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Lecture –23
Understanding Thermal conductivity of metals

In the last lectures, we saw that we could calculate the specific heat of the electron gas in

a solid using the Sommerfeld’s theory or the Sommerfeld’s model. And, from that we

found that the specific heat of the electron gas is proportional to temperature.

(Refer Slide Time: 00:31)

Where,  there are these constants of proportionality which is related to the density of

states  at  the  Fermi  level.  Because,  those  are  the  electrons  which are  really  going to

contribute to excitations when you apply a temperature and will contribute to the specific

heat.



(Refer Slide Time: 00:49)

So, the specific heat is some constant into temperature of the electron gas and gamma is

called the Sommerfeld’s constant. And, this constant is related to the density of states of

the electrons at the Fermi level and, if you put in the value of these density of states and

if you put in the Fermi energy which is related to the mass of the electron; you can show

that this constant is actually related also directly proportional to the mass of the electron

which is there inside the solid. So, if you measure the specific heat of the electron gas as

a function of temperature from the slope of C v versus T of the electron gas you can

determine gamma.
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And, that is what people did in experiments at very low temperatures the measured C v,

the measured the specific heat as a function of temperature at very low temperatures you

can measure the specific heat of the electron gas. And, from there from the slope you can

measure the gamma which is proportional to the mass. You can also use the expression

which is already derived for the specific heat and you can calculate gamma, put in the

mass  of  the  electron  and  you  can  theoretically  also  calculate  the  value  of  the

Sommerfeld’s constant. And, you can take a ratio of what is experimentally observed

versus theory; namely you put in the density of electrons the mass and all  the other

constants.

And, you will get a ratio which is the ratio of the gamma observed to gamma theory is

nothing else,  but the actual  mass of the electron in the solid to the mass of the free

electron. And, people wanted to know is the mass of the electron inside the solid really

equal to the mass of the free electron. So, by taking the ratio of the theoretical value of

gamma and the experimental value of gamma you will get this measure. And, what they

found is that for most metals for a lot of simple metals it is actually of the order of 1

namely the mass of the electron is equal to the mass of the free electron. But there are

materials as I said where the mass can start becoming larger.

(Refer Slide Time: 02:56)

In fact, there are solids which I have told you there are heavy fermion materials in which

the actual mass of the electron can be 1000 times the mass of the electron. So, these were



some surprises which came up and said that there are the Sommerfeld’s model. And,

specifically the limitations of the Sommerfeld’s model were, in the context of this when

you  have  a  substantial  increase  in  the  mass  of  the  electron  is  that,  we  have  not

considered, that the electron is moving in a lattice of ions.

(Refer Slide Time: 03:30)

And, as a result we have not considered that when the electron is moving it is interacting

with the ions inside the solid. We have not considered the interaction of the ions of the

electrons with the ions inside the solid because, the electron is moving through a periodic

potential which is created by these ions, but we have neglected all of that. So, if you

include all of that then the effect of these interactions actually acts like a drag on the

electrons and it increases its effective mass.

And of course, you will come across it in the later half of the course; how is exactly is

the effective mass of the electron defined. Similarly, electron-electron interactions have

not been considered. And, when an electron moves through a ionic lattice then there is an

effect that as the electron passes through this ionic lattice there is a tendency to polarize

the lattice, it actually causes a slide distortion of the lattice. And so, when the electron

moves through the lattice it actually causes a temporary distortion in the lattice and this

is related to something called as an electron phonon interaction.

 So, these effects have also been completely neglected we will not be discussing it all of

this within the context of these lectures, but it is something for you to be aware that



many of the interactions of the electrons with the lattice have been completely eliminated

or not being considered in the Sommerfeld’s theory. And, that is why there are all these

affects which cannot be explained within the Sommerfeld’s theory. So, this is as far as

some of the drawbacks are concerned. Now, if you recall in some of our earlier lectures

we  have  looked  at  the  thermal  properties  of  electron  in  a  metal  namely  we  have

calculated the specific heat of electrons in a metal.

(Refer Slide Time: 05:58)

And, let us recall another property which is the thermal conductivity due to electrons in a

metal and you may recall this from lectures 9 and 10. So, here in lectures 9 and 10 and

especially in lecture 10, we had derived that the thermal conductivity kappa for a 3D

metal for a 3 D metal with electrons using Drude’s assumptions; we had shown was 1 by

3 n v square tau times C v. Where, n is the density of electrons, v is the mean average

velocity, tau is the collision time and C v is the specific heat per electron.

I would like to clarify that in this lecture 10 the C v that was derived was C v was the

specific heat per electron which was 3 by 2 k B which I had done in lecture 10. You can

also rewrite this expression in a slightly different way kappa can be written as 1 by 3 v

square tau times another C v. Just for preventing any confusion let me write the above

one which we had derived in lecture 10 as curly C v. This curly C v was specific heat of

electron equal to 3 by 2 k B ok. And, now this capital C v that I am writing, this capital C

v is the specific heat per unit volume of electrons in the metal.



