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Lecture - 11
Introduction to Sommerfeld’s Theory of electrons in a metal Part-1

We have till now looked at how you can understand the motion of an electron through a

solid. And the first understanding was given by Drude, where he considered the electron

as classic objective and considered the kinetic theory of gases to describe the electron

inside the solid inside the metals specifically.
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So, while Drude has its successes there are some major inadequacies within the Drude’s

theory. So, how do we go ahead from here? So, the way to go ahead from here is the next

topic that we will look at the Sommerfeld’s theory of free electrons in a metal or the

Sommerfeld’s model of free electrons  in a metal.  So, this  is  what we will  now start

discussing. So, what was the one of the main ingredients of the Drude’s theory? One of

the main ingredients of the Drude’s theory was that, you have classical electrons inside

the system. And it was well known since J J Thomson discovers after the discovery of

the electron by J J Thomson, that very soon it was realized that electrons are with the



development of quantum mechanics and so on that electrons have quantum particles, so

they can really behave like classical objects ok. 

And  Sommerfeld  was  A.  W. J  Sommerfeld  was  a  very  famous  physicist  who  had

contribute its significantly in quantum mechanics he was the first one to propose the

orbital quantum number which actually determines the shape of the orbital. So, this came

from Sommerfeld he also gave the spin quantum number. He understood that the electron

as the quantum particle. So, when you are describing a electrons in a metal you certainly

cannot consider them as classical.
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So, we look at Sommerfeld’s model of an electron in a solid. Now, if you recall that the

Drude’s model  had basically  a  Maxwell  distribution of electrons  inside the solid  the

Drudes model if the probability distribution of the electron as a function of velocity has

got this Gaussian type shape. And this was the Maxwell-Boltzmann distribution Maxwell

Boltzmann distribution.

Now, when Sommerfeld started thinking about the behavior of electron inside the solid,

during  that  time  it  turned  out  or  it  was  already  available  that  the  electron  follows

quantum statistics. And by that time the quantum statistics of particles was well-known

you have fermions and bosons which have very different quantum statistics.  And the

probability distribution of the electron does not follow the Maxwell Boltzmann, but it

has a very different statistics.  This was realized immediately by Sommerfeld,  and he



proposed that electrons inside the metal do not follow a Maxwellian-Boltzmann type

distribution,  but  the  energy distribution  of  the  electrons  inside  the  solid  follows  the

Fermi-Dirac statistics.

So, he immediately realized that electrons are quantum particles inside the metal, and

therefore the statistics  or the energy distribution of these electrons which are present

inside  the  metal  will  follow the  Fermi-Dirac  statistics.  So,  what  is  the  Fermi-Dirac

distribution?  The  Fermi-Dirac  distribution  to  recall  is  given  by  the  Fermi-Dirac

distribution for a particle with an energy e is given by this expression 1 by 1 plus e raised

to e minus mu by k B T. This is the probability distribution of electrons as a function of

energy e of the electrons. 
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If  we  sketch  it  out,  then  Fermi-Dirac  distribution  looks  like  this.  This  is  the  Fermi

function of e; this is the probability. And let us look at the distribution at a temperature T

is equal to 0 Kelvin. What this tells you is that at 0 Kelvin, the probability of occupying

states of energy e is one for the electrons up to an energy which is mu after which the

probability beyond which the probability becomes 0. So, this is 0 out here.

So, for all energies which are less than mu at temperature T equal to 0 for all energies

which are less than or equal to mu, they all are occupied with probability 1. There is 100

percentage occupation probability of those states, so you have different states inside the

metal or inside the material energy states. And the occupation of those energy states for



energies less than mu is 1. And for the energies greater than mu, it is 0, that is given by

this expression. k B is the Boltzmann’s constant; T is the temperature. And mu is called

the chemical potential of the system. So, the electrons rather than having the a Gaussian

type  of  distribution  the  electrons  the  energy  distribution  of  the  electrons  follows  a

statistics which is the Fermi-Dirac statistics which is this as I show you here. 

Now,  if  you  increase  the  temperature  this  is  at  0  Kelvin  ok,  if  you  increase  the

temperature then what is  going to happen is  that,  you will  find that  this  distribution

changes slightly as a function of temperature and there is a tail which develops. So, we

can understand it in slight more details by giving you a specific example and a specific

picture and that is the following that if you have let us consider the picture of a particle

confined in a box of length L.
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 A particle which is confined in a box of length L. So, you have a box of length L and the

particle is confined in this box. The particle is a free particle. And now the particle obeys

Schrodinger’s  equation  and  we  are  going  to  consider  one  dimension.  So,  the  one

dimension form of the Schrodinger’s equation is minus h cross square by 2 m del square

sin by del x square is equal to E psi, where psi n is the nature of the wave function which

you can fit in this box. This is the energy of the particle E n is the energy Eigen state of

the particle.



