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So, far we have been talking about bound states as obtained by solving the Schrödinger

equation. We are going to now change and talk about free particles. And in particular I

am going to talk about free electrons, and when I say free electrons; that means, the

potential energy v is equal to 0 or equivalently v equals constant. And what that means, is

that the force on the particles is equal to 0. And therefore, the Hamiltonian H recall this

Hamiltonian is an operator for energy where H psi equals E psi and H is going to be

minus h cross square over 2 m d 2 over d x square plus, some constant potential which

have taken to be 0.

So, this comes out to be minus h cross square over 2 m d 2 by d x square in 1 dimension.

And it is going to be H equals minus h cross square over 2 m. Del square the laplacian

plus v which is minus h cross square over 2 m del square in 3 d. So, we want to solve the

Schrödinger equation for this particular Hamiltonian and where is it useful.
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So, free electrons offer a reasonably good approximation to electrons in a metal. And I

will talk about it more later. For the time being the Hamiltonian in 1 d is minus h cross

square over 2 m d 2 by d x square. Let me focus on 1 dimension first and therefore, the

Schrödinger equation is minus h cross square over 2 m d 2 psi over d x square equals E

psi. That is my Schrödinger equation. And necessarily v 0 e is going to be greater than or

equal to 0. This we have talked about earlier and you have also seen this as a problem in

the book.

So, to solve this what I am now going to do is write d 2 psi over d x square is equal to

minus 2 m E over h cross psi and therefore, psi double prime plus k square psi is equal to

0 where psi double prime is d 2 psi over d x square and k square is 2 m E over h cross

square which is greater than 0. 
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So, the Schrödinger equation Now, comes out to be psi double prime plus k square psi

equal 0. And the possible solutions are you can check it easily, psi x equals e raise to i k

x or sin k x or cosine k x or any linear combination. The question is for free particles

which one is the correct solution. So, for free particles which one of these solutions do

we pick that is the question. Do I pick e raise to i k x do I pick sin k x do I cosine k x.

Remember earlier when we where solving the Schrödinger equation a particular form of

the solution was decided by the boundary condition. So, recall that earlier the solution

was picked by boundary condition.

We are going to take some other consideration is time. And what we are going to do is

first anticipate that in v equals constant case a force is 0. And therefore, momentum of a

particle is conserved; that means, what is it mean? It means that momentum does not

change with time. And this happens classical, this is a classical result. Should we expect

the same thing in quantum mechanics?
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So,  let  the  question  I  ask  now is  question,  should  we  expect  the  same in  quantum

mechanics.  Number  1,  should  we expect  that  momentum is  conserved?  And if  it  is

conserved, what does it mean? Recall now to answer this questions that for stationary

states E the energy is conserved right. Or the metrics element psi i H psi j is diagonal in

terms of Heisenberg’s matrix mechanics. Recall that whenever there is a matrix which is

diagonal;  that  means,  the  corresponding  quantity  does  not  change  with  time  and  is

conserved.

So, here also if momentum is conserved I should expect that psi i momentum operator

psi j matrix will be diagonal right. So, this is diagonal what; that means, is that if I write

p matrix. It would have all of diagonal term 0 there will be terms here which will be

nonzero along the diagonal  and everything else would be 0.  Now the matrix  for the

Hamiltonian is also diagonal right. So that means, if I take the product pH matrix and

subtract hp this would be 0 right. So, what; that means, is if a quantity is conserved pH

minus  other  that  or  corresponding  operator  satisfies  if  a  quantity  is  conserved  the

corresponding operator, the corresponding operator O satisfies let me write this in the

next page.
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So, O satisfies that matrix of O time’s matrix of H and if I change the order and subtract

it is 0. In the operator formalism what it means is that O operator H operator minus H

operator O operator would be 0. So, let me now state what I want to say I turn the whole

argument around and say. If O H minus H O is 0; that means, O would be a conserved

quantity. So, if let us write (Refer Time: 10:57) if O H minus H O for operator O is 0 O is

a conserved quantity. And what does that mean? That means, the wave function psi such

that H psi equals E psi is also and I can function of O. If it was not, So let us show this if

it was not. 

