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Lecture – 22
Understanding the electronic contribution to the specific heat of a solid Part-IV

We continue with calculating now the specific heat.
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And,  by  working  through  this  entire  derivation  we  have  reached  a  point  where  the

specific heat is written in terms of the density of states at the Fermi energy, integrated

over this expression where now you have the derivative of the Fermi-Dirac distribution.
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So, let us look at this expression a bit more closely. The specific heat is the density of

states at the Fermi energy it is expected as I have already discussed, that only the states

which are very close to the Fermi energy are the ones which get; electrons in these states

are  the  ones  which  are  going  to  get  excited  around  the  Fermi  energy  and  go  to

unoccupied states as you are supply a temperature T. And that is how the energy of the

system will rise and so, they will  contribute to the specific heat.  So, these states are

contributing to the specific heat integral 0 to infinity E k minus E f d f D by dT d E k.

And now let us evaluate this expression the Fermi-Dirac distribution f D E k minus mu is

1 over is to E k minus mu E k minus mu by k B T. So, therefore, d f D by dT ok, here

before we continue further let us make a substitution that you have a quantity which is let

us say let us call it as zeta which is equal to k B T. Then d f D by dT is k B into d f D by

d zeta, is this is nothing else, but k B T, so, I have to multiply it by k B T.

So, this is k B into taking the derivative of d by d zeta of this expression 1 by 1 plus E

raised to E k minus mu by zeta and this would give me a term k B into E k minus mu by

zeta square times E raised to E k minus mu by zeta divided by 1 plus E raised to E k

minus mu by zeta the whole square. You can just check it. It is very easy to take the

derivative of this, you will get this will be the derivative of this expression and then if

you take the derivative of this you will get this term.



So, you can now write and we will take the integration now. So, now, we can put it back

into the integral if we substitute all of this here C v is equal to k B into density of states

at the Fermi energy integral 0 to infinity E k minus E F by zeta the whole square into E

raised to E k minus mu divided by zeta divided by 1 plus E raised to E k minus mu by

zeta the whole square d E k. So, we have this expression. 

And, now mu is of course, the chemical potential at finite temperature and now we can

make a substitution of this x equal to E k minus E f by zeta which implies that dx is

equal to d E k by zeta which implies that k B T into dx is equal to d E k because this zeta

is k B T. Now, let us look at this expression a bit longer and what you see is that here is

the chemical potential mu.
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And, if you recall that the chemical potential at any finite temperature T is defined by the

density by the counting and that is g E k f D E k minus mu dE k, 0 to infinity, and if you

actually  calculate  it  again we have calculated it  for fine 0 temperature which is  this

counting has to be equal to 0 to infinity g E k f D E k minus mu at 0 temperature dE k.

This is at a finite temperature T not equal to 0 and this is equal to 1 for energies which

are less than or equal  to E f  and is equal to 0 for energies greater  than E f. So,  by

integrating this  expression at  0 temperature which is  equal  to the density we get the

expression for the Fermi energy.



However,  if  you do not  do this  if  you just  consider  this  then  you can  calculate  the

chemical  potential  at  a  finite  temperature  and  that  chemical  potential  at  a  finite

temperature is equal to the chemical potential at 0 temperature; if you do this detailed

calculation which I will not do here. You can show that by solving this expression again

similar almost along the lines with a little bit more involved calculations. You can show

that  the  chemical  potential  at  a  finite  temperature  is  the  chemical  potential  at  0

temperature plus a term which is of the order of T by T F the whole square.

So, the chemical potential mu T is equal to the Fermi energy plus a term which is of the

order of T by T F the whole square. Now, if you recall that the Fermi temperature of the

material is like 10 raised to 4 Kelvin and the temperature of the material can be of the

order of say 10 raised to 2 Kelvin that, is considering it that you have really heated up the

system to about 100 Kelvin or so or 300 Kelvin and so on.

Even then the T by T F is just 10 raised to minus 2 of course, there are higher order

corrections, but this is the leading order term. You will get T by T F the whole square and

then  there  are  higher  order  corrections,  but  just  the  first  correction  to  the  chemical

potential at a finite temperature is T by T F which is minus 2. And so, therefore, this term

at  a  finite  temperature  is  E f  the Fermi energy which is  the chemical  potential  at  0

temperature plus a term which is like of the order of 10 raise to minus 4 because, it is T

by T F the whole square and then you will have of course, much much smaller terms. So,

already you have a correction which is very small compared to the Fermi energy.
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 And, so, although the chemical potential because at 0 temperature if you look at the

Fermi-Dirac distribution as a function of energy it is like this so, this is Fermi energy.

But,  if  you  look  at  the  Fermi-Dirac  distribution  at  a  finite  temperature  then  the

distribution changes and the particles start leaving lower energy states and going up to

higher energy states.

