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So,  in  our  last  lecture,  we had begun investigating  the  scattering  of  electromagnetic

waves from a material. And we had electromagnetic waves which are basically X-rays in

this case are impinging on the material, where you have plane wave fronts which are part

of spherical waves, but they are very large because this vector the source is far away

from your crystal. The way fronts are there for considered to be plane wave fronts. They

impinge on a point  P on the crystal  and the amplitude  of the electric  field which is

reaching point P from the source Q is A naught into a plane wave form e raise to i k dot

R plus r. There is also a time dependent part which is given by e raise to i omega naught t

which I am not considering. 

So, this is the amplitude of the signal or the electromagnetic wave which is reaching

point P. Stronger the amplitude more intensity or more electromagnetic wave will get

scattered;  smaller  the  amplitude  less  will  be  the  intensity  or  the  amplitude  of  the

scattered wave. Furthermore, if you have large number of points at this point P, each of



these points will act like scatterers, and they will generate the secondary wave which is

scattered from point P.

So, if you want to look at the intensity or the amplitude of the wave which is scattered it

will not only depend on the amplitude of the incident wave, it will also depend on the

density. It will be proportional to the density of particles which are present at point P.

More the number of particles at point P, they will act as secondary scatterers, they will

assume them to be all in phase and they will scatter more intensity or more light or more

electromagnetic  point  B,  it  will  through more  because  all  of  them act  as  secondary

scatterers. If you have one point of course then it will be less, if you have more 10 points

at point P, then the effectively each of the 10 points is acting like a scatterer they are

generating secondary waves.

So, the amplitude of the wave which reaches point B is dependent on the intensity of the

incident  wave into  the density. And this  is  the  form of  the  spherical  wave which is

reaching point P, K prime is the wave vector of the spherical wave front. And then we

wrote down the intensity which is proportional to the square of B which is coming from

all  such  caterers  like  point  P  which  is  distributed  across  your  crystal.  So,  we  will

integrate this amplitude over the entire crystal to get the net intensity at point B and that

will be proportional to this amplitude integrated over the crystal square. And we showed

that this intensity, therefore will be will go down as 1 by R square the further you move

this point B away from the crystal the intensity will go down as 1 by R square inverse

square law. 

But it will depend on this quantity rho of r which is the density of the crystal at each

point r into e raise to i k bar dot r bar K capital K integrated over the volume and, where

K is  the difference between the incoming and the outgoing wave vector. This is  the

intensity of the light which is or the electromagnetic wave which is reaching point P. And

we can see that this intensity is proportional to this quality, it depends on this quantity

rho of r e raise to i K bar dot r d cube r, which is integrated over the volume of the

crystal.  If you see this quantity this is nothing else but the Fourier transform of your

density rho of r, rho of r of the crystal. So, the intensity directly depends on the Fourier

transform of rho of r.
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The intensity at point B is related to the Fourier transform of rho of r of the crystal ok,

where this Fourier transform of rho of r of the crystal is nothing else but integral rho of r

e raise to i K bar dot r d cube r over the volume ok, integral of rho of r e raise to i K bar

dot r. And this Fourier transform is taken with respect to this wave vector which is k

minus  k  prime.  So,  the  intensity  of  the  scattered  light  now depends  on  the  Fourier

transform of the density of the crystal. 

The density distribution of the crystal the Fourier transform of that density is plays a role

in determining the intensity of your scattered light. And therefore, the I of B is a function

of this quantity K which is the difference between the incoming wave vector and the

outgoing wave vector. And you take a Fourier transform the rho of k is nothing else but

the Fourier transform of rho of a r e raise to i K dot r d cube r. So, if you take the Fourier

transform of the density of your crystal, then you will get this quantity and I of B is

related to square of this quantity.

So, we have an important quantity K out here. And we will see that this K will be related

to  another  geometrical  construction  for  the  crystal.  So,  this  K  will  have  important

consequences, because it determines the intensity of the scattered light. And we will see

that this K will be related to some other geometrical construction associated with the

crystal.  So,  we will  leave  the point  of  scattering  of  electromagnetic  waves  from the



crystal for now, and move on to looking at the Fourier transform of the density of the

crystal.
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Fourier  transform  of  the  because  we  know  that  the  intensity  of  the  scattered  light

depends on the Fourier transform of the density of points, the number density of points

on the crystal, and what is the distribution of that number density. So, let us look at first a

1D lattice of points. So, what is a one-dimensional lattice of points or a one-dimensional

crystal, a one-dimensional lattice of points is points which are periodically arranged in

one dimension.

So, this is a 1D lattice of points where a is the lattice constant, a is the lattice constant.

Now, as you know that for a Bravais lattice if you go from any point to any other point if

you translate by the translation vector then your distribution of atoms or the lattice points

around you should look identical that is one of the very important aspects of a lattice of a

Bravais lattice specifically.

In the 1 D lattice, what is the translation vector, the translation vector is nothing else but

n times a, since it is one-dimensional you can only move in 1 D. So, I am not drawing

the vector, but it is just an integer where n is an integer it can be plus or minus it. You can

move in either direction. You can move by n times a or you can move minus n times a

ok. And the requirement is that your distribution of points, when you move by a distance



or  you  move  travel  by  the  translation  vector  the  distribution  of  point  should  look

identical around you.

So, let us start from a position x this is an infinite lattice. So, it goes infinitely in either

directions.  So, if  this is my starting point in the lattice and the distribution of points

around x has a density rho of x namely the number density which is present around x,

then if I move by say to another position which is say 4 times the lattice parameter this is

x plus 4 a. If I move from this point to this point, the distribution of atoms should look

exactly identical, then it is of course a Bravais lattice.