Then psi i O psi j will also have diagonal elements. So, let us just summaries this by

saying that if for an operator O, O H minus H O is 0 then H and O have the same Eigen

functions. And the quantity corresponding to O is conserved and O is also referred to as

O is also referred to as not O, but it is Eigen values are referred to as good quantum

number.
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So, let us write it again that H O minus O H is equal to 0 implies that H psi equals E psi

then gives psi such that O psi is also sum O psi, and the Eigen value of O is known as a

good quantum number. Why? Because it is conserved. And the wave function psi is not

only labeled by Eigen function Eigen value of energy e, but also the Eigen value of that

quantity  O. With this  background let  us now try to answer. The question answer the

question e arise to i k x sin k x or cosine k x. Now to anticipate the answer again I go

back to the classical result that in the case when the potential is constant or potential is 0

momentum is conserved.

So, let us now see if H p minus p H is 0. Remember what is p? P is h cross over i d y d x

and what is H? H is minus h cross square over 2 m d 2 by d x square. So, H p would be

minus h cross square over 2 m, d 3 by d x cube the third derivative and pH will also be h

cross square over 2 m d 3 over d x cubed, the third derivative implying there by that H p

minus p H is 0.
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So, if I find that H p minus p H is 0 and by the way when I write p here this is the x

component of the momentum p x. This means p x is a good quantum number p x is

conserved and third  Eigen function let  me say Eigen function  is  the stationary  state

Schrödinger equation solutions are also momentum Eigen states. So, of the 3 e raise to i

k x h cross over i d by d x of e raise to i k x gives me h cross k e raise to i k x is an Eigen

function of p. Sin k x gives me h cross over i d by d x of sin k x equals h cross k over i

cosine k x not an Eigen c function of p let us write this p x. And similarly cosine k x is

also  not  an  Eigen  function.  So,  if  I  want  to  satisfy  the  symmetry  property  that  the

momentum is conserved that p be a good quantum number and therefore, H and p have

the same Eigen function the correct solution to pick is e raise to i k x.

So,  for  free  particles  this  is  the  Eigen  functions.  So,  for  free  particles  with  all  the

symmetry satisfy and all that e raise to i k x is the Eigen function. Notice that I have not

written the normalization constant. So, normalization constant is yet to be determined.

And also we want to find how to fix k. That means, is it  continuous does it change

discontinuously or what happens recall that for particle in a box problem k was one pi

over L here how do we fix k. So, these 2 problems are related and that is what we have

going to address now.
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And the way it is address is through something all the periodic boundary condition. This

is a trick through which we count case we can enumerate k and we can also fix the

normalization constant.

So, what periodic boundary condition does is demand that psi x plus L be same as psi x;

that  means,  make  the  wave  function  periodic  over  a  length  L  and  in  the  limit

thermodynamic limit will at L go to infinity. What it means is L is very, very large. It is

made. So, large that all the counting can be done through integration and you will see in

a minute. So, when we demand this now psi x is equal to e raise to i k x and this implies

that psi x plus L is equal to e raise to i k e raise to i k L. And this we want to be equal to e

raise to i k x, and what this means is that we have e raise to i k L equals 1. 

Or k equals 2 n pi over L, where n equals 0 plus minus 1 plus minus 2 and so on. This is

how we fix the value of k and when L goes to infinity k changes almost continuously.

What I will call is quasi continuous. So, this is the trick of making k change continuously

I will be able to change the summation over k to integral over k which also in a few

minutes. And now how do we normalize the wave function. So, the wave function is also

normalized over this length L. So, what do we do is suppose the wave function is taken

to be c normalization e raise to i k x what I am going to demand is mod psi x square

integral from 0 to L d x be 1 and this immediately gives me mod C n square times L

equals 1 or C n equals 1 over root l.
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And  therefore,  we  are  going  to  write  wave  function  psi  x  with  periodic  boundary

conditions and box normalized over this length L as 1 over root L e raise to i k x. The

moment arrived this L here; that means, I also imply periodic boundary condition over L

and this means k equals 0 2 n pi over L n equals 1 2 3 and so on plus minus 1 plus minus

2 and so on.

So, this is how we count k, and this is how we normalize the wave function. So, if I want

to picturize this suppose I draw it on a line this is k equal to 0 every 2 pi over L there is 1

k value 4 pi over  L and so on.  All  these points show one particular  k value on the

negative side of k also. So, what I am going to say is every 2 pi over L there is a state psi,

which has energy H psi which gives me h cross square k square over 2 m psi.  And

momentum p psi equals h cross k psi. 

So, it  as the Eigen state of both the Hamiltonian and the momentum with the Eigen

values being here and every 2 pi by L there is a state. Or this is also written in another

words is that the density of states is L over 2 pi per k. We change k by unity and even

allow 2 pi states. If you include spin if include spin then every state can accommodate 2

electrons.

