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In this lecture, we are going to now focus on solving for magnetic field in different 

situations. The tools that we have on our hands are: one - divergence of B, which is the 

magnetic field is 0. We also have an auxiliary field H, which has curl equals j free. An 

additional information we have is that all the way we have defined H is that B is equal to 

mu 0 times H plus M. And the question is how do we use these equations to get B for a 

given a free current slash magnetization. So, depending on what situation we are at we 

will use the different techniques. One thing we know is that B is given as mu 0 over four 

pi integral d v prime j r prime cross r minus r prime over r minus r prime cubed. It can 

also be calculated from vector field. 
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Now, let us look at different situations and see how we can exploit our previous 

knowledge to calculate magnetic field. Suppose we take a situation where j free is 0, 

situation in Electrostatics; where I had curl of E is 0 and divergence of E is equal to rho 

over epsilon 0. 

So, in this case where there is no free current, I can treat this quantity here as some sort 

of a magnetic charge. And this quantity of course is curl of H is 0. So, I can do a 

calculation treating this minus del dot M as magnetic charge as if I am calculating the 

electric field due to discharge. Just to complete the analogy, in this case what I can do is 

to write H as there is no epsilon 0. One over four pi integral of minus del prime dot M r 

prime because that is a charge, divided by r minus r prime distance cubed r minus r 

prime vector d v prime. And this is H at r. Just like we write the electric field. And 

therefore, in situations where there are some sort of symmetry or I can calculate M and 

del dot M easily. It is very easy to calculate H. 
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Let us take a few examples. Example one: suppose I have a long bar magnet, its length is 

L and radius a, such that L, or let me make L properly. The total length is L. L is much, 

much greater than a. So, I can ignore the fringe effects. And this carries a magnetization 

M along its length. Since j free is 0, I have curl of H is equal to 0 and divergence of H is 

equal to minus divergence of M. Let us see what divergence of M in this case is going to 

be.  

The M, magnetization has certain value along the length and is 0 outside in this direction. 

So, this is finite value M and 0. If I take this direction to be z, the vertically up direction, 

you can see that curl of divergence of M is equal to M delta z at the upper point and 

similarly proportional to M delta z at the lower point. 

Let us now fix certain values. Let us take the lower point to be z equal to 0; let us take 

the upper point to be z equals L. Then, I can write the divergence of M. M becomes 

smaller, it goes down. So, this is minus M delta z minus L plus, M increases at z equal to 

0, so this is going to be a term M z.  

If you want to be more convinced about it, I can use Gauss's law to show that this is so. 

For that, let me take this upper surface and make a small box here and calculate 

divergence of M d v in this box. If the lower surface area is a and the length of the box is 

l, this is going to be divergence of M a l; where a and l are very small. And by Gauss's 

theorem, this is going to be equal to M dot d s. Now, on the upper surface there is no M. 



So, from the upper surface this gives you 0. On the lower surface d s is going out, so this 

is going to be minus M a. On the side surfaces, there is no contribution. So, M is parallel 

to the surface. And therefore, what I get is divergence of M is equal to minus M over l. 

This l, you can take the limit going to 0. And in that case this goes to minus M delta z 

minus L. You can see it other way because minus divergence of M d z is equal to minus 

M. And no matter how small this d z is; from say minus L to L. No matter how small this 

d z is; I still get minus M. And therefore, this divergence of M has to be proportional to 

delta z minus L.  

You can do the same thing on the lower side. So, what is happening is this divergence of 

M is like a spike at the lower; M equals L. I am showing it here with this purple block 

and minus like this on the upper side; goes all the way to infinity and goes all the way to 

infinity. So, let us make again in the next slide. 
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 I have this long; and I am making a slightly different picture, so that you can see it 

clearly. A long bar magnet on which the magnetization goes down is M throughout the 

magnet and goes down again; 0, M. And its divergence has this delta function here and 

delta function here. 

