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Understanding Thermal conductivity of a metal using Drude's Model Part – II
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We had started to look at how to conduct the Thermal conductivity of a metal. And for

that we need to find out how much is the net energy being transported across this point x,

we had a one-dimensional type of a metal, we had a one-dimensional construction of a

metal, where you have a hot end and you have a cold end. And electrons are flowing

from both the hot end and the cold end. And we are going to consider that on the average

n by 2 density of electrons are going to cross from the hot end to the cold end, and n by 2

density of electrons are going to cross from the cold end to the hot end.

So, let us consider from this point x at a distance of v times tau, this point x minus v

times tau the location which is on the hot end side. And we look at the electrons which

are flowing from the hot  end side towards  x.  At  this  point  x  times v times tau,  the

electrons have the energy of the electrons on the hot end side at x minus v times tau, let

us write it as the energy of these electrons which are on the hot end side, the energy of



these electrons which are on the hot hand side is determined by the temperature at x

minus v times tau.

It  is  one of  the  natural  of  assumptions  of  Drude’s theory  that  the  electron  which  is

present out here, the energy of the electron is determined by the local temperature at that

point. So, the energy of the electron at this hot end side will be E which is a function of

the temperature T at x minus v times tau. Similarly, the energy of the electron which is

on the cold end side will be determined by the temperature at x plus v times tau. And

why are we using these v tau distance intervals, because whatever is the electron at x

minus v times tau it will carry its energy and momentum undisturbed to reach up to point

x.

Similarly,  from x  plus  v  times  tau,  the  electron  will  move  undisturbed  without  any

scattering or collisions up to point x because v times tau is the mean free path. So, there

is very low probability of collisions which are going to happen for these electrons which

are within v times tau interval of x. However, the temperature on one side because there

is a temperature gradient across the sample, this point is sitting at a temperature of x

minus v times tau. And this is sitting at a temperature of x plus v times tau and that is the

basic idea.

So, the energy of the electrons on the cold end side at x plus v times tau is governed by

the temperature at x plus v times tau ok, because the sample has a temperature gradient

ok, and then only there will be some flow of energy. So, now, with this built in let us

calculate how much is the net heat flux that is moving from the sample from either ends.
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So, let us redraw this picture. You have x; you have the hot end side; you have the cold

end side. This point is at temperature x minus v times tau, and this is at temperature x

plus v times tau. These distances are of the order of mean free path. So, the electron

which is coming from the hot end side, and the electron which is coming from the cold

end side, this is moving with a velocity v. This is moving with a velocity minus v. And n

by 2 is the density of electrons which are moving from the hot end to the cold end; and n

by 2 is the density of electrons which are moving from the cold end to the hot end.

So, we can write down the net heat flux from the hot end to the cold end will be n by 2

into v into the energy which is determined at the point t x minus v times tau, n by 2 is the

density of electrons which are moving from left to right, v is the mean velocity of the

electrons mean speed of the electrons they are moving from left to right. And E is the

energy of the electrons which are determined by the local temperature present at x minus

v times tau - the hot end side. Because those are the ones which will carry the energy,

those which are further away will scatter randomly and the net average momentum will

go to 0.

So, there will be no net momentum for these electrons which are away from v times tau

because they will undergo multiple scatterings, they will not carry any net momentum

flux which will cross the point x. It is only for those electrons which are within v x star

which have reached up to that point which whose a velocity is going to be determined or



the momentum is going to be determined by the local temperature at this point. They are

the ones which will continue on scattered up to point x. And therefore, contribute to a net

momentum flow across x, and thereby give rise to a net flow of energy and heat current

across that point and that is the basic idea.

So, you have a one term which is the net heat flux which is coming from left to right.

Similarly, you have another heat flux which is coming from right to left. And so the net

heat flux from the cold to the hot end is n by 2 into minus v, because now recall that the

velocity of these electrons is in the opposite direction to this distance x, these are drifting

in the opposite direction. However, their energy which will contribute to the net heat flux

will be determined by the local temperature at the cold point which is x plus v times tau.