So, here we are looking at the specific heat due to all the electrons inside the metal and it

is per unit volume. And, what is the relationship between this capital C v and curly C v,

capital C v which is the specific heat of the electrons per unit volume of the metal is

equal to the total number of electrons into the specific heat per electron which is this; the

specific heat per electron divided by the volume. But, this will be nothing else, but n into

curly C v where, n is the number density of electrons in the metal which is equal to total

number of electrons divided by the volume and this curly C v is the specific heat of

electron per electron.

(Refer Slide Time: 09:36)

So, with this consideration your thermal conductivity of the metal due to electrons inside

the metal the conductivity is 1 by 3 v square tau times capital C v, where now C v is the

specific heat of the electrons inside the solid per unit volume which we can also write it

as 1 by 3 v into l into C v where, l is the mean free path of the electrons in the metal and

it is nothing else, but the velocity into tau. Now, if you recall from lecture 10 that the

velocity of the electrons which we had used this v square was in Drude’s model was

related to Maxwell-Boltzmann distribution. And, from kinetic theory this was evaluated

to be about 10 raise to 5 metres per second.

And, this velocity proportional to square root of temperature because, if you recall half

mv square was of the order of k B T from kinetic theory of gases. So, v was proportional

to square root of temperature. This was as far as Drude’s model was concerned. So, the



velocity was 10 raise to 5 and the specific heat of the electron was 3 by 2 R; curly C v

was of course, 3 by 2 k B. But, capital C v is 3 by 2 N into V divided by k B which gives

you this of course, per unit volume. So, I am suppressing the volume this is your even

this is per unit volume. So, this is what you get 3 by 2 R.

(Refer Slide Time: 12:14)

So therefore, in the Drude’s theory your thermal conductivity the kappa from Drude was

1 by 3 v square which is from Drude into tau into C v which was 3 by 2 R. And, this was

10 raise to 5 metres per second ok. Now, when we come to Sommerfeld the v square was

drift velocity of electrons and which was governed by the Pauli’s exclusion principle.

And,  namely  only  those  electrons  are  contributing  to  charge  transport  or  thermal

transport those which are at the Fermi level; only those electrons are contributing to the

velocity. And so, this velocity turned out to be equal to the Fermi velocity which was 10

raise to 6 metres per second.

So, the Fermi velocity was almost 10 times the velocity from Drude’s model which was

basically from kinetic theory of gases. This is this velocity was of course, independent of

temperature. The velocity the Fermi velocity is independent of temperature. Now, the

specific heat of the electron per unit  volume from Sommerfeld’s model was equal to

gamma times T where, gamma is the Sommerfeld’s constant into temperature. And, if

you recall this was of the order of 3 by 2 into R into T by T F where, T F is the Fermi

temperature which is of the order of about 10 raise to 4 Kelvin ok.



And, there is a factor of about pi square by 3 out here ok. This I had shown in my earlier

lecture that the Sommerfeld C v is 3 by 2 R which is there in your Drude’s model also,

but it is multiplied by a factor which is T by T F into pi square by 3. Now, at room

temperature which is of the order of 300 k this team T by T F becomes, of the order of 10

raise to minus 2. So, if you take pi square by 3 into T by T F; if you will get a number for

C v from Sommerfeld’s model would be of the order of 10 raise to minus 2 into 3 by 2 R.

(Refer Slide Time: 15:10)

At this is of course, at room temperatures. So, at room temperature if you calculate the

kappa using Sommerfeld’s theory this is of the order of 1 by 3 v F square into tau into C

v which is from the Sommerfeld’s model. And, this is about 1 by 3, this velocity is about

10 times v Drude the velocity that you get from Drude’s model.  So, this is v Drude

square into 10 raise to 2 because, v F square is about square of the Drude’s velocity into

10 raise to 2. Because, the v F is about 10 times the velocity from Drude’s model and the

C v for Sommerfeld’s model is C v from Drude’s model which is 3 by 2 R into 10 raise

to minus 2.

And, as a result these two factors come out cancel out and the kappa which you get at

room temperature from Sommerfeld’s model is approximately the same as the kappa you

get from Drude’s model. And so, with a strange combination of these quantities namely a

combination of velocities and specific heats they actually cancel out, the velocity turns

out to be higher. But, the specific heat due to electrons in the Sommerfeld model turns



out to be lower in such a way that they completely cancel out. And, the Sommerfeld and

the  Drude’s model  estimation  of  the thermal  conductivity  turn  out  to  be  identical  at

reasonably high temperatures where, we are looking at this at room temperature. So, this

is one sot of aspect which is associated with the Sommerfeld’s model.

(Refer Slide Time: 17:45)

And there are of course, some differences in Drude’s model if you recall that the velocity

is proportional to square root of temperature and C v in Drude is just 3 by 2 R which is

independent of temperature. So, the kappa in Drude’s model which is 1 by 3 v square tau

times C v is going to be proportional to T because, this and if you recall in Sommerfeld’s

theory the velocity is the Fermi velocity which is independent of temperature. But, the

specific heat in Sommerfeld’s model is gamma times T; it is proportional to temperature.