And therefore, minus divergence of M is going to be equal to M delta z minus L minus 

M delta z. And what is this equal to? This is equal to divergence of H, which is then is 



equal to M delta z minus L minus M delta z. And I know curl of H is 0. This is like; m is 

like in the surface charge, minus M is like surface charge. So, what I have here is as if 

the upper surface of this magnetic bar magnet has positive magnetic charge if you like 

and negative on the lower side. This amount of discharge is going to be M pi a square 

minus M pi a square.  

And since the length of the rod is very, very large, so this is; if in reality it is more like a 

very thin rod like small charges up and down. And this is what is being represented here 

by this. So, H inside is going to be nearly 0. So, this implies H is 0 inside. And therefore, 

B is going to be equal to mu 0 H plus M, which is nothing but mu 0 M. Note that this is 

consistent with our earlier calculation, where we had treated this bar magnet as carrying 

surface current k; which was minus n cross M, which was M in phi direction. So, it 

became like a solenoid and that gave me a field, which was mu 0 M. This is the same, 

except this time we use a different technique. We use that auxiliary field H.  
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Let me do another example. A well-known example that we have been treating. And I 

said that this becomes nice example for magnetic field. In this example, I will take this 

magnetized sphere, which has magnetization; these are directions, this is magnetization 

M. 

Again, since there is no free current, I have divergence of the 0; which gives me 

divergence of H is equal to minus divergence of M and curl of H is 0. So, again you see 



that this minus divergence of M becomes like the magnetic surface charge. How so? Let 

us see that.  

If I look at the surface and I want to calculate divergence of M at an angle theta, then 

again by making a box here; which has n like this. Inside, the n is going to be in minus r 

direction and M is in this direction. I am going to take the length of the box; finally, 

going to 0. Therefore, when I calculate divergence of M d v, which is going to be equal 

to integral M dot d s by divergence theorem. And since this length l goes to 0, there is no 

contribution from the side surfaces. 

In this case, although M has component along the perpendicular surface, but length is 

going to be 0. And therefore, the contribution from there is 0. The only contribution I get 

is from inner surface, where n is going in. So, this becomes M cosine of theta with the 

minus sign times this area a. If a is the area of this box and which is equal to nothing but 

divergence of M area times t r, if you like. From slightly inside, let us say r minus 

epsilon two r plus epsilon; which is equal to minus M cosine of theta a; a and a cancels. 

And no matter how small epsilon is; I get a finite value; minus M cosine theta. And this 

immediately tells me divergence of M is equal to minus M cosine of theta. 

And therefore, I can write cosine of theta at the surface r minus R. And therefore, I can 

write that divergence of H is equal to minus del dot M, which is M cos theta delta r 

minus R. And what does this becomes? This becomes like the surface charge on the 

surface at small r equal to R; positive on the top and negative at the bottom because at 

the top, cosine theta is going to be positive. And therefore, this becomes like positive 

charge on the top with the cosine theta dependence and negative charge at the bottom 

with the cosine theta dependence. And I am calculating H. This becomes exactly like the 

previous problem where we had a polarization in the z a direction, which gives me sigma 

cosine theta as a surface charge. And therefore, H is going to be in this direction; in the 

opposite to z direction. And what is this value? H is going to be; I am writing on the left; 

minus M by three. There is no epsilon 0. There is nothing like that in this z direction; 

negative z direction. 

So, what we have found is H is minus M by 3. And therefore, B is going to be mu 0 H 

plus M; which becomes two-thirds mu 0 M. This is the answer we have obtained earlier 

also; by treating this as a sphere carrying surface current with sin theta dependence. So, 



what you see in this lecture is that in the case where there is no free current and only 

magnetization, I can write the equation for H as if it is an electric field being given rise to 

by bound magnetic charge; del dot M. 
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I can take the technique further and write for such cases; where del dot H is equal to 

minus del dot M. And del cross H is 0. If del cross H is 0, it immediately tells me that I 

can define a magnetic potential phi M. And therefore, write H as minus grad of phi M; 

which then gives me del square phi M is equal to del M, which is either Poisson’s 

equation of phi magnetic. I can solve the boundary condition. From that I can get H. And 

from H, I can get B. 


