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Lecture - 29
Bravais Lattice Types Part-I

So, while describing the crystalline solid, we saw that we have to break up the crystalline

solid into first a geometrical structure namely a lattice and that lattice has to be a Bravais

lattice and a basis, which is the atoms that you will put at every point on the Bravais

lattice.
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And what is  the requirement  for the Bravais  lattice?  First  is  that  the orientation and

arrangement of atoms at any point has to be exactly the same, the arrangement of points

around any point in the lattice has to look exactly identical. So, these are examples of

Bravais lattice in two dimensions. There if you go to three dimensions, there are other

examples also. 
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And one other example which I showed you which looks like a Bravais lattice, but is

actually not is the honeycomb lattice, where you have these vertices at the corners of a

hexagon. And if you look at the points P and Q and if you look at the distribution of

atoms around P and Q, they of course,  look exactly  identical,  but if  you look at  the

distribution of points around R, it looks exactly 180 degrees. As if you have rotated it to

180 degrees and from here you get this sort of a configuration. So, the point R is not

equivalent to point p and q. this is not a Bravais lattice the arrangement of atoms is not

identical. 
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The second requirement is that if you do a translation operation, which is that if you go

from any point in the lattice to any other point ok, then these two points are connected by

a translation vector which is of the form n 1 a 1 plus n 2 a 2 plus n 3 a 3 in general for a

three-dimensional lattice.  For a two dimension, it will just be n 1 a 1 plus n 2 a 2. And

this is an example of this translation vector that any two points in the lattice for any of

these two points you can describe these two fundamental translation vectors a 1 and a 2.

And then you can go from this point to this point using this translation vector which is in

this example it is twice of a 1 plus twice of a 2.

So, this is now R a 1 and a 2 a unique choice is this a 1 and a 2 has chosen a unique

choice it is not, because I can also choose if I can show you another example where this

condition is still satisfied with another choice of a 1 and a 2. One other choice I can do

for a 1 and a 2 is this; I can choose my a 1 and a 2 like this. So, this is my a 1 vector, and

this is my a 2 vector. And then from this point, I can move to any other point in the

lattice by choosing combinations of a 1 and a 2. For example, if I want to move from this

point to this point here in the lattice, my R vector which will join this will be thrice of a 1

plus a 2. So, n 1 is equal to 3 and integer and n 2 is equal to 1. 

So, I can move from any point in the lattice to any other point using these a 1 and a 2.

So,  it  is  important  to  have  these  fundamental  vectors  that  fundamental  vectors  that

fundamental translation vectors a 1 and a 2, but by no means given a lattice they are



unique.  You can have different  combinations  of a 1 and a 2,  you can have different

choices of a 1 and a 2 to be more precise for a given Bravais lattice. This is a clear

example of it. They do not have to be exactly perpendicular to each other as such. 

So, given a Bravais lattice we can define the fundamental translation vectors and then

any point in the lattice to any other point can be joined by the translation operation,

which is the translation vector namely I can go from point A which is a lattice point to a

point B, which is another lattice point by using the translation vector R which has a

particular  form which  has  shown  you.  Once  these  conditions  are  satisfied,  I  had  a

Bravais lattice ok.
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I am just to illustrate to you this thing about moving from one point to another. If I have

these set of points, the Bravais lattice is one where I can move from this point to any

other point using the translation vector r. So, if this is my coordinate system somewhere

outside x, y and z, this is my small vector r, then I can move from this point to this other

point, which is my r bar prime by using. 

So, r prime minus r bar should be equal to the translation vector R, where R should be of

the form n 1 a 1 plus n 2 a 2 plus n 3 a 3. Where a 1, a 2, a 3 are some choice of

fundamental translation vectors and n 1, n 2, n 3 are here integers. And this is the basic

requirement. And this is the translation vector R which will take you from one point in

the lattice to another. 
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Now, we come to the concept so along with the lattice there are some other concepts that

we bring in. And another very important concept is that of a primitive cell, lattice cell,

which is associated with any Bravais lattice. The primitive lattice cell associated with

any Bravais lattice is the minimum volume or area cell which when translated across the

lattice using the translation operation or vector will cover the entire lattice. So, it is the

minimum volume or area cell in the lattice which if you translated across the lattice, it

will cover an entirely cover your entire lattice without leaving any gaps in the lattice. 

