Introduction to Quantum Mechanics
Prof. Manoj Kumar Harbola
Department of Physics
Indian Institute of Technology, Kanpur

Lecture - 06
Solution for the radial component of wavefunction for the hydrogen atom
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In the previous lecture we looked at the general solution for spherically symmetric
systems, where we looked at the Schrodinger equation minus h cross square over 2 m u
double prime plus I I plus 1 over 2 m r square h cross square u plus v r u equals E u;
where u over r gives me the radial component of the wave function and the wave
function psi itself is R as the function of r times Y Im theta and phi. And found that u

goes to r raise to | plus 1 as r tends to 0.

In this lecture we want to focus on a specific problem of the hydrogen atom or hydrogen-

like ions.



(Refer Slide Time: 01:55)

EEEEEEN " o emEm - Zb2-o-95< -3
Ve —Zo
mée6r
Y < S P (NG P — EAA
2N = 2mr- 46 v - .

e wat b glve for bowd- Shels

E <o E= — |El
R e R, Ee g —THw
im 4ua v

2my

Ur—o=) 0 9gme Lol 2,

In such cases the potential energy v r of the electron is given as minus Z e square over 4
pi epsilon O r. And therefore, the equation for u is going to be minus h cross square over
2 m u double prime plus I I plus 1 h cross square over 2 m r square where m is the mass
of the electron minus Z e square over 4 pi epsilon 0 r u equals E u; [ missed a u here. And

this is the equation we want to solve.

What I am going to do in this lecture is not give you very rigorous solutions, I will give
solutions for one or two values of . And enable you enough to follow this in books if you

wish too, because this is the first course so I do not really give a many details here.

So, now first thing we notice is we want to solve for bound states, and therefore E is less
than 0 I am going to write E as minus modulus of E. And therefore, my equation now
becomes minus h cross square over 2 m u double dash plus 11 plus 1 h cross square over
2 m r square u minus Z e square over 4 pi epsilon 0 r u equals minus modulus of E u. So,
first thing as we did in harmonic oscillators and all that we wish to see how u behaves as
r tends to infinity; behaviour of u as r tends to infinity. In such cases I can ignore 1 over r

square and 1 over r terms because they will become nearly 0.

And therefore, I can write the equation as.
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So, in the limit of r tending to infinity I can write my equation as minus h cross square
over 2 m u double prime is equal to minus mod E u or u double prime minus 2 m mod E
over h cross square u equals 0. This has immediate solutions u r equals either e raise to

square root of 2 m mod E over h cross square r or e raise to minus square root of 2 m

mod E over h cross square r.

Now, we would like the solution R r tending to infinity to go to 0, which implies u also
should go to 0 as r tends to infinity. So, the first solution this one is out. So, what we
have is that u r goes as e raise to minus square root of 2 m mod E over h cross square r

which I will write as e raise to minus alpha r;

Cross square.

alpha is square root of 2 m mod E over h
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Now the general solution therefore: u r this will depend on I can be written as summation
1 equals 1 through whatever some polynomial n; a i r i times this is a polynomial e raise
to minus alpha r. The polynomial is finite polynomial because you can show if n tends to
infinity this blows up as e raise to plus alpha r and you do not want that to happen,
because solution would not be going to 0 as r tends to infinity. So, you wanted to be a

finite polynomial.

So, number one notice that the polynomial n r is finite. And number two that the lowest
power of r is 1. Why is that because you want u to be go into 0 as r tends to 0. So, these
are two things that we keep in mind. And now what [ will do is instead of solving for this

polynomial in general I will build up solution for certain cases.

So, let me consider 1 equals 0 case first. In that case my equation is u double prime minus
h cross square over 2 m, minus Z e square over 4 pi epsilon 0 r u equals E u. I am going
to consider u equals r e raise to minus alpha r which means that u prime is e raise to
minus alpha r minus alpha r e raise to minus alpha r, and therefore u double prime is

minus 2 alpha e raise to minus alpha r plus alpha square r e raise to minus alpha r.