So, the energy is a function of the local temperature x plus v times tau. And as I said the

electrons at these points whatever their momentum is governed by or determined by the

local temperature at this point. And they are the ones which will continue undisturbed

without scattering and carry a net momentum across x which will give rise to a net heat

flow. So, the net heat flow, the net heat flux across x point is just the sum of 1 and 2, it is

just sum of 1 and 2, you just take the summation of these two terms in this simple one-

dimensional picture.
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So, let us now calculate this term. The energy on the hot end side of the electron which

are within v tau of the point x is determined by the local temperature at that point which



is x minus v times tau. Now, this temperature x minus v times tau, I can easily Taylor

expand it,  because it  is a very small  interval  around x. I can easily  expand it  to the

temperature at point x minus v tau into dT by dx. And so I can write this as and I neglect

higher order terms. So, I am going to neglect all the higher order terms and only consider

the first order correction.

So, the temperature minus delta T, where delta T is v times tau dT by dx. And so the

energy at T x minus v times tau is nothing else but the energy at T minus delta T. And

this again I can Taylor series expand, energy at point T minus delta T into d E by dT.

Again Taylor series expansion, this is the Taylor series expansion where I am going to

neglect all the higher order corrections. And so if I put it this all of this here, the energy

at x minus v times tau can be written as energy minus v times tau into dT by dx into d E

by dT.
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And you can write a similar expression for v plus for the temperature at v plus tau, for

the energy at temperature x plus v tau. This will be energy E T plus v tau dT by dx into d

E by dT. And the net heat flux J q, if you recall was the sum of two terms, one was n by 2

into v into energy of T x minus v times tau plus another term which was n by 2 into

minus v into energy of T at x plus v times tau. 

And now we have got these expressions. These are approximations you can put that in

here and after you put those terms here and taking into account these negative signs



which are present in the above expressions as well as here. You will end up with an

expression which is n into v square tau dT by dx into d E by dT.

This is the net heat current which is flowing along the x direction. This is the heat current

in  this  one-dimensional  piece  of  a  metal  where  you  have  maintained  a  gradient  in

temperature across the metal, and how much is the heat current which is flowing across a

given point x and that you have a very general expression for this. And this if you recall J

q will be I am sorry there is a negative sign here, there will be a negative sign which you

will  get  out  here.  And this  is  nothing  else  but  in  the  one  dimension  is  the  thermal

conductivity into dT by dx ok. And so your thermal conductivity turns out to be n into v

square tau d E by dT.

So, using this Drude’s idea, you can get an expression for the thermal conductivity of the

metal.  The thermal  conductivity  itself as you see is modified by the presence of this

scattering. The scattering actually changes the thermal conductivity of the material ok.

And  d  E  by  dT is  the  change  in  the  total  energy  of  the  particles  as  a  function  of

temperature and that is nothing else but specific heat, you know this is the specific heat.

So, k is n v square tau times the specific heat. This is for the thermal conductivity in the

x direction for this one-dimensional system ok.

And so you have a nice expression where you can see that n is the density of electrons, v

is the average speed of the electrons inside the metal, tau is the scattering time, and c v is

the specific heat of the electrons inside the metal ok. You can also work it out for the

three-dimensional case. And if you work it out for the three-dimensional case, now this is

the thermal conductivity in the x direction; you will get a thermal conductivity in the y

direction; you will get a thermal conductivity in the z direction.
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So, you will get terms like kappa is equal to n v x square tau d E by dT in the x direction,

in the y direction nv y square tau d E by dT. And the kappa in the z direction is n vz

square tau d E by dT. For a  general  three-dimensional  material  with you maintain a

certain  temperature  gradient  across  the material  and then  in  different  directions  how

much is  going to be the thermal  conductivity  will  be governed by how much is  the

velocities that you have in the x direction the velocities or speeds in the y direction and

the speeds in the z direction.

And here  we are  going to  again  go  into  our  assumption  of  the  free  electron  theory

namely the kinetic theory of gases, where we will assume that if there is no other effects

of anisotropy, there is no reason to assume that the velocity in the x direction or the y

direction or the z direction will be very different from the mean velocities in any other

direction. So, we will consider that the average velocity in the x direction is roughly one-

third the total mean velocity where this square is v x square plus v y square plus v z

square.