And we know the solution of this problem; you have worked out the solution for this

problem often. The ground state energy is where the wave function has is like this. The

next exited state has a wave function which has a node in the center and then you get all

the higher energy states. But all of them have the wave function becoming 0 at the edges

of the sample at the ends of the samples you have the wave function becoming 0. 

So, the solution for this wave function is A sine so that at x equal to l at x equal to l or x

equal to 0, the wave function becomes 0. This becomes 0 at x equal to l or x equal to 0.

At the two corners, it is 0 ok. And if you write down the energy of this state, if you take

the second derivative of this expression you take the second derivative d square psi n by

d x square and you put it in here, you will get your energy of the system.
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And energy Eigen states will turn out to be h cross square by 2 m n pi by L the whole

square ok. You will directly get it by taking the second derivative putting it in here. You

will see that immediately and putting this value out here, and the second derivative out

here,  you will  get  your  energy Eigen states.  So,  these are  the energy states  that  are

available in the system.

So, let us draw these energy states. This is your ground state, the first exited state, second

exited state and so on ok. So, these are your energy levels e 1, e 2, e 3, e 4 and so on.

Now, so these are the energy states which are available for a particle you put inside this

box. And now what we will do is that we will start distributing the particles in this box.



So, what will have you have spin half particles. And as you will follow Pauli’s exclusion

principle the Pauli’s exclusion principle will actually put for you two particles per state

this is one electron and other electron one spin up one spin down. So, you will first put

two particles here, then the next particle will go here and that the next will go here, and

you will start filling up. You will start filling up the state as you go along ok. So, as you

put more and more particles, you will start filling up the states.

Now, what does the Fermi-Dirac distribution state, the Fermi-Dirac distribution states as

that see along this axis our energy is varying along this axis along, this axis our energy is

varying. Here we have the Fermi-Dirac distribution. What does it state, this states that

the probability of occupying all these states is going to be fixed up to a certain value ok,

and that value suppose we are looking at all of this at temperature T equal to 0 Kelvin.

The Fermi distribution is going to say that the probability of occupying e 1, e 2, e 3, e 4

is going to be 1 up to a certain value and then it is going to fall, it is going to become 0 at

this energy mu and above it is all 0. So, the particle is going to occupy up to this point

and above it all is empty. So, this is what means about the distribution is that when you

start  filling up the particles,  you will  start  filling up the particles up to the chemical

potential mu. And this is at t equal to 0, and then above them it is going to be empty. So,

there is an energy important energy scale in the problem which is sitting at the boundary

between completely filled state and completely empty states. The same thing will change

a little if you include temperature into the problem.

If you look at the temperature which is not equal to 0 Kelvin, some higher temperature

then what will happen is that things will change slightly. So, these are the same states

that you have inside the system. Now, you are working with a finite temperature ok. And

if you now start looking at the distribution, then you start putting in two particles, but

near about this point you give enough thermal energy, that one particle comes here and

another particles goes here another particles goes. So, they start occupying higher energy

states. A particle which was originally occupying only these states now starts occupying

the unoccupied states.

And now if you look at the Fermi-Dirac distribution of this system, then you will find

that it is completely occupied, but then as you go higher you start getting higher energy

states. Here I am just showing one for an example, but for lot of particles you will start



redistributing the particles around this high energy point and you will start creating a

distribution, where there will be some states will become vacant. For example, here you

now  have  a  vacancy  and  there  are  higher  states  which  start  getting  occupied.  The

particles  are  distributing  across  available  energy  states  following  Pauli’s  exclusion

principle, where temperature is now playing no role.

In  this  distribution,  in  the  Maxwell’s  distribution,  you  had  temperature  playing  an

important role, where you have particles distributing depending on the temperature. But

now you have particles which are distributing amongst available energy states e 1, e 2, e

3, e 4, the Eigen states of the system following this quantum mechanical principle of

Pauli’s exclusion. And the distribution of these particles is governed by the Fermi-Dirac

distribution. So, with these concepts, we will try and see how to apply it to understand

the properties of a metal.


