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Fermi energy and Fermi sphere Part – II

 

We had seen going about calculating the total number of particles using the expression

for the Fermi Dirac distribution through which we wanted to get a way to calculate the

Fermi energy.
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And there we use the idea that states up to the Fermi energy or the Fermi momentum k F

are occupied. And anything or any states which are outside that are unavailable because

the Fermi  Dirac distribution governs  that.  And so we come across  this  idea that  we

construct a Fermi sphere and all states which are within this Fermi sphere are completely

occupied. 

You have a  number of  states,  you start  putting  in  electrons  they start  occupying the

state’s 2 electrons per state. And this is occupied until you reach the boundary of the

sphere whose radius is k F in momentum space. And anything which is outside that are

completely vacant, they are completely unoccupied. This is all at temperature T is equal

to 0 Kelvin. 



So, we define something called as a Fermi sphere or the Fermi sea which is at the surface

of  this  sphere.  So,  you  have  a  sea  of  electrons  at  the  surface  of  a  sphere  whose

momentum is  k F, the sphere separates  states  which are occupied below it.  And for

momentum states which are above it are unoccupied. And so therefore, our integral is

non-zero  only  for  momentum  states  which  are  less  than  or  equal  to  k  F  they  are

completely occupied. And so this integral will be basically the volume of the sphere ok.

And so you can now use this to evaluate your Fermi, you can just rewrite this and you

will get your Fermi momentum as or the Fermi wave vector is 3 pi square n raised to 1

by 3.

This  is  your  Fermi  momentum where  n  is  now the  density  of  electrons.  The Fermi

momentum or  the  Fermi  wave vector  the  size  of  this  vector  which  is  the  boundary

between occupied and unoccupied states. The maximum momentum of the particle is

governed by the particle number or the density of particles that you have inside the solid.
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And this also gives you the Fermi energy now, because you know that the Fermi energy

is h cross square by 2 m k F square. So, now, the Fermi energy is h cross square by 2 m 3

pie square n raised to 2 by 3. This is nothing else, but the chemical potential at T equal to

0 Kelvin. So, starting with this expression for counting of momentum states following

the occupied and unoccupied states at T equal to 0 Kelvin.



We get an expression for the Fermi energy and this is related to, not to the temperature

this is the energy of very close to what is the maximum energy which the particles have

inside the system. So, the energy of the particles which are on the Fermi say sea, which

are on the surface of the sphere that energy is the Fermi energy. And it is proportional to

the density of electrons temperature has no role to play in determining the kinetic energy

of these particles which are sitting on the Fermi sea.

Quantum mechanics has fully governed getting this energy scale inside the problem. And

you can understand it, it basically arises out of Paulis exclusion principle that you have

discrete set of states ok. And as you start filling up this discrete set of states you start

filling up with particles as you keep on adding particles. There is 2 particles per state

spin up and spin down particles you keep on adding these particles. And so they keep on

going to higher and higher energy states, this is energy E1, E2, E3 each of them has

momentum k 1 k 2 k 3 k 4 these are discrete momentum states which we have already

shown.

And this way you keep on adding more and more particles and they start  occupying

higher and higher energy states until you exhaust your particles. All of this we are of

course, speaking at T equal to 0 Kelvin and this is where your chemical potential is going

to sit, which is your Fermi energy which is close to what is the maximum energy the

particles will have. And as you know your Fermi Dirac distribution is going to be this.

So, your Fermi Dirac distribution will be occupancy 1 until you reach, this is your energy

E. So, until you reach your Fermi energy the occupancy is going to be 1 and then of

course, it drops to 0. So, all states are fully occupied and this gives you the maximum

energy which has to be proportional  to the number of particles.  More the number of

particles higher you can go up in energy. Lower the number of particles lower will be the

location of the Fermi energy.

So, this tells you that the average momentum or the average energy of the system of

particles  or the electrons  average energy of the electrons  inside the solid because of

quantization of the states and Fermi Dirac statistics, Pauli’s exclusion principle plays a

very important role is not governed by temperature rather it  is governed by the total

number of particles. So, this is the concept of a Fermi energy which clearly comes out

because of quantum mechanical  considerations,  essentially  Pauli’s exclusion principle



plays a very important role to give rise to this concept of the Fermi energy which is close

to the maximum energy which the electrons can have.