Similarly, the velocity in the y direction is going to be equal to the velocity in the z

direction will be one-third of v square which is equal to v x square. So, this is a well-

known thing that you do in the kinetic theory of gases. And so you can put that in here

and you get the average conductivity, the thermal  conductivity  of the material  is n v

square tau by 3 d E by dT which is again the specific heat. So, it is one-third n v square



tau times the specific heat ok. So, you can also find out what is the average thermal

conductivity  of the material  for a  three-dimensional  material.  Given that  you have a

three-dimensional material most a lot of our materials are three-dimensional. And what is

the thermal conductivity of this metal in three dimensions. C is the specific heat of the

material, and v is the mean square average velocity of the material, n is the density of

electrons.

Now, with this let us look at a little bit more about the thermal conductivity. We have

obtained a way to actually estimate the thermal conductivity of the material. Now, let us

go into a little bit of the details of the Drude’s model. And in Drude model you know that

there is a Maxwellin-Boltzmann distribution, we have seen that we can write down an

expression for a 3D material across which we maintain a hot and cold end. Suppose we

have a hot end and you have a cold end, then there is going to be a heat flow there is a

gradient in temperature across the material, and there is going to be a heat current. And

from that heat current we found out what is the thermal conductivity of the material. And

the thermal conductivity of the material was related to the mean square velocity average

mean square velocity of the material as the specific heat, the scattering time constant,

and the density of electrons.

Now, let  us try to put in some numbers. And if  you recall  the Drude’s theory is the

kinetic theory of gases. And in the kinetic theory of gases, we know that the electrons are

supposed  to  have  a  Maxwellian  type  distribution.  The  distribution  the  probability

distribution of the electrons if d N is the number of electrons between v and v plus dv;

and if v is the speed of the electrons, then they have a Maxwellian type distribution,

where the distribution is proportional to e raise to minus m v square divided by k B T

roughly this is the form of the distribution.

Now, in kinetic  theory of gases,  you have learned how to calculate  the mean square

velocity distribution. And if you calculate using this Maxwellian distribution the mean

square velocity of the electrons, then this means where velocity of the electrons using the

Maxwellian type distribution, you can show specifically is equal to 8 k B T by pi into m,

where m is the mass of the particle which in this case is the mass of the electron because

whether its gases particles in a gas or whether here it is a gas of electrons m is the mass

of  those particles  constituting  the gas.  And in this  Drude’s model  we have a  gas  of



electrons, so m is the mass of the electron. So, the mean square velocity if you calculate

using this Maxwellian distribution you will get this.
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So, if you now put in this value into this expression, and you use the behavior of specific

heat for this gas as 3 by 2 k B, then you will get that the thermal conductivity was shown

to be equal to 4 by pi n times tau k B square T divided by m, where we have just put in

from kinetic theory whatever is the velocity distribution that one can calculate from the

Maxwellian distribution, mean square velocity distribution. And the specific heat which

also  we  know  how  to  calculate  for  an  ideal  gas  of  electrons.  And  these  were  the

assumptions of the Drude’s theory.

So, with that we get our expression for the thermal conductivity of the material. And this

thermal conductivity of the material is basically related to the flow of momentum across

a given cross sectional area. It measures the transport of momentum across a given cross

sectional area. The conductivity measures the transport of charges across a given cross

sectional area, are the two related. You have thermal conductivity which is related to the

transport of energy or momentum, and you have electrical conductivity which is related

to the transport of charges.

And if you recall the Drude’s theory has an expression for the electrical conductivity,

which is n e square tau divided by m and are the two in some way connected I mean they

have to be connected because both of them basically have the electrons which are the



charge  carriers  or  the  momentum  carriers,  both  of  the  it  is  the  electron  which  is

transporting charge and it is the electron also which is transporting momentum. So, if we

find out kappa divided by sigma times T, if we find out this expression, then this turns

out to be a constant from these two above expressions 4 by pi k B by e the whole square,

and these are nothing else but complete constants. So, this is a constant which is denoted

by L.