So, one typical example is given this lattice of points, one example of my primitive a 1

and a 2, this is of course an example in two dimension. So, instead of a volume, we have

an area. And this now if I move it if I translated by the translation vector across my entire

lattice, I will cover each and every point inside the lattice without leaving any gaps. So,

this is one example of a primitive lattice cell.

Another example is this, this is another choice, I can also choose this as my primitive cell

this is my a 1 vector, this is my a 2 vector. And my primitive cell is now this; this also I

can translated  across the entire  cell  and cover my lattice.  So,  a  1 and a  2 are again

another  choice of fundamental  translation vector. And this  volume or this  area I  can

translated across the entire cell you can show that if I move it from here to here, I can

cover every area and every point in this lattice by translating this. 



Another choice of my primitive cell is the following. This is another choice; I am just

showing  you  different  examples  of  ways  of  choosing  a  1  and  a  2.  This  is  another

example of a choice of a 1 and a 2, which again can map every point in the lattice. And

what  is  the primitive  cell  associated  with  this;  this  is  my primitive  cell,  this  is  also

equivalent. This is also equally valid choice of fundamental translation vectors giving

you a primitive cell which will cover the entire lattice. This is the smallest, you cannot

get smaller than this. These are the minimum volume area cells, which you can define for

a lattice which when translated across the lattice will cover the entire lattice.

So, this is one example; this is another example; this is another example. These will all

cover  and  uniformly  cover  the  entire  lattice.  So,  these  are  different  choices  of  this

primitive lattice cell that you can do when they are bounded by these lattice vectors this

fundamental translation vectors a 1 and a 2 the choice is by no means unique. So, given a

set of lattice,  given a set of this geometric collection of points you can also define a

primitive lattice cell. And it is important to do so, it gives you this minimum volume

which is associated with this lattice. 

Now, an important point which is associated with this primitive cell is there is only one

lattice  point  per  primitive  cell,  then  important  point  which  is  associated  with  this

primitive lattice cell is that you have only one lattice point per primitive cell, can one

show this a little bit more easily. For example,  again I am just restricting myself for

drawing  to  two  dimensions,  you  this  entire  thing  is  also  carried  forward  in  three

dimensions ok.
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But suppose I want to consider the lattice points, I exaggerate my lattice points and show

as these circles.  These are not atoms, these are again lattice points.  And what  is  my

primitive cell in this, one example of a primitive cell is this. This is my primitive lattice

cell and a 1 and a 2, which form the sides of this primitive lattice cell are called the

primitive translation vectors. So, the smallest or the minimum volume that I can have

inside, this lattice cell which is defined by these a 1 and a 2 from the primitive lattice cell

and these are called the primitive lattice vectors. 

Now, if you look at  this primitive cell  that you can see that out of this circle only a

quarter of each of the circle actually belongs to so this is one quarter, this is another

quarter, this is another quarter and this is another quarter ok. One quarter of each point

lattice point belongs to the primitive lattice cell, you can clearly see that is only a quarter

of it which belongs to the primitive lattice cell. And there are four such points which are

there inside this which are contributing to and there are 4 such points. So, therefore, the

total point per primitive lattice cell is 4 into one -fourth of a point which is 1 point. So,

there is only 1 lattice point that you can define per primitive lattice cell.

And that is the characteristic of this primitive lattice cell that you have one lattice point

per primitive lattice cell. So, often in crystal structures while analysing crystals structures

once you have made a lattice, you would like to define the primitive lattice for the cell.



