
Introduction to Solid State Physics
Prof. Manoj K. Harbola
Prof. Satyajit Banerjee
Department of Physics

Indian Institute of Technology, Kanpur

Lecture - 39
Reciprocal lattice vectors and Laue’s condition for diffraction of waves by a crystal

Part-II

In the last lecture, we looked at the Reciprocal lattice vector and how we can apply it.

And one of the places where it gets applied is when you are looking at the diffraction or

scattering of waves electromagnetic waves specifically x-rays from crystals. 

(Refer Slide Time: 00:36)

And there we saw that if you are looking at an incident wave with a wave vector k and it

gets scattered with a wave vector k prime. Then the intensity at the detector point that

intensity will be nonzero or will be maximum if the scattering vector k is equal to the

reciprocal  lattice  vector.  And  this  is  your  Laue’s diffraction  condition  that:  to  get  a

maxima at the point B of your the detection point B your scattering vector which is the

difference between the scattered wave vector and the incident wave vector. 

If that scattered vector is equal to your reciprocal lattice vector you will get a maxima at

point B. And there will be no maxima or 0 at point B, if this condition is not satisfied. So,

this is the Laue’s condition and we will see how to physically interpreted. 



Now before we go into a physical interpretation let us recall that d is wave vectors; the

incident wave vector k and the scattered wave vector k are given by 2 pi by lambda. The

magnitude of these scattered wave vectors; incident wave vector and the scattered wave

vector  they magnitude  is  2  pi  by lambda because its  elastic  scattering,  we have just

looking at elastic scattering. 

The wave length of the wave which is coming is lambda and the wave length of the

scattered wave is also lambda. That is not changing there is no change in the energy of

the beam which goes in and comes out which gets scatted out, only the directions are

changing.

So, because its elastic scattering the incoming and outgoing wave vector magnitudes are

2 pi by lambda, where lambda is the wave length of the x-rays. Typically it is you know

it  has  to  be  of  the  order  of  automatic  spacing’s.  So,  they  will  go  from  1  to  100

youngstorms. That is the typical wavelength of the x-rays that you use. 

And what you can see is that the units of wave vector are in units of length inverse. So, if

you have to take a space where you can plot this wave vectors, the space where you can

plotted is your reciprocal space because in reciprocal space you actually sketch things in

units  of length inverse.  And you know for every crystal  you can draw its  reciprocal

lattice in the reciprocal space. So, in the reciprocal space not only can you draw the

reciprocal lattice, but you can also draw the incoming and outgoing wave vectors. And

that is what is the Ewald’s sphere?



(Refer Slide Time: 03:26)

That was the Ewald’s sphere construction; Ewald’s sphere construction which gave the

interpretation to the Laue’s condition K is equal to G. So, for that I would like to show

you the following slide. 

(Refer Slide Time: 03:55)

That this is in your reciprocal space, now we go to our reciprocal space. And in our

reciprocal space for a given crystal you can make your reciprocal lattice using g 1, g 2, g

3. Combinations of g 1, g 2, g 3 you can generate your reciprocal lattice points. So, for

example, in this 2-d space you have your reciprocal lattice points which are shown here.



And these are just the indexes h, k and l for each of the points. So, if you recall the

reciprocal lattice vector can be written as h times g 1 plus k times g 2 plus l times g 3.

So, these indexes h, k and l are the reciprocal lattice points.

Now, in this reciprocal space which is in length inverse, I can draw my incident wave

vector. The incident wave vector has a magnitude; the incident wave vector k naught

which in my terminology is k is 2 pi by lambda. So, this incident wave vector you can

draw it in the reciprocal space as a vector which is shown here. You can choose any point

as the centre, you can choose any point in this reciprocal lattice as the centre and from

that point you can generate or you can draw a vector whose length is the incident wave

vector 2 pi by lambda. And it has some direction you can draw it in any direction.

And you can also draw the scattered wave vector k with respect to the incident wave

vector you have a scattered wave vector. So, you know that it comes in one direction and

then it gets scattered out. So, once you know your incident direction you know you are

scattered direction also. But the magnitude of the scattered vector is nothing else, but 2 pi

by also lambda. But you know its direction, so you can draw this other scattered vector. 

So, this is your incident  wave vector, this is your scattered wave vector, this is your

scattering vector K which is the difference between k prime minus k. This is equal to k in

my terminology, and this is equal to k prime in my terminology. So, this vector which I

have drawn here is vectorially the difference between k prime minus k. The difference

between the scattered wave vector and the incident wave vector. 