And  so  what  this  states  is  that  the  ratio  of  thermal  conductivity  to  the  electrical

conductivity divided by the temperature is a constant. And this goes by a very important

law namely the Widemann-Franz law, which states that the thermal conductivity and the

electrical conductivity are related to each other. The thermal conductivity is proportional

to sigma times T. And this constant L which we have here is has a value which is about

2.22 into 10 to the power minus 8 watts ohm per Kelvin square.

So, this is an important property of the Widemann-Franz law that materials which have

high  electrical  conductivity  would  also  have  high  thermal  conductivity.  If  you  are

maintaining them at the same temperature T, then materials which have reasonably high

electrical conductivity would also show up with high thermal conductivity and that is

sort of understandable because scattering is low. Because the electrons are experiencing

weak scattering, you will find that they also not only the charge transport is much more,

but the momentum transport or the energy transport which is carried by the electrons is

also much better, and so the thermal conductivity becomes much more. And so you see

that  there  is  an  important  law  which  relates  thermal  conductivity  to  the  electrical

conductivity, which is the Widemann-Franz law.

So, let us see what happens to this Widemann-Franz law in different metals, because I

had told you in few earlier lectures that the Drude’s model has certain limitations. So, is

it still  correct, this ratio of the thermal conductivity to the electrical  conductivity and

temperature, is it still how does this value compared to when you actually measure it in

solids?
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So, let us see the typical values in some materials like copper, silver, gold, aluminum.

And let us look at the value of L. The value of L that you get for copper is 2.29 into 10 to

the power of minus 8. It is watt, units are watt ohm per Kelvin square ok, 2.29, 2.38 into

10 to the power of minus 8, 2.36 into 10 to the power of minus 8, 2.19 into 10 to the

power of minus 8. And the theoretical value which one has calculated is 2.22 into 10 to

the power of minus 8 watt ohm per Kelvin square. So, you can see that there is a very

close match across different materials; you can get a very close match of this constant.

The Widemann-Franz law is valid over all these different class of materials where we

had found that there were some inadequacies, that if you look at the Hall effect then

certain aspects of the Hall effect were not consistent across these different metals which

could  not  be  explained  by Drude’s theory. But  here  you have  a  quantity  L and the

Widemann-Franz law which seems to be valid across all these materials. And this is a

surprising outcome of the Drude’s theory that although there are some limitations and

there are limitations serious limitations associated with the Drude’s theory, it works quite

well when it is trying to explain something like the Widemann-Franz law.

And the reason for why it works is actually a surprising confluence of two different types

of things which happens. If you recall the thermal conductivity that we had obtained was

related to the density square of the velocity tau specific heat, and there was a factor 3

which is coming. Now, the thermal conductivity from here is proportional to the velocity



the mean square velocity times the specific heat. And in the kinetic theory as I said you

consider that the electrons are completely free which is one of the problems of Drude’s

theory, and because of that we got a temperature dependent specific heat which was used

which was 3 by 2 k B per electron ok, the specific heat per electron 3 by 2 k B.

So, this was assumed to be the specific heat of the electron and using the kinetic theory

of gases we obtained a velocity. We are using Maxwell’s distribution,  we obtained a

velocity which was whatever 8 by k B T divided by pi m and so on ok. So, we had

obtained this velocity, the mean square velocity using Maxwell’s distribution. Now, it

turns out that this is an overestimation of actual specific heat of the solid. And this is a

gross underestimation of the mean square velocity. So, here you have something which

you have overestimated, and here you have something which you have underestimated,

you have taken the product of the two and actually low and behold, it turns out to be the

right value ok.

So, although there were these problems in the Drude’s theory, where you had a gross

underestimate of the specific heat which you have already seen earlier, and there is a

gross overestimation of the specific heat, and there is an underestimation of the mean

square velocity, you ultimately land up with a constant value. But be that as it may this

value L which is a ratio of the specific heat to the thermal conductivity into temperature

is  a  very  important  quantity  and  it  is  associated  with  this  law  which  is  called  the

Widemann-Franz law, which describes the relationship between thermal and electrical

conductivity. And we get a number which is reasonable.