So, although the Fermi energy will be sitting at  somewhere at  E F, this is the Fermi

energy which is  the original  location  of  the chemical  potential  at  0 temperature,  the

actual chemical potential will be slightly higher. This is the chemical potential at finite

temperature and this chemical potential at finite temperature is the chemical potential at

0 temperature plus a term which is of the order of 10 raise to minus 4 and higher order

corrections. But, you can see I have exaggerated the shift in the chemical potential with

respect to 0 temperature. This is at a finite temperature and this is the 0 temperature, this

is the chemical potential at 0 temperature at a Fermi energy.

So,  while  this  was  the  original  location  when it  was  at  0  temperature  because  of  a

redistribution of particles  around the Fermi energy the chemical  potential  just moves

around a little bit and this is the amount of motion. So, for all practical purposes you can

assume that the mu T is of the order of Fermi energy. So, in our calculation to simplify

the calculations a bit further when we are looking at the specific heat; if you go back to

this expression this chemical potential which is occurring here, this chemical potential



which is occurring here we will replace this with the Fermi energy. We will approximate

these with the Fermi energy. 

And  therefore,  we  can  rewrite  this  expression  as  equal  to  if  you  go  back  to  this

expression then we will rewrite this expression as k B g E f integral 0 to infinity E k

minus E f by zeta the whole square E raised to E k minus E F by zeta divided by 1 plus E

raise to E k minus E F by zeta the whole squared d E k. And, now x is E k minus E F by

zeta you replace this by this d E k will be equal to k B into T dx which I have already

shown you. Furthermore now you have the limits of integration if E k equal to 0, x is

equal to minus E F by zeta for E k equal to infinity x is equal to tends to infinity.

So, the specific heat can now be written as k B square into T the density of states at the

Fermi energy integral of minus E F by zeta to infinity, x square E raised to x divided by 1

plus E raised to x the whole square dx. So, now, we are coming to some point where we

can now have an integral, and this if you look at the lower limit of integral it is going

from a minus value to a plus value and what is important to see out here is that this

negative value if you take it to minus infinity it does not change things too much.
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Because, E F by zeta is of the order of E F by k B T which is of the order of T by T F this

is the Fermi temperature divided by the temperature ok, this is far far greater than 1. So,

e raised to x by 1 plus e raised to x the whole square for minus E F by zeta this is a very

large value. So, the minus value of this would all approximately be of the order of 1 plus



a very small  number the whole square where this  number is much much less than 1

which is of the order of E raised to x. So, therefore, your and this itself tends to 0.

So, already this number is very large minus E F by zeta the lower limit of integration is

already a very large number and it is almost making the contribution from this integral.

So, therefore, if you take x square into e raised to x by 1 plus e raised to x the whole

square this term goes to 0 as x tends to minus E F by zeta because E F by zeta is E F by k

B T which is of the order of T F by T which is much much greater than 1, it is of the

order of in fact, this term is of the order of 10 raised to plus 2. And so, if you go to a

minus value of this these exponential terms become very small and tend to 0 and so, this

term tends to 0 if you are going towards the negative limit.

So, already this term is 0 so, instead of going to this value if I take it to minus infinity, I

do not make any this lower limit which is E F by zeta, if I take it towards minus infinity

the lower limit by taking it to minus infinity I do not do any error in this integral. So,

instead of keeping the limits of integration from minus E F to zeta I will change it to

minus infinity and I do not make any errors by doing that because I already see that at

minus E F by zeta the integral is already contributing to only zeros.

And, so, if I take it to minus infinity even larger values it will make it even for the zeros.

So, in this negative direction I can take it to minus infinity. So, k B T into g E F integral

minus infinity to plus infinity x square e raised to x divided by 1 plus e raised to x the

whole square dx and it turns out that this is a standard integral whose value is pi square

by 3. This is a standard integral in mathematics were integral from minus infinity to plus

infinity x square e raised to x divided by 1 plus e raised to x the whole square dx. This

definite integral has a well defined value which is pi square by 3.
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And so, now, my specific heat of the electron gas finally, starts appearing which is pi

square by 3 g E F the density  of states at  the Fermi into k B square T. This is  my

expression for the density of states of the electron gas; this  is my expression for the

specific heat of the electron gas. This is my expression for the specific heat of electron

gas as obtained from Sommerfeld’s model.

The first things, that you see from this is that the specific heat C v is proportional to

temperature. Just as it was expected and was seen in the experiments that at very low

temperatures when you remove the contributions which are coming from the vibrating

ionic lattice what remains is only the specific heat of the electrons and if you look at the

behaviour temperature dependence of the specific heat of the electrons they are linearly

dependent on temperature and that comes out directly from the Sommerfeld’s model. So,

this is one of the major successes of the Sommerfeld's model.