And this vector you can see is joining two points on the reciprocal lattice. This point and

this point it belongs to the reciprocal lattice.  So, the condition that this vector k, the

scattered vector which is k prime minus k is equal to g means that this vector should fit

between two points in your reciprocal lattice. If this scattered wave vector connects two

points on the reciprocal lattice, then you will get finite intensity of scattered wave from

these point in the reciprocal lattice. 

And these are not two unique points, because what you can do is that keeping this point

as a centre  and this has the radius you can draw a circle.  And for any points of the

reciprocal lattice which are sitting on this circle you can show that they will satisfy the

Laue’s condition: G is equal to K. For any points, like these points which are sitting on



your circle which is called the Ewald’s sphere; this sphere is called the Ewald’s sphere.

For any point which is sitting on this your k minus k prime will be connected.

So, if I draw a k prime out here for a scattered wave k prime in this direction, this is your

scattering vector k and that you can see is connecting two points in the reciprocal lattice.

So, even this will give rise to a finite intensity at your point of observation. So, these are

the different points which was start generating a diffraction pattern. So, when you come

in with an incident beam of light you will get a collection of spots bright spots in your

screen and that corresponds to these points on the reciprocal lattice which are satisfying

this condition and this is your Laue condition. 

So, if you recall that we had seen if you have an incoming beam of X-rays which is

falling on a crystal, then this beam scatters. And if you look at the distribution of points

on a screen you will see a bright spot, and you will see a set of bright spots. These are the

points where the intensity is not equal to 0, this is the scattered intensity is not equal to 0,

and in between the scattered intensity is equal to 0. So, only at these points, which are

these bright spots the scattered intensity is not equal to 0. And it is at these points where

the scattered wave becomes equal to the reciprocal lattice points. 

So,  these  are  your  reciprocal  lattice  points  from  where  which  are  satisfying  this

condition,  which we have seen is  coming when you look at  the Ewald’s sphere.  So,

which points are going to give you finite intensity or diffracted beams are going to be

governed by the points in the reciprocal space which are sitting on the Ewald’s sphere.

And this is your interpretation of your Laue’s condition. 

So, actually you start mapping your reciprocal lattice space, with X-ray diffraction what

you are actually doing is that you are actually mapping the points in your reciprocal

lattice.
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Now, let us look at the condition. The Laue’s condition G is equal to K a little bit more

closely. Without getting into the derivations I would like to state a result for you. So, you

know that you have a reciprocal lattice which can be constructed with this h g 1 plus k g

2 plus l g 3. Now, you might be wondering why I am giving these indexes h, k and l. 

Because if you look at my lectures on crystals you recall that lattice planes; atomic lattice

planes in the real space if I had a real space and if I was looking at atomic lattice planes

or lattice planes in the real space. Then these lattice planes in real space were indexed by

something called as millers indices, which were given this combination of indices h, k

and l ok; combination of integers which are h, k and l. 

So, a real plane of lattice points and parallel set of lattice planes have an index which is

given by h, k and l. My reciprocal lattice is also generated with g 1, g 2, g 3 and you have

these indexes which are written as h, k and l. Is there any connection between these

indices  and millers  indices?  Do you have  any connection  between the  points  in  the

reciprocal lattice space and the miller indices which are there in the real space. 

So, here is a result which I will state without giving a proof and the result is as follows.

The result says that if one has real lattice planes with indices h, k and l. If one has real

lattice planes with indices h, k and l, a vector which is perpendicular to this lattice plane

in reciprocal space is G; which is given by the same indices a g 1 plus k g 2 plus l g 3.

Alternatively stated, that in reciprocal space if you have this vector G which is written as



h times g 1 plus k times g 2 plus l times g 3, then h, k and l are the millers indices of real

lattice planes which are perpendicular to this vector G.

(Refer Slide Time: 14:55)

So, in reciprocal space if one has a vector G which is given by h g 1 plus k g 2 plus l g 3;

where h, k and l are integers. Then these h, k and l are the miller’s indices of real lattice

planes which are perpendicular to this vector G in the reciprocal space. And this gives

you a way to connect the real space and your reciprocal space. And for that let me again

show you a slide which makes this slightly clear. 

(Refer Slide Time: 15:51)



Is that this is my points in my reciprocal space. So, these are my points in the reciprocal

space. So, this is all in the reciprocal space, this vector G which is connecting one point

in the reciprocal space with another point in the reciprocal space. This vector G is written

in some combination of h time’s g 1 plus k time’s g 2 plus l time’s g 3. So, here you have

your points in the reciprocal space which are generated by combinations of this g 1, g 2

and g 3. 

