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Lecture – 13
Introduction to Sommerfeld's Theory of electrons in a metal Part – III

We had begun looking at the Sommerfeld’s picture of how an electron moves through the

solid and the important thing with Sommerfeld’s realized was that the electron does not

really follow the kinetic theory of gases. Its distribution is not like a Maxwell Boltzmann

distribution,  but the distribution follows quantum statistics.  Inside the solid you have

states energy states which are available and the electron fills up these energy states and

the way they these states are filled up is governed by the Fermi Dirac distribution. 

(Refer Slide Time: 00:53)

So,  there  is  a  chemical  potential  mu  up  to  which  the  states  are  occupied  with  our

occupancy  or  with  a  probability  of  1,  and  above  it  becomes  0.  The  0  temperature

chemical potential is an energy level which is close to the maximum energy which the

particles have at 0 temperature and that is what we call as the Fermi energy. And the

general way to determine your chemical potential is that, if you count all the number of

states which are occupied,  then these are all  the states which are occupied up to the

chemical potential multiplied by two particles per state, then the total number of particles



you will get the total number of particles. So, if you solve this equation you will get your

chemical potential.

(Refer Slide Time: 01:43)

So, we consider that the solid is a cube of sides of length L we had seen this already and

you write down the Schrodinger’s equation for the free electron, whose energy is given

by this E k is equal to h cross square k square by 2 m and psi k is the wave function of

the electron.

(Refer Slide Time: 02:07)



Being free electron we consider it like a plane wave. So, this is your plane wave solution

for the free electron, which is moving through the solid. And you consider the solid has a

finite volume, you normalize it and you get the constant the amplitude which is 1 by

square  root  of  V for  this  wave  function  and  then  you  have  to  put  some  boundary

conditions on this wave function.

(Refer Slide Time: 02:29)

Now, is it that all momentum states because you want to generate the energy states which

are available inside the solid, using the plane wave, you want to generate what are the

energy states available are there a continuum of states or are there some finite discrete set

of  states  which  are available.  And for that  some of  will  used the periodic  boundary

conditions.

So, in your problem of just a single electron inside a box you consider that the wave

function becomes 0 at  the two edges, but this has a problem because it gives rise to

standing waves inside the solid which you want a propagating mode, you want electrons

to actually propagate through the solid you do not want them to be static and you do not

want them to be standing wave type solutions.



(Refer Slide Time: 03:39)

So, what Sommerfeld considered was this very important periodic boundary condition.

That the wave function at x is equal to the wave function at x plus L and this leads to

solutions which are of the travelling wave form where this is not a solution where you

have nodes, but instead this is a solution, so you do not have nodes at the edges of the

sample. And if you use this sort of a periodic boundary condition in one dimension then

you will get a condition on your wave function which is e raised to i k into L is equal to 1

which  gives  you  a  condition  on  your  momentum,  that  the  momenta  is  going  to  be

integral multiples of 2 pi by L.

(Refer Slide Time: 04:05)



The net wave function psi k x, y, z is k psi k y y, psi k z. So, these are the mementos in

the x, y and z direction, ok. So, we write the net wave function as the product of these

wave functions and then you can show that you can write down the periodic boundary

condition as psi x plus L, y plus L and z plus L is equal to psi x, y and z. Namely, there is

a periodic boundary condition along the x direction along the y direction as well as along

the z direction. And all of this leads to the condition on k x, k y and k z. So, let us write

down the conditions on k.

(Refer Slide Time: 05:11)

So, you will have e raise to i k x into L we consider that the cube is symmetric it has a

side of length L, length,  width and height are all  of length L, and so if  you use the

periodic boundary conditions you will have this e raise to i k y into L will be 1 and e

raise to i, k z into L will be 1. And this will put conditions on k x, these will give you

your momentum states or the energy states, k y is equal to 2 pi n y over L and k z is equal

to 2 pi and z over L. These are your different momentum states, where n x is 0, 1, 2 and

so on; n y is 0, 1, 2; n z is equal to 0, 1, 2 and so on. So, these are your different

momentum states.

So, you generate your momentum or energy states inside the solid which is a cube with

sides of length L. And now the states that you generate you will have to start filling up.

So, can we use this expression, N is equal to summation of all the momentum states this

is the Fermi Dirac distribution e k minus mu, which at 0 temperature at t equal to 0



Kelvin this expression N is equal to twice of summation of all momentum states f D, E k

minus E F as mu is equal to E F at 0 Kelvin. So, can we use this expression to evaluate

what is the fermi energy of the system for this solid?

(Refer Slide Time: 07:19)

If I look at the momentum of my electron in the solid it has momentous k x, k y and k z.

And these will be typically for n x n y you know you will have 0, 0, 0; you will have 2 pi

by L 0 0; 0 2 pi by L 0; 0 0 2 pi by L, 2 pi by L 2 pi by L 0. And like this you will have a

discrete set of states you will have a discrete set of momentum states inside the solid,

each of them have their own kinetic energy which is given by E k is equal to h cross

square by 2 m, k x, k x square plus k y square plus k z square. So, from these discrete

momenta states you will get discrete energy states which will then be filled up based on

Fermi Dirac distribution.

So, now, let us look at this momentum space k x, k y and k z, this is the 0 momentum

state which is the 0, 0, 0 and every subsequent state either in the k y direction or in the k

z direction or in the k x direction all the momentum states are spaced by a distance of 2

pi by L. These are the discrete momentum states or the energy states in the momentums.

These are the discrete momentum states that we have we are drawing here which we

have obtained just now and the spacing between any two points in either direction is

either 2 pi by L. 



And you can draw what is the smallest. So, there is a point in the k x, k y plane which

will have 2 pi by L, this is this point which is in the k x, k y plane which will be this

similarly there will be another point here, and you will have another point here, and you

will  have another point here. So, you will have one such cube like this  there are no

momentum states which are available. So, the smallest volume in the momentum space is

equal to 2 pi by L the whole cube. This is the smallest volume because this distance has 2

pi by L this is 2 pi by L and similarly this length is 2 pi by L, ok.

You can show for yourself that this is the smallest volume. Below this volume there is no

states which are available. 