And this property of the lattice is called translational invariance. This is a very important

property  of  the  lattice  that  if  I  move  from  one  point  and  I  translate  by  using  the

translation vector, then the distribution of points the number density should look exactly

identical. And in one dimension I can write it like this that the density of points at point

x, where x is any position in the lattice rho of x should be equal to rho of x plus n a. 
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Now, being a  periodic lattice,  I  can take its  Fourier transform, because the lattice is

periodic, the density rho x will be periodic because I am encountering lattice points after

a distance a every time I encounter a distance there is a change in the density ok. So, rho

x will be periodic. So, I can write rho x as equal to rho Fourier component e raise to i

sum for now let us say k x ok, where I give an index rho k and I take it as a sum overall k

ok. So, this is some. So, this is the Fourier transform.



This is a discrete, because it is a discrete lattice, it is not a continuous lattice, I write the

rho x as a Fourier transform where I am doing the Fourier transform on a discrete lattice.

So, rho of x is written in terms of Fourier components k e raise to i k x, where k are the

labels for the Fourier component. 

Now, if I want my lattice to be transnationally invariant rho of x should be equal to rho

of x plus a ok, where n is equal to 1. So, even if I move by one lattice point, rho of x

should be equal to rho of x plus a ok. Then if I take x to x plus a, what is my Fourier

transform of rho x plus a, rho of x plus a is summation over k, rho k e raise to i k into x

plus a which is nothing else but rho k e raise to i k x into e raise to i k a.

(Refer Slide Time: 13:56)

So, rho x plus a is equal to summation over k rho k e raise to i k x into e raise to i k a.

Now, for translation invariance this should be equal to rho x. And rho x is essentially this

part, which implies e raise to i k a should be equal to 1. And this puts a condition on k as

they should be 2 pi by a times m, where m is some integers which can be both positive

and negative. 

It can be 0; it can be 1; plus minus 1; it can be plus minus 2. But when you put this

integer e raise to i k a becomes equal to e raise to i 2 pi by a m into a e raise to i 2 pi m.

This is cos 2 pi m plus i sin 2 pi m, where m are positive negative integers this has to be

equal to 1. So, the requirement of translational invariance puts a condition on this k that

you obtain when you take a Fourier transform of the lattice.
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So, if rho of x is written as a Fourier transform this is rho of g e raise to i k x this is a

one-dimensional  lattice,  then  by  translational  invariance  requirement  this  is  the

requirement of translational invariance suggests that this vector k with respect to which

we take the Fourier transform or this k with which we take the Fourier transform with

respect to which we take the Fourier transform has to be in integral multiples of this 2 pi

by a. We looked at the Fourier transform of a one-dimensional lattice.  And we got a

condition on your wave vector with respect to which you taking the Fourier transform. 

Now, we will look at the Fourier transform of a three-dimensional lattice. So, rho of r is

the density of points lattice points at r in the lattice. So, you have lattice points here for

just simplicity sake I am drawing a two-dimensional lattice. And the condition so, with

respect  to  some origin  you  have  a  point  in  the  lattice  which  is  located  by  r.  Now,

translational invariance says that if you move from this point to another point in the

lattice from this point in the lattice you move to another point in the lattice r prime,

where r prime is equal to r plus capital R, where capital R is the translation vector of the

lattice then the distribution of points or the density around these two points A and B have

to be identical.
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And what is the translation vector, the translation vector is n 1 a 1 plus n 2 a 2 plus n 2 a

2. Where n 1, n 2, n 3 are integers, and a 1, a 2, a 3 are the fundamental translation

vectors. These are the fundamental translation vectors of the lattice. So, your condition

for translation invariance which is an essential requirement to get a Bravais lattice to

describe a crystal structure requires that the density at r point r in the crystal should be

equal to the density at point r plus capital R. 

Let us expand rho of r in terms of Fourier components. So, rho of r is summation over a

vector G with respect to which we are taking the Fourier transform. So, these are the

Fourier components rho of G e raise to i G bar dot r bar. This is how I expand my density

in the three-dimensional lattice, where I expand it in terms of these Fourier components g

is  the  vector  with  respect  to  which  we  are  taking  the  Fourier  components  Fourier

transform ok, and e raise to G bar dot r.
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Rho of r should be equal to rho of r plus capital R. So, therefore, if I take r going to r plus

capital R, then my density at r plus capital R becomes which is equal to summation of G

rho g e raise to i G bar dot r bar into e raise to i G bar dot capital R. This is nothing else

but rho of r and translational invariance implies rho of r should be equal to rho of r plus

capital R, therefore, e raise to i G bar dot r bar should be equal to 1.
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This sets a condition the condition from translational invariance is that G bar dot R bar

should be equal to 1, where R is equal to n 1 a 1 plus n 2 a 2 plus n 3 a 3. And this



condition that G bar dot e raise to i G bar dot R bar should be equal to 1 implies that G

bar dot R bar should be equal 2 pi times some integer. If you take G bar dot R bar is

equal 2 pi times some integer, then this will satisfy this condition, the above is satisfied

by this condition. And now through this we will be able to construct something called as

the reciprocal lattice, which is associated with a crystal. 

So, we will be able to do a geometrical construction using this expression to construct

something called as the reciprocal lattice, a very important aspect of crystals using this

vector G, we have got a condition on this vector G, R is the translation vector which is

written  in  terms of the fundamental  translation  vectors  of  the lattice.  And using this

expression, we will construct something called as a reciprocal lattice which will satisfy

this expression. And it will be important for describing various properties of the crystal.

We will find that this reciprocal lattice will be related to the capital K that we had found

in the scattering intensity of the electromagnetic wave.