So, this is what we do in 1 dimension what about 3 dimensions.
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So, next question we ask is what about in 3 d the Hamiltonian in 3 d is going to be minus

h cross square over 2 m del square, which is minus h cross square over 2 m d 2 by d x

square. Now I am going to change this d 2 by d x by partial  del to by del x square

because now I am going to have all 3 derivatives plus del to by dell y square plus del 2

by del z square. We can do separation of variables and solve the problem now again the

Hamiltonian satisfies this equal to 0 because p, vector let me write this is a vector is

nothing but h cross over i times the gradient operator any can satisfy yourself that this

satisfies hp minus p H equal 0. 

And therefore, p is conserved one and the same thing is a good quantum number. And

therefore, the solution should be the Eigen function of both H and p and without going

through details I can just now tell you that psi as a function of x y and z is nothing but e

raise to i k dot r which I am going to write that as e raise to i k 1 x plus k 2 y plus k 2 k 3

z. This is a wave function there will be a constant (Refer Time: 26:59) which will discuss

in a few moments and H psi is now going to give me h cross square over 2 m k square

which is h cross square over 2 m k 1 square plus k 2 square plus k 3 square psi which is

the energy. So, this is the energy, h cross square k square over 2 m or p O square over 2

m. And p psi is nothing but h cross k vector time psi which is h cross k 1 x unit vector

plus k 2 y unit vector plus k 3 z unit vector psi. And energy is p square over 2 m, So in 3

d this is what happens?
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Now, if I applied the periodic boundary conditions here. We get psi x plus L y z equals I

want psi x y z. Similarly I want psi x y plus L z equals psi x y and z, and I want psi x y z

plus L equals psi x y and z. And this immediately implies just as I did in the case of 1

dimension, this implies that k 1 is 2 n let me call it now n x pi over L n x equal 0 plus

minus 1 plus minus 2 and so on. Similarly k 2 is going to be 2 n y pi over L n y is 0 plus

minus 1 plus minus 2 and so on.

And k 3 is going to be 2 n z pi over L n z 0 plus minus 1 plus minus 2 and so on. And

now I am going to normalize the wave function over a cube of size L. So, I am going to

have integration over the volume, d x d y d z C n e raise to i k dot r mod square equals 1.

And that gives me the volume L cubed times C n square equals 1 or C n equals 1 over

square  root  of  L cubed.  Which is  also  I  can  try it  as  1  over  square  root  of  v. And

therefore, my wave functions now are going to be psi r is going to be 1 over square root

of a v e raise to i  k dot r. This is  the wave function in 3 dimensions  with periodic

boundary conditions and box normalized.
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Again if I want to now represent this wave function in 3 d this is what I am going to do

this is my x axis or k x axis, this is my k y axis and this is my k z axis.

And by the way this is usually referred to as the k space. So, 0 k is going to be here again

every 2 pi by L there is one state on each axis. And then everywhere else wherever there

is an interior matching there is going to be one state. So, these states are represented by

these dots where I just keep increasing everything by an integer let me make this dots on

this sides also. In other words if I take this space and make a box of size 2 pi by L in the

k space there is one state in it. 

So, a volume of 8 pi cube over L cubed which is 8 pi cubed over v has 1 k state. Or we

can say the density of k points in k space is v over 8 pi cubed. So, if I have a some

volume k space v k if I multiply that by v over 8 pi cubed I am going to get the number

of k points in that k space volume, how about the number of electrons? Each of these k

state  can take 2 electrons  each one of spin up one of spin down by pauli  exclusion

principle.

So, by now I have set up pretty much for you what all be require to do a very simple

approximation for metals.
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So, let me conclude now this lecture by saying that for free particles H equals minus h

cross square over 2 m del square, then momentum p is a good quantum number; that

means, p H minus H sorry p H minus H p vector is 0. The wave functions psi x y z is 1

over square root of v e raise to i k dot r v equals L cubed I am box normalizing over a

cube of L and k vector equals 2 n x over L pi x direction plus 2 and y over L pi, j

direction plus 2 n z over L over L pi k direction n x and y and n z are all 0 plus minus 1

plus minus 2 and so on and finally, the density of states in k space, because k or p is

about quantum number. 

So, I can measure density in k space is v over 8 pi cubed per unit k space volume. With

this we will now apply these ideas to metals in a very simple way in the next lecture,

where we learn about Fermi energy Fermi momentum and things like this.