The second success is that if I look at this expression a little bit more carefully if you

recall that g of E k was equal to 3 by 2 n by E F divided by E by E F raised to half,

because the density of states goes as this. And, now if I look at the density at E k equal to

E F the density of states is at the Fermi energy is 3 by 2 n by E F because this becomes

equal to 1. So, the density of states at the Fermi energy is nothing else, but 3 by 2 n by E

F and if I now replace this in this expression if I replace the behaviour of the density of

states at the Fermi energy I will get the specific heat as equal to pi square by 3 into 3 by



2 n k B into k B T by E F I am only rearranging terms. This is the expression 3 by 2 n k

B where 1 k B I have taken and joined it with this and this is k B T by E F.

Now, this is nothing else, but pi square by 3 3 by 2 N k B by V; N is the number of

electrons and V is the volume k B T by E F. What is this? This is nothing else, but 3 by 2

R the specific heat of the electron gas per unit volume from kinetic theory. This is the

specific heat of the electron gas per unit volume from Drude’s model or which uses the

electron gas model as kinetic theory. We are using the kinetic theory of gases you know

that it is going to be 3 by 2 R for n electrons in this gas it will be 3 by 2 R.

So, you see that that expression has returned back, but the specific heat of the electron

gas is not 3 by 2 R it has that term, but it is smaller than 3 by 2 R by an amount which is

this.
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So, the specific heat of the electron gas is pi square by 3 into 3 by 2 R by V k B T

divided by k B T F as the Fermi energy is written as k B times the Fermi temperature and

T by T F is of the order of 10 raise to minus 2, if you look at pi square by 3 into if you

put in numbers. For example, for copper if you put in the temperature and you calculate

the Fermi temperature which we have calculated earlier, this is about 80000 for copper

and temperature you take it as about 300 Kelvin and if you put in pi square by 3 you will

find that the specific heat of the electron gas is compared to the value which is obtained



from kinetic theory this ratio into pi square by 3 is of the order of 0.01. It will bring

down the value by 0 point 0 one compared to the kinetic theory of gases.

So, from the kinetic theory of gases, if you just were to measure the specific heat of the

electron gas that value would be 3 by 2 R at some temperature T. However, if you were

to  measure  the  specific  heat  of  the  electron  gas  it  would  be  linearly  temperature

dependent and at this temperature the actual specific heat would be 0.01 times the 3 by 2

R  value.  This  is  a  hypothetical  value  or  a  theoretical  value  which  is  obtained  by

considering the gas classical having a Maxwell Boltzmann distribution and it will give

you 3 by 2 R. But, if you use the Sommerfeld’s model and consider the gas as quantum

mechanical then it shows that it is far more lower than 3 by 2 R at this temperature, ok. 

So, there is a significant suppression with respect to the classical theory because of using

the quantum mechanical nature of the electron gas. So, this was a very major success of

the Sommerfeld’s model because now you could explain why is the specific heat of the

electron gas so much lower than compared to what you know from kinetic theory and

also you get the temperature dependence very neatly. Thus C v you can write it as pi

square by 3 density of states at the Fermi energy k B square T, ok. This is your specific

heat. 
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And, this term this constant C v can be written as gamma times T the specific heat of the

electron gas can be written as some constant into gamma times T where gamma is called



as the Sommerfeld’s constant. Gamma is the Sommerfeld’s constant, where gamma is pi

square by 3 density of states at the Fermi energy into k B square. This has a very specific

value and this of course, you can write it as pi square by 3 into 3 by 2 density divided by

the Fermi energy into k B square.

This Fermi energy you know is h cross square by 2m into 3 pi square n raised to 2 by 3.

We have already seen this as the expression for the Fermi energy. So, if you put that all

of that in here then you will get term which is this term Sommerfeld’s constant will be

given as pi square k B square n raised to 1 by 3 divided by h cross square 3 pi square

raised to 2 by 3 into m, where m is the mass of the electron in the solid.

So,  the  Sommerfeld’s  constant  depends  on  the  density  as  well  as  the  mass  of  the

electrons inside the solid. This is a function of the density and mass of electrons in the

solid.
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So, what you can do is that you can actually calculate the Sommerfeld’s constant, ok.

You can find  out  how much is  the  value  of  the Sommerfeld’s constant  for  different

metals, because you know that gamma is some function of the density of electrons and

the mass of the electrons. And, for mass you just use the bare mass of electrons whatever

is the bare mass of the free electrons you can use that to calculate the Sommerfeld’s

constant.



And, so, for different materials you can find out the value of the Sommerfeld’s constant

milli  joules  per  mole  per  degree  Kelvin  square,  in  these  units  if  you  find  out  the

Sommerfeld’s constant you can determine it and calculate it for different materials. For

sodium  the  value  which  you  measure  is  1.38.  So,  as  I  had  said  if  you  go  to  low

temperature and you measure the specific heat as a function of temperature then at very

low temperature there is a linear dependence of the specific heat.