So,  the  kappa  in  Sommerfeld’s  model  also  because  the  velocity  is  independent  of

temperature  and Sommerfeld’s model,  but  the  specific  heat  is  linearly  dependent  on

temperature. So, this kappa in Sommerfeld’s model also turns out to be proportional to

temperature. So, whether you look at Drude or whether you look at Sommerfeld at room

temperature the values are typically similar. And, the temperature dependence of kappa

also turns out to be roughly similar, whether you look at Sommerfeld or Drude’s model.
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Now, if you look at the kappa it is 1 by 3 or more accurate way to write kappa is of

course, is 1 by 3 v F square tau time C v where, this is the specific heat of the electrons

per unit volume which is also equal to v F times l time C v. Where, this is the Fermi

velocity,  this  is  the  mean  free  path  of  the  electrons  and  this  is  the  specific  heat  of

electrons per unit volume of metal. This is your thermal conductivity expression. And,

now  if  you  recall  the  expression  for  sigma  also  turns  out  to  be;  you  can  use  the

expression for sigma to be the same as that given by the Drude’s model.

Sigma is equal to n e square tau by m, you can use the Fermi velocity square as twice E f

divided by m and this actually comes out from half mv F square is equal to E F Fermi

energy. So therefore,  that gives rise to v F square is  twice E F by m. It is basically

coming from here and the specific heat of the electron in the solid is pi square by 2 g E F

into k B square times T where, g E F is the density of states of the electrons at the Fermi

energy which is 3 by 2 into the number density of electrons divided by the Fermi energy.

 So, you can put all of that here. So, this will be nothing else, but I am sorry this is pi

square by 3. So, pi square by 3 into 3 by 2 n by E F into k B square T. So, if you use all

these expressions one for if you use this expression for C v, substitute for v F square as

this and if you substitute for tau as m into conductivity sigma divided by n e square. All

of these three, if you substitute in this expression for kappa tau of course, goes here and



the specific heat will actually come here. Then you will get an expression for kappa is

equal to pi square by 3 k B square by e sigma the conductivity into the temperature.

Or,  the  thermal  conductivity  divided  by  sigma  electrical  conductivity  into  the

temperature is a fundamental constant 3 which is k B square by E, E is the electronic

charge. And this is of course, your Lorentz number and this is your statement of the

Wiedemann Franz law. So, whether you look at Sommerfeld’s theory also, even if you

are  looking  at  Sommerfeld’s  theory  you  are  getting  your  Wiedemann  Franz  law

validated.

(Refer Slide Time: 23:35)

The  Wiedemann  Franz  law  is  valid  even  within  Sommerfeld’s  theory;  namely  the

thermal conductivity divided by the electrical conductivity into the temperature is equal

to a constant which is your Lorentz number. And, this is about 2.2 into 10 raise to minus

8 watt ohm divided by degree Kelvin square. This is nothing else, but your Wiedemann

Franz law. So, even within the Sommerfeld’s theory the Wiedemann Franz law is valid.

Experimentally it is found that if you take the ratio of thermal conductivity divided by

the electrical conductivity into the temperature it is constant and it works beautifully at

room temperature and at very low temperature.

So, the Wiedemann Franz law is valid at very low temperature and room temperature.

But, at intermediate temperatures the Wiedemann Franz law is not validated. It is if you



look at very high temperatures and very low temperatures the Wiedemann Franz law is

valid, but at intermediate in between temperatures it is not valid.
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And, that happens because as I if you recall I had said that the specific heat has two

contributions.  One  is  the  electronic  contribution  which  we  have  seen  from  the

Sommerfeld’s theory and another contribution is because, of vibration of ions inside the

solid ok. And, that is the ionic contribution to specific heat which is written as A times T

cube. This is the general expression which you will come across later also, this will of

course, be derived in a later half of the course using the vibration model of atoms inside

the solid.

And so, your electronic contribution has two parts: one is the your specific heat of a solid

has two contributions. One is the electronic contribution and the other is the contribution

from ions vibrating in the solid and that has A T cube dependence. So, the specific heat

has two contributions and at low temperatures of course, you have gamma times T as the

contribution. And, the A T cube term is not seen at very low temperatures and at high

temperature the specific heat becomes constant at a value which is 3R that will also be

shown and this happens at high T.

But, at intermediate temperatures you have and A T cube term which actually contributes

to  your  specific  heat.  And,  that  is  why  because  of  this  T  cube  dependence  your

Wiedemann Franz law at intermediate temperatures is not followed. Another reason also



you will see that, if you go to other types of materials like semiconductors they also do

not  follow  Wiedemann  Franz  law. So,  although  the  Sommerfeld’s  model  give  us  a

another  new  way  and  a  better  way  to  study  the  conductivity  thermal  conductivity,

electrical conductivity it still has its limitations.


