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Lecture – 20
Understanding the electronic contribution to the specific heat of a solid Part-II

We had started looking at the behaviour of specific heat of the electron gas and trying to

understand from where from does the specific heat of the electron gas arise and what is it

is value. If you consider the electron gas as was considered by Drude within the purview

of kinetic theory of gases then you will get a number like 3 by 2 R. 
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However, what was seen as I have already discussed was that the specific heat way of the

solid which has the atomic lattice, the ionic lattice, which is the arrangement of this ions

and it also has the electron gas inside it. So, the net specific heat is the specific heat of

the ions inside the solid as well as the electrons and if you measure the specific heat of

the  solid  it  is  nowhere  close  to  3 by 2 R,  but  it  is  actually  3 R as  you reduce  the

temperature the specific heat goes down as T cube and then at very low temperatures you

have a linear temperature dependence of the specific heat.

This entire regime of temperature where you see the T cube dependence and the 3R

dependence  this  is  all  coming  from  the  vibration  of  these  ions  inside  the  lattice.



However, you get this linear temperature dependence at very low temperatures which are

sub Kelvin’s often sub Kelvin temperatures very very low temperature is below 4 Kelvin.

In this very low temperature regime you start seeing rather than this T cube dependence

you  see  a  linear  dependence  and  this  linear  dependence  is  arises  because  you have

actually frozen out the vibrations of the ions. 
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So, you no longer have this term which is coming from the specific heat of the behaviour

of the ions, from the vibration of the ions is  no longer present,  what you have only

present is the electrons. And these electrons now start contributing to the specific heat.

So,  if  you  change  the  temperature  at  these  low  temperatures,  slight  variation  in

temperature actually changes the energy of this electron gas and that gives rise to the

specific heat.
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And what was seen was that it has a linear temperature dependence and this specific heat

of the electron gas is almost 0.01 of 3 by 2 R. This is the value which you get from

kinetic theory of gases or within the Drude’s model, but the actual specific heat of the

electron gas is far lower. This value of the specific heat is far lower than 3 by 2 R, it is

typically 0.01 of R. So, where from is the specific heat of the electron gas coming and

this is where Sommerfeld’s idea became very successful.
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In explaining this linear temperature dependence of the specific heat and why is it. So,

much  lower  than  3  by  2  R and where  from does  the  specific  heat  arise  within  the

Sommerfeld’s model, you have these different energy states which you have from the

periodic boundary conditions you have different energy states. You start filling up these

states at low temperatures up to the Fermi level the states are all filled up.

And, at this low temperature if you change the temperature slightly, say you increase the

temperature slightly by dT then the electrons which are present within kB dT of this

Fermi energy though electrons  which are present within a small  region of the Fermi

energy which is of the order of k B T those electrons will observe the thermal energy and

will get excited to higher energy states. And as a result the electrons which were initially

occupying only up to this energy level will now start occupying higher energy levels and

so, therefore, the dE will also go up.

So, as you increase the temperature at the low temperature because of these excitations

of the order of k B T around the Fermi energy, the average energy of the system also

rises. And intuitively you can guess that as you increase the temperature you can acquire

higher and higher energy states there will be more change in the average energy of the

system and so, the specific heat should start increasing as a function of temperature. And

this was a very successful contribution and the basic idea of calculating the specific heat

of the electron gas inside a solid. So, let us go about calculating this specific heat. Now,

that the picture is in mind let us calculate the specific heat of the solid.
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And the first thing to do is that we would like to know how much is the change in energy

of the system which is defined as the total energy of the system the total energy of the

electron gas at temperature T minus the total energy of the electron gas at 0 Kelvin. 

Now, if you recall we had introduced the concept of the density of states and g of E k

Fermi Dirac E k minus mu was the occupancy of states at E k. This is the density of

states at E k and this is the probability of occupying those states. So, what is the density

of occupied states you may also call this as that the density of occupied states is nothing

else, but this quantity density of occupied states.

So, the number of occupied states between energy range E k and E k plus dE k will be g

E k f D E k minus mu d E k. This is the total number of states between E k and E k plus

dE k which are occupied. Each of these states has energy E k.
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So, the total energy of the system between E k and E k plus dE k occupied states is equal

to E k g E k f D E k minus mu dE k. This is the number of occupied states between E k

and E k plus dE k and this is the energy of each of the states. So, this gives you the total

energy of which is present between E k and E k plus dE k ok.