And it makes things simple, because then you have only one point, which you need to

describe per lattice cell. You can also look at it for a cube.
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So, for a cube just to show you that this is also valid in three dimensions. And this is a

lattice of cube, which are going to repeated itself in 3D space. And if you look at each

point is like now is sphere at the corners of the cube and how many points are there,

there are 8 points per primitive lattice cell. In this case, my primitive lattice cell now is a

1, a 2, a 3, this a 1, a 2 and a 3; a 1 is this a 2 is the vertical and a 3 is going along the

other corner of the cube. 

There are 8 lattice points and this is my whatever is a shaded this is my primitive lattice

cell. And there are 8 such points associated on each vertex of the cube, but only one-

eighth of each point belongs to the primitive lattice cell. Therefore, the total number of

points per primitive cell is 8 into one-eighth which is nothing else but 1 point per cell.

And this gives you again 1 point per cell.
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Given the primitive lattice vectors a 1, a 2, a 3 which enclose the minimum volume of

the cell, which when translated will entire cover, the entire cell given the primitive lattice

vectors a 1, a 2, a 3. The volume of the cell V is the magnitude of a 1 dot a 2 cross a 3,

this you know from a vector analysis that the volume of the cell given these three vectors

is defined like this.

And if you have two dimensions of course you have the n area of the primitive cell. The

area of the primitive cell is nothing else, but a 1 cross a 2 the magnitude of a 1 cross a 2.

So,  if  you have  3D,  you have  a  volume of  the  primitive  unit  cell  which  has  to  be

minimum ok and that you translate across the entire cell. If you have two dimension you

can also define the area of the primitive cell. So, these are the concepts associated with

the primitive cell. 

And given a lattice you have to figure out what is the primitive lattice and you have to

choose your a 1, a 2 and a 3, so that you can get your primitive lattice vectors and the

primitive cell for your Bravais lattice. But there is another way to also do it and there is a

standard  procedure  and  that  is  called  as  the  Wigner-Seitz  cell  for  constructing  of

primitive  lattice  cell.  And actually  this  construction  will  immediately  show, you that

there is going to be 1 point per primitive cell. 

So,  what  is  the  Wigner-Seitz  construction  this  is  a  procedure  given to  construct  the

primitive cell is just one of the ways for constructing the primitive lattice cell given a



collection of points in the Bravais lattice. And the way to do it is the following, I will use

again two dimensions to illustrate the point.
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So, let us take a collection of points. This is my set of points ok. And of course, they are

extending out in both directions; I am just drawing a finite set of points. And now I

would  like  to  draw the  Wigner-Seitz  cell  which  is  the  primitive  lattice  cell  for  this

Bravais lattice. So, how does one construct it one first constructs from any point you first

join all the nearest neighbour by lines. All the nearest neighbours you join by the lines

ok. From any point if you want to construct, the primitive cell associated with this point,

then you take the midpoint of this line. For each of these lines, you take the midpoint ok,

you first find out the midpoint of the line. 

And what you start  doing is that  you start  drawing normals which are perpendicular

passing  through  this  midpoint  of  this  line,  you  draw  perpendicular.  So,  this  is  the

perpendicular  bisector.  So,  you  start  drawing  this  perpendicular  bisectors  which  are

passing through these points. And what you will end up with is what is known as the

Wigner-Seitz cell. 

The  intersection  of  all  of  these  gives  you  an  area  which  is  enclosed  by  these

perpendicular bisectors. And intersection of all these perpendicular bisectors gives you

an area which is enclosed ok. And this is the minimum area which encloses 1 point. And



around each of these points you can draw a Wigner-Seitz cell. And this Wigner-Seitz cell

can be of course, replicated across very point and they will cover the entire space. 

So,  this  is  the  Wigner-Seitz  cell  construction  around  a  given  lattice  point.  And  this

defines your primitive lattice cell associated with the lattice point where now, you can

see that the minimum area, which is bounded around this lattice point is your Wigner-

Seitz cell and there is one lattice point per cell.