Now, if we consider this vector which is given as some particular combination of h, k

and l, this vector is some particular combination of h, k and l then the lattice planes

which are these black lines which are drawn these are atomic real space lattice points.

These  are  the  real  space  lattice  planes  which  have  miller’s  indices  h,  k  and  l

corresponding to this. These are miller’s indices of real space lattice planes which are

perpendicular to G. If you can see that all these lattice planes are perpendicular to this

vector G. 

So, given a vector G you can construct lattice planes which are perpendicular to the G.

And from this vector G, the indices of these vectors or the components of these vectors

h, k and l will form the miller’s indices for these lattice planes which are perpendicular to

G. So, this is an important result which shows the relationship between points in the

reciprocal space and vectors in the reciprocal space with real lattice planes. 

And another result which is related to this is that you can show that the magnitude of G

which is characterized by some of these indices is 2 pi divided by the perpendicular

distance between the lattice planes which are characterized by h, k and l. So, if I go back

to the slide once again this is your reciprocal lattice vector which is characterized by

components h, k and l, and these give the lattice planes whose miller’s indices are also h,

k and l. Now these lattice planes, all these parallel lattice planes which are perpendicular

to g have the same miller’s indices. The spacing between these lattice planes is d, h, k

and l. This is the atomic lattice planes, this is in real space. 

These lattice planes, all of these lattice planes have the same miller’s indices and the

spacing between them is d, h, k and l. So, from this result one knows that the relationship

between this lattice vector which has components h, k and l in the reciprocal space is

related to planes with millers indices h, k and l which are perpendicular to G, having a



planner spacing d h k l is the spacing between planes with millers indices h, k and l. This

is an extremely important result 

However, this can be proved, but I am not going to get into the proof. These are the two

very important results that one should understand. That one is the relationship between

this  vector  G in  the  reciprocal  space  which  has  components  h,  k  and  l.  And  these

components  h,  k and l  correspond to the miller’s indices  of lattice planes which are

perpendicular to G. And the magnitude of this g is 2 pi divided by the spacing between

the planes which have millers indices h, k and l. 

(Refer Slide Time: 21:02)

Now, with this result in mind now recall that your Laue’s condition for Bragg diffraction

or for diffraction of x-rays; the Laue’s condition for diffraction of x-rays is G is equal to

K. And here in this diagram G is equal to K; where k is the scattered wave vector minus

the incident wave vector. 

Now, the condition that we had got that your reciprocal lattice vector  G is going to be

perpendicular to a set of real planes which are space by d, that condition is G is equal to

2 pi by d h k l.  Where,  d is the spacing between the planes and this is equal to the

magnitude of the scattering wave vector  K. And this magnitude  K in this diagram you

can see that in the reciprocal space my incoming scattering wave vector is this, which is

making an angle theta with this lattice plane and it is getting scattered with this wave

vector small k which is written as k prime. And k minus k prime is your vector, capital K



the  scattering  vector  which  should  be  equal  to  the  reciprocal  lattice  vector  for  a

diffraction and this is the angle theta. 

So, now this vector K which is your scattering vector which is k naught minus k prime or

incoming vector k minus k prime; this is also equal to what I am writing it as k out here

small k. This capital  K which is the scattering vector can be written as 2 times k. The

magnitude of this is nothing else, but 2 times k times sin theta, because this angle theta

that you draw here because the lines are parallel, this is also equal to this angle theta.

And therefore, this is 90 minus theta; this angle which I have drawn here is 90 minus

theta. 

So, this total distance will be twice; this will be essentially twice of k cos of 90 minus

theta because that will be equal to this. And that is nothing else but this.  And  you

know k is 2 pi by lambda. And this gives me my relation, so 2 pi by d h k l will be 2 into

2 pi by lambda sin of theta. Where, theta is the angle of the incident wave vector with the

lattice plane and it is also the angle with the scattered wave vector; k prime makes with

the lattice plane or the reflected wave vector k prime.

(Refer Slide Time: 24:26)

So, you can show therefore, that the condition for diffracted beams of X-ray is that: 2 d h

k l sin theta is equal to lambda. 



So, the Laue’s condition G is equal to k can be rewritten as this; where d is the spacing

between the real atomic lattice planes. So, a condition in the reciprocal lattice can be

rewritten as the condition in the real space. Where, d is the spacing between the real

lattice planes which are perpendicular to g, sin theta is the angle between the incident

wave vector with the lattice plane, and lambda is the wavelength of the X-rays. And this

also known as the Bragg’s condition for diffraction. And this condition is not only true

for X-rays, but for any waves scattering of a lattice. We have done it for X-rays, but this

is true for any waves which are scattering of a lattice. 