Let us substitute this in the equation I get minus h cross square over 2 m minus 2 alpha
plus alpha square r e raise to minus alpha r minus Z e square over 4 pi epsilon 0 e raise to
minus alpha r equals E r e raise to minus alpha r; e raise to minus alpha r term cancels

throughout.
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So, I am left with minus h cross square over 2 m minus 2 alpha plus alpha square r minus
Z e square over 4 pi epsilon 0 is equal to E times r. Now terms or the same power should
be the same and this immediately tells me that minus h cross square alpha over m that
should be plus, minus Z e square over 4 pi epsilon 0 is 0. And minus h cross square over

2 m alpha square is equal to e.

This is automatically satisfied because alpha square is 2 m mod E over h cross square
and this therefore gives me that E is equal to minus mod E. This is something we have
been working with, but this equation gives me the energy because this tells me that h
cross square over m square root of 2 m mod E over h cross square is equal to Z e square
over 4 pi epsilon 0. And therefore, mod E comes out to be Z e square over 4 pi epsilon 0
square times m over 2 h cross square. And therefore, the energy for this state is minus Z
square e raise to 4 m over 32 pi square epsilon 0 square h cross square which comes out

to be minus 13.6 Z square electron volts.

So, we found that this is the ground state energy.
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And the wave function R r for the ground state energy is going to be r e raise to minus
alpha r divided by r times y 0 0 theta and phi plus some normalization constant which
can be calculated. So, this state is e raise to minus alpha r Y 0 0 which is also a constant

Cn.

So, the ground state looks like finite at r equals 0 and this decays exponentially it is e
raise to minus alpha r times a constant y 0 0. Still working on 1 equals 0; let us find out
the solution which is a higher polynomial. So, I am going to take u r to be ar plus br

square e raise to minus alpha r. So, this highest power of n in this is 2.

You again calculate u prime r which is a plus 2 br e raise to minus alpha r minus alpha ar
plus br square e raise to minus alpha r, and u double prime r is equal to 2 b e raise to
minus alpha r minus 2 alpha a plus 2 br plus alpha square ar plus br square; this is e raise
to minus alpha r e raise to minus alpha r here. We substitute this n. So, next step is going

to be.



(Refer Slide Time: 12:42)

(L L CEL I T ZEz-v-s<r 0

Subshhbe Hv W e €90 00n A~
Cqmate  Cotftict for Yo

Fa -l Z'ed m
2% e
Ul = (C(T-rbf\-rCT?)

\ FACRE
el [l
3t ey

The Guagy f~ a sicke W8 =0 » -3zt

L

Whie “m 6 Y Aegree I\ MM r€~ wuev)

Substitute this in the equation for u, then equate coefficients for the equal powers of r. To
do that and you are going to find that E comes out to be in this case as 1 over 2 square Z
square e raise to 4 m over 32 pi square epsilon 0 square h cross square. You go further if
I take u r to be as ar plus br square plus cr cubed and substitute in the equation you
would find that E comes out to be minus 1 over 3 square Z square e raise to 4 n over 32

pi square epsilon 0 square h cross square.

So, if you do this exercise what you will conclude is that the energy for a state with 1
equal to 0 is minus 13.6 Z square over n square where, n is the degree of polynomial for

ur.

So, I will leave that for you. You can go to higher and higher powers. As an illustration

let us also take a case of | equals 1.
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Now, remember for 1 equals 1 u r as r tends to 0 goes as r raise to | plus 1 which is r
square. So, the minimum power of r that you take is r square. In this case I am going to
take u r to be r square e raise to minus alpha r. Therefore, u prime r is going to be 2 r e
raise to minus alpha r minus alpha r square e raise to minus alpha r and u double prime r
is going to be equal to 2 e raise to minus alpha r minus 2 alpha r e raise to minus alpha r
times 2 plus alpha square r square e raise to minus alpha r. So, this comes out to be 2 e
raise to minus alpha r plus 4 alpha r e raise to minus alpha r plus alpha square r square e

raise to minus alphar.