And so, the total energy of the system is nothing else, but if I integrate from 0 to infinity

all the energy states which are available from 0 to infinity E k g E k f D E k minus mu dE

k, this give me the expression for the total energy of the system for this Sommerfeld’s

system where the electron is a quantum particle and this is the total energy at a given

temperature T. And what is the energy at 0 temperature? The energy at 0 temperature is

nothing else, but 0 to infinity E k g E k f D E k minus mu at 0 temperature dE k. 

But,  what  is  the  Fermi  derive  distribution?  E  k  minus  the  chemical  potential  at  0

temperature the chemical potential at 0 temperature is nothing else, but the Fermi energy

which we have already calculated. This is E k minus E F the Fermi derive distribution E

k minus E f which at 0 temperature is 1 for all energies which are less than or equal to E

F and it is equal to 0 for all energies greater than E F. So, this range of energy which is

going from 0 to infinity this will pick up a 1 only from 0 to E F and for all energies

above E F this factor will become equal to 0.
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So, therefore, the energy at 0 temperature will be integral 0 to E F E k g E k f D E k

minus E F dE k plus integral E f to infinity E k g E k f D E k minus E F dE k; this is 1,

this is 0. In this range from energy is which are above E F the Fermi derive distribution is

0. So, this becomes equal to 0 to E F E k g E k dE k. So, therefore, if I write how much is

the change in energy which is equal to the total energy at a given temperature minus the

energy at 0 temperature, this can be written as 0 to infinity E k g E k f D E k minus mu

dE k minus integral 0 to E F E k g E k dE k. 

Now, this integral we start now this is the chemical potential at a finite temperature T

which is not equal to 0, this is T is not equal to 0. Now, this integration I changed from 0

to E F E k g E k f D E k minus mu dE k plus integral E F to infinity E k g of E k f D E k

minus mu dE k minus integral 0 to E F E k g E k dE k. Let us call this equation as

equation 1, where I have just read it in this by taking it from 0 to E F and E F to infinity.

And, then let us look at  what are the contributions.  Because, you know that at finite

temperature the distribution becomes is no longer like this, but the distribution. So, there

are electrons from below the Fermi energy have got excited to states which are available

above the Fermi energy. This is the Fermi derive distribution, this is 1, this is the energy.

So, for electrons which are roughly below the chemical potential those states have got

unoccupied and electrons have got excited. So, we are breaking it up into two parts; one

is up to E F and the other is from E F to infinity. Let us look at another term. 
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The total  number  of  electrons;  the  total  number  of  electrons  can  be  written  as  0  to

infinity g of E k f D E k minus mu which is a function of temperature dE k this is at

finite temperature which is also equal to integral of this is N by v the density which is

equal to 0 to infinity g E k f D E k minus mu at temperature T equal to 0 dE k. This is the

definition of the total number of electrons if you recall the total number of electrons was

twice summation of k f D E k minus mu. 

This is the definition at any temperature which can be written as per 0 temperature f D E

k minus mu at 0 Kelvin which is twice of summation over k f D E k minus E F because

mu at 0 temperature is E k this at 0 temperature is at E F and this is at finite temperature,

this is T not equal to 0. 

So, this expression can be read it and like this density of states at E k. The density of

states into this and 0 to infinity this we can break it up in to two limits.  So, we can

rewrite this as 0 to E F g E k f D E k minus mu dE k plus integral E F to infinity g E k f

D E k minus mu dE k is equal to integral 0 to E F g E k dE k, because f D E k minus E F

is equal to 1 for E k less than or equal to E F and is equal to 0 for E k greater than E F.

So, if you put that here in this expression anything which is greater than E F will pick up

a 0, so you will not have the and there was below 0 is into 1, so this. 

And now this expression this entire expression you multiply it by E F. So, you will get

integral 0 to E F; E F into g E k f D E k minus mu d E k plus integral E F to infinity E k



g E k f D E k minus mu dE k is integral 0 to E F E k g E k dE k. So, I can write my

integral E F to infinity E k g not E k, this is E F this should be E F, this is E F. So, this

integral E F g E k f D E k minus mu d E k is equal to integral 0 to E F E k g E k d E k

minus integral 0 to E F E F g E k f D E k minus mu dE k. And, this is my expression 2

and I take expression 1 minus expression 2, where expression 1 is the earlier expression

this expression from this expression I subtract this. So, with that we can get a term for

this. 


