  I  can  draw

different reciprocal lattice vectors in different directions. So, I can draw in this direction,

I can draw, and I can draw perpendicular bisectors, and I will get a set of planes. I will

get a set of planes such that wave vectors which terminate on these set of planes which I

will be drawing if they terminate on these set of planes then they will satisfy the Bragg

diffraction  condition,  So,  what  is  the  minimum  set  of  planes  set  of  planes  in  the

reciprocal  lattice  for  which  the  k’s terminating  on  them we will  satisfy  the  Bragg’s

diffraction. And that is given by a construction which you are already familiar with.
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And that is the Wigner Seitz Cell Construction. Whereas, I had shown you in the earlier

when we were discussing crystals the Wigner Seitz cell for a real lattice, now we will

construct the Wigner Seitz cell for a reciprocal lattice. 

And again the construction is exactly identical. What you do is: if you have reciprocal

lattice,  then  from  any  point  you  join  to  nearest  points  and  then  you  make  the

perpendicular bisectors. If you recall: this was a Wigner Seitz cell construction you make

a perpendicular bisector, and you will describe your Wigner Seitz cell. But now, this we

do in the reciprocal lattice. And these are the perpendicular bisectors of the vectors that I

am drawing.
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And this zone that we define or this surface that we define: the Wigner Seitz primitive

cell of a reciprocal lattice is called the 1st Brillouin Zone of the Lattice. The Wigner

Seitz primitive cell of a reciprocal lattice is the 1st Brillouin Zone of the Lattice. 

So, let us look at an example.
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So, here in the reciprocal lattice, we will look at the 1st Brillouin zone. So, this is the

reciprocal lattice of an oblique lattice ok. These are the reciprocal lattice points of an

oblique lattice. These are nothing else, but the reciprocal lattice points. Each point I am

connecting it with the nearest  neighbor point by drawing this vectors, and then I am

drawing the perpendicular I am drawing my perpendicular bisectors. These are all my

perpendicular bisectors, 

And if I draw my perpendicular bisectors then I define set of planes. If you can see I

have defined a set of planes which are all part of perpendicular bisectors of the reciprocal

lattice vectors. And these set of planes which I have defined. As I said for any vector

wave vector k which is terminating on this plane or on this plane these wave vectors will

diffract following Bragg diffraction conditions.

So, this is the minimum set of planes which you can define through the Wigner Seitz cell

construction, which will define your 1st Brillouin zone. For waves with a wave vector k

which  are  impinging  and  reflecting  of  these  set  of  planes  they  will  undergo  Bragg

scattering or they will undergo diffraction. 

And  those  waves  we  will  certainly  satisfy  k  dot  half  of  G  is  equal  to  this  Bragg

diffraction condition or the Laue’s diffraction condition. These waves will satisfy this

diffraction condition. And this is called as the Brillouin Zone; the 1st Brillouin Zone of



your Crystal  or  of  your  Lattice.  And waves  which  diffract  of  the  1st  Brillouin  zone

undergo Bragg diffraction. 

So, this is an important step to define 
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Now this is a more complicated Brillouin zone; the 1st Brillouin zone for an FCC lattice.

So, if you take an FCC real lattice you can actually construct the reciprocal lattice of the

FCC which is the BCC lattice. And then once you construct the BCC lattice this is your

body centered point and then you can construct the Wigner Seitz cell, from each of the

body centered point you can connect the. And these are the planes these are the planes

which are perpendicular to the nearest neighbour reciprocal lattice vectors. And then you

can get this surface which is the Wigner Seitz cell in the reciprocal lattice ok. 

And for waves which are getting diffracted from these planes. So, wave which is getting

diffracted from this plane, these waves will undergo Bragg scattering. So, waves which

are undergoing a diffraction from these planes which are which is the zone boundaries

this planes are also called as zone boundaries; they will undergo they give rise to Bragg

scattering of waves. And different directions in this reciprocal lattice are given in terms

of this tau x sigma delta directions to define different directions in the Brillouin zone; the

by convention you take certain directions tau is taken as the zone centre. And then you

have a sigma direction, you have a lambda, you have a delta, you have a x point and so



on. All these are the by convention, these are certain directions which are define for the

Brillouin zone. 

So, before I end I would just like to tell you that if you have a reciprocal lattice vector; if

you have these reciprocal lattice points and this is my reciprocal lattice vector, this is the

perpendicular bisector of the reciprocal lattice vector. Then a wave k which is diffracted

from this the wave falls on this on this plane which is the perpendicular bisector; the

wave falls on this plane in blue which is the perpendicular bisector of G ok. This wave

will undergo a Bragg scattering ok. 

And so, this wave will obey; the scattered wave will obey your Laue condition k prime

will be a Laue condition. So, I can read draw it as: this is in the minus G direction, this is

your minus G, and this is my k, this is my k prime, this is my minus G direction. And

then this part of the diagram I can rewrite it has  so a wave which is scattered took k

prime k prime is equal to k minus G. So, k gets scattered to scattered or diffracted to k

minus G from the Brillouin zone boundary. So, far waves which are scattering from the

Brillouin  zone boundary  they  will  get  scattered  to  k minus  G.  This  is  the  minus  G

direction, and this is the Brillouin zone.

So, this is to not only for diffraction of x-rays, this will also be true as I said; all this rules

are going to be true for not only electromagnetic waves which are coming from outside

or waves which are coming from outside like we are sending and x-rays, these are also

true  for  waves  which  are  present  inside  the  solid.  For  example,  phonons  which  are

generated because of vibration of atoms inside the solid or they are also related to they

also  satisfied  by  electron  waves  which  are  scattered  from within  the  crystal.  These

electron waves correspond to propagating waves of electrons inside the metal itself, they

also satisfy these conditions. And therefore, Brillouin zone is a very important concept

which will govern the scattering of these waves inside the crystal. 