Let us substitute this in the equation. So, I get minus h cross square over 2 m 2 plus 4
alpha r plus alpha square r square e raise to minus alpha r plus now 1 is not 0 so I am
going to get 2 h cross square over 2 m r square and [ have r square e raise to minus alpha
r minus Z e square over 4 pi epsilon 0; one r will cancel I get r e raise to minus alpha r is
equal to E r square e raise to minus alpha r. E raise to minus alpha r cancels throughout.
And when I equate the terms of equal powers of r I get minus h cross square over m plus
2 h cross square over 2 m and this term actually cancels is 0 which is cancelling. So, let

us do that, this term cancels with the first term this is 0.

Equate the terms with power r and I get minus h cross square times 4 alpha over 2 m

minus Z e square over 4 pi epsilon 0 equals 0 and this gives me the energy. And the last



term E r square term would actually cancel with this alpha square term that basically it

give me E equals minus mod E which we already know.
So, the energy is determined by this term in green, so this cancels again this gives me 2.
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So, I get minus 2 h cross square over m alpha equals Z e square over 4 pi epsilon 0. So,
alpha square is equal to m square over h cross raise to 4 Z e square over 4 pi epsilon 0
square and 1 over 4 here. So, alpha square is 1 over 4 m square over h cross raise to 4 Z e
square over 4 pi epsilon 0 square. And alpha square is nothing but 2 m mod E over h
cross square which is equal to one-fourth m square over h cross raise to 4 Z e square over

4 pi epsilon 0 square.

And you see this again gives me after simplifying modulus of E equals one-fourth of m
over 2 h cross square Z e square over 4 pi epsilon 0 square, which is nothing but E equals
minus one-fourth 13.6 Z square. So, again we see that the power r square leaves to

energy 1 over 2 square times at minus 13.6 Z square.

So, what we conclude in this through this and you can keep trying it for other else that

the degree of polynomial for u r determines the energy.
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Then what does it give me? That if u r is summation i equals 1 through n a i r raise to 1
then the energy comes out to be it depends on n minus 13.6 Z square over n square. Keep
in mind that E does not depend on 1. So, this is quite a coincidence for hydrogen atom E
n does not depend on 1. But r does, so the wave function is written as n 1 and m and this
is R nl r Y In theta and phi. So, r depends on 1, but the energy does not. And what is also
found in this solution when you do it that | is restricted to below n minus 1. So, this

means | can be 0, 1, 2, and so on up to n minus 1.

Other thing is that m; let me write it m Z is restricted to be below between minus I n plus
1 implies m Z as from minus 1 minus I plus 1 soon 0 1 2 up to 1 plus 1. So, the number of
electrons in the nth level will be. So, for each n I have energy levels with the same
energy because it depends only on n 0 1 up to 1 minus 1; 1 levels. And for each I have 2 1
plus 1 states with m Z, and for each there can be two electrons due to Pauli exclusion

principle.
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So, what we get is number of electrons in the nth level is going to be summation 2 1 plus

1 times 2 1 equal to 0 to n minus 1. So, this gives me 4 summation | equals 0 to n minus 1

| plus 2 summation 1 equals 0 to n minus 1 minus 1. So, this comes out to be 4 n n minus

1 divided by 2 plus 2 and there are n terms. So, this is going to be 2 n. So, this comes out

to be 2 n square minus 2 n plus 2 n which is 2 n square. So, number of electrons

maximum in the nth level is equal to 2 n square.

So, what I have done in this lecture is given to you an indication has to how hydrogen

atom problem is solved.
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So, to conclude this lecture what we have done is: one, set up the Schrodinger equation
for hydrogen like systems. Two, taken u r to be equal to summation i equals 1 through n
airie raise to minus alpha r where alpha is square root of 2 m mod E over h cross
square. Then found E n to be equal to minus 13.6 Z square over n square where n reverse
to this power. And finally, E depends only on n R nl Y In is the wave function psi n I n.

And n-th level can accommodate 2 n square electrons.

With this we stop the discussion on hydrogen atom, and next week we will begin with

numerical solution of this radial equation.