And it also gives rise we come across this concept of your Fermi sphere and the Fermi

surface. This surface is called the Fermi surface the solid surface of the sphere which is

the boundary between occupied states and vacant states. This Fermi surface, this surface

is called the Fermi surface or the electrons which are on this surface and moving with a

momentum k F is called the Fermi sea.
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So, k F is 3 pi square n raised to 1 over 3. So, your actual Fermi momentum is h cross k

F which is h cross 3 pi square n raise to 1 by 3. And therefore, you can get the Fermi

velocity which is P F over m which will be h cross over m 3 pi square n raise to 1 over 3.

You can also obtain your Fermi velocity, your Fermi energy anyway is h cross square k F

square by 2 m. So, that is h cross square by 2 m 3 pie square n raised to 1 by 3. 

So, this is the energy of the particles which are sitting on the Fermi surface and the

velocity of those particles or the momenta are given by these expressions and they are

controlled by the density. So, let us do an calculation how large is this Fermi energy and

how large is the Fermi velocity of these particles, how high do they turn out. So, for a

copper metal, for a metal of copper we know that you know you can calculate the density

as the Avogadro’s number times the density of the electrons into Z divided by A this is

the atomic mass this is the density and this is the number of electrons each atom can



donate. And using this density of copper we know is 8.45 into 10 to the power of 22

electrons per centimeter cube. And it has also been measured to be in this range. And if

you use this density and you calculate the Fermi energy of the system the Fermi energy

for materials like copper. 

So, you can put this in here and you can also put it in here and you can calculate the

Fermi energy. And you can do the same thing for other metals and the typical values of

Fermi energies that you will get let me write them down. This turns out to be about 7

electron volts this is about 5.48 electron volts 5.51 e V 11.63 e V. So, the maximum

energy or close to the maximum energy the electrons can have inside a metal because of

these quantum mechanical  considerations  turns out to be far larger than what can be

generated by thermal energy. 

These are of the order of few 10 of electron volts, since copper it is 7 electron volts, in

silver it is 5.4, 5.5 silver and gold have similar sort of Fermi energies of 5.5 aluminum

has 11. So, these are very large energy scales which are being generated inside the solid.

Primarily because again I repeat it is because of quantum mechanical considerations.

If we were to estimate how much is this temperature which corresponds to this much of

energy and try to seek and thermal energy produce it. Then there is a very simple way of

doing it that we may write that the Fermi energy suppose we could write it as equal to

some temperature which can give an energy which is equal to Fermi energy. Then if

thermal  fluctuations  are giving you this  energy we write KbT as equal  to this Fermi

energy; T is the Fermi temperature the equivalent temperature which can generate an

energy of this order.

So, TF is nothing else, but Fermi energy by Kb. And for the heck of it if you just put

seven electron volts out here divided by Kb put it in the right units you will get this as

something like 80,000 Kelvin which is  actually  far larger than what the material  the

material will vaporize at 80,000 Kelvin. So, this temperature that is associated with this

sort of energy this far larger than what is given by the actual temperature of the system.

The metal you will maintain it as 300 Kelvin or so, but the Fermi energy far larger than

the  temperature  at  which the metal  is  being  held  at.  It  is  not  related  to  the  thermal

fluctuations inside the system and that is the concept of the Fermi energy.
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If you calculate the Fermi velocity again in the same way using the earlier formulas it

will turn out to be in the range of 10 raise to 6 meters per second which is about one

percent of the speed of light. It is roughly about 1000 kilometers per second ok. This is

the  typical  velocities  you  will  get  Fermi  velocities  which  are  of  this  order  for  the

different materials, 10 raise to 6 to 10 raise to 7 meters per second square and meters per

second and these are very large velocities again.

So, the electrons which are sitting on the Fermi surface which are sitting on the Fermi

sea are moving with very large velocities. And this is the basic difference that comes out

from in some of his theory compared to Drude’s theory. And now your mean free path

which is velocity into the collision times will increase to about 100 angstroms. Because

your velocities have now gone up by 1 to 2 orders of magnitude.

So, your mean free paths have become much longer than the lattice spacing’s which were

1 to 10 angstroms, now they have become much larger. And so summer field was able to

explain why electrons inside the solid typically are associated with large velocities. It is

because of fundamentally because of these considerations which we have discussed.