So, if you are very far away from the room temperature at very low temperatures you

will get this linear temperature dependence of the specific heat which comes from the

electrons  inside  the  solid  and  from  the  slope  of  this  the  slope  is  equal  to  the

Sommerfeld’s constant  gamma.  So, you can not only calculate,  this  is  the calculated

value by putting in the density of electrons which you can of course, measure using the

hall if you recall that the hall coefficient R h is equal to plus minus 1 by n e. So, you can

measure if you measure the hall effect through the hall effect, if you measure the hall

coefficient you can determine the density or there is also the expression for the density

and you put in the mass of the electron which is the bare mass of the electron you will

calculate the Sommerfeld’s constant and you can derive it you can get it for all these

different metals.

From an  experiment  you  can  also  determine  the  Sommerfeld’s  constant.  So,  this  is

theoretically  calculated  and  the  experimentally  obtained  value  is  1.094.  So,  there  is

reasonably good match. Next if you go to copper it is about theoretically calculated value

is 0.695, the experimental value is 0.505 slightly different ok. If you go to gold 0.29 729

and 0.642, roughly they are similar. Aluminium 1.35 is the value you should theoretically

get, if you experimentally measure it you will get a value of 0.912.

This is now starting to become significantly different. There are materials like lithium

where one it is 1.63 and it is 0.749 more than 50 percent difference. There is a significant

difference as you between the theoretical value and the experimentally measured value.

strontium 3.6  and  it  is  1.790.  If  you recall  that  the  Sommerfeld’s constant  is  some

constant n raised to 1 over 3 into m it is some constant.

So, if you take the ratio of observed value, which you are getting from an experiment to

the theoretical value assuming that n is the same, the density is the same whether you are

using it for an experiment or for theoretical calculation the density is not different. The



difference between the observed and theoretical value is the mass of the electron which is

actually  present  inside  the  solid  divided  by  the  actual  free  electron  mass.  The  free

electron mass, the mass of an individual electron is m e that is what you are using in

theory.

So the ratio of the observed value to the theoretical value; so, if you take the ratio of this

to this you will get the ratio of the observed to the gamma theory which is nothing else,

but the actual mass of the electron divided by the mass of the free electron and that value

for sodium is about 1.26, it is about 1.38, so, 1.14, 1.48, 2.18, 2.0. So, you can see that

certain  materials  the  as  if  the  electron  inside  the  solid  the  electron  inside  the  solid

becomes heavy because the mass of the actual mass of the electron is approximately

twice the mass of the free electron.

So, compared to the mass of the free electron it looks like the m actual which is what you

get in an experiment is almost twice in some metals is almost twice that of the mass of

the free electron.  So, this is an unusual thing which comes up the moment you start

understanding where from is a specific heat of the electrons coming up it leads to another

new issue you see that the mass of the electron is no longer that of a free electron mass,

but sometimes it is higher. And, these are some of the drawbacks which are not explained

by the Sommerfeld’s theory.
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In fact, there are certain class of materials in which are certain class of compounds which

are  compounds  like  uranium  based  compounds,  cerium  aluminium  compounds  or

celicates like Ce Cu 2 Si 2. In this  if you do the same experiment  of measuring the

specific heat and from the slope measure the Sommerfeld’s constant and take the ratio of

theory observed to the theory you can show that the actual mass of the electron in these

metals can be as large as 1000 times the mass of the free electron.

So, here the electron really has become heavy. Compared to the free electron mass the

actual  electron inside the solid has become as if it  is a very heavy particle,  ok. The

electron inside the solid is no longer behaving like a free electron moving around freely

with a mass m e, but it is mass has increased, its inertia has increased and these go by a

very famous name which are called as heavy fermions. These are not explained within

the  Sommerfeld’s model.  So,  this  is  something  which  is  outside  the  purview of  the

Sommerfeld’s model, but yet the Sommerfeld’s model actually lends away to discover

such materials and these new phenomenas where actually the electron seems to be much

heavier than what it would be if it was free.

So,  we  will  discuss  next  a  few  of  these  drawbacks  which  come  out  from  the

Sommerfeld’s model.  Although the  Sommerfeld’s model  has  been very  successful  in

explaining the behaviour of the specific heat which comes out from the theory of the

quantum mechanical nature of the electrons it has its drawbacks. And, this is one of the

drawbacks that the electron mass does not behave like a the electron does not behave

really like a free electron. Its mass is very different could be very different from that of a

free electron and sometimes in some materials they can be orders of magnitude larger

than the free electrons.

We will continue this in the next lecture.


