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 So, previous lecture, we were talking of nuclear size. So, as you all know, we had 

discussed it that nucleus is of the order of 10 to the power minus 15 femtometers of that 

order. 
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But how do we measure this size? So, what I described last time was you can take 

electrons of high energy. Those electrons can go and hit the sample the material in which 

the nuclei are there of which you need this radius. Then, you measure these scattered 

electrons as the function of scattering angle. So, how many electrons are scattered at this 

angle theta? So, as a function of theta, you measure that.  

From there, you can derive the radius of the nucleus or at least estimate of the radius. Not 

only estimate if the radius; you can also derive the charge distribution inside this nucleus. 

In this nucleus, how the charge varies as the function of distance from the center? Let us 

say so that also can be done. 
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What we had seen? The results of these experiments is that if you plot this density charge 

density as a function of r, then you find that something like some constant value almost 

constant value. Then, it tapers off and for different nuclei; you have different slightly 

different values of this. But then, the nature is almost the same once you convert this 

charge to mass right, because the electrons are only looking at the protons. They do not 

interact with neutrons. So, the results are in terms of charge density proton distribution. 

But then, you also have neutrons in the nucleus.  

So, you scale it up so that protons and neutrons both together give total mass distribution. 

Then, all these things concede and you have almost this type of distribution for so this 

becomes almost same. So, different nuclei will have different extents. But this rho here is 

now the number density. How many per unit volume is there? This can be written as so 

this point is like say 0.17 or so per femtometer cube this point. Then, this whole structure 

can be mathematically written as rho equals rho naught 1 plus e power r minus capital R 

over a. So, this is the kind of distribution.  

So, these functions are you familiar with this function? This function is just a 

mathematical function. If something is nearly constant up to some distance say x, then it 

falls gradually. This kind of data can fitted with this function. There is nothing 

fundamental about this. It is not coming from nuclear interactions and nuclear forces or 



 

 

things like that it is coming. We just see the data. Then, we find that this function can be 

used to explain that data to understand the data or to fit that data essentially. 

Now, this particular function, if you look at it closely, this rho naught is almost this 

value. This rho naught here is almost this value. Then, there are two more parameters; 

capital R and this is small a. Now, this capital R, if I just take one of them to understand 

the function better; take one curve. What you see is it is constant up to certain r, almost 

constant up to certain r. Then, it gradually decreases.  
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So, you can take the point where the density, this number density decreases to half, this 

central value. So, that is this. So, that is capital R. This value is capital in this function. 

This capital R is the value of small r or the distance from the center where the density 

means number of nucleons per only volume. That decreases to half of its volume, so that 

is this capital R. Then, this small a; what is this small a? Small a is how fast it decreases 

from this highest value to almost negligible value so that how steeply it falls. 

If it is just straight away it goes to 0, then, this a will be 0. But that is not the case. So, a 

is something like how gradually or how steeply this density decreases as the function of 

r. So, if you take two points; one point here where the density has become about say 0.9 

of rho naught, so 10 percent decrease; that is one point. This is also not exactly constant. 

Some slight variation is there. In fact, experimentally if you take the data, there are more 

variations because nucleus is not very smooth inside. There are many zigzags. 



 

 

But roughly so here, the density has decreased to 90 percent of its central value. 

Similarly, you take this point where it decreases to 0.1. So, this is a measure of how 

steeply the density is going down from 90 percent of rho naught to 10 percent of rho 

naught, how much distance it takes? So, this can be related to this a. We will make these 

calculations. So, what is the picture? What is the geometrical picture that comes into 

mind? Geometrical picture that comes into mind is that nucleus.  
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Suppose this is the center. You have protons and neutrons. Here, protons and neutrons 

and equal density distribution with equal density almost equal density. So, whatever is 

here number of nucleons for the volume, same is the number of nucleons here. Same is 

the number of nucleons here. So, it is almost equally dense up to certain distance and 

after that the density starts decreasing. Then, it goes to almost 0. So, this is the kind of 

nucleus. So, the central core, say this from here to here, the central core has the same 

amount of the same number of nucleons.  

Nucleon you understand, nucleon, proton or neutron collectively, they are called 

nucleons. The number of nucleons are per unit volume is almost same up to some 

distance. That is this. Then, after that, this number of nucleons will gradually decrease 

per unit volume, gradually decrease. Then finally, all the nucleons will be confined to 

some volume. But there is no sharp boundary. You cannot draw a line, a circle, a 

spherical surface that all the nuclei are inside this. This is it does not fall to 0 sharply. 



 

 

It will become very small. But then, 0 it will only be when the small r is infinity. So, 

nucleus does not have a sharp boundary. Nucleus does not have a sharp boundary. 

The boundary is diffused. The density gradually decreases, decreases, decreases and 

becomes negligible. Now, this let us calculate this value 0.9 of rho naught. So, from the 

center, at what length, at what distance this density falls to 90 percent of it. One can 

make easy calculation 0.9 rho naught should be equal to rho naught divided by 1 plus e r 

minus R by a. So, this is 0.9. So, 1 by 0.9 is equal to 1 plus e minus capital R by a. So, 

how much is 1 by 0.9? Quick answer; how much is 1 by 0.9? Right quick answer is 1.1. 

This is 1.1. 1.1 into 9 is 9.9. So, 1.1 into 0.9 will be 0.99; very close to 1. It is almost this. 

This is equal to this thing. 1 plus e r minus R by a that means this is 1 by 10, 0.1 is e to 

the power r minus capital R by a. So, r minus capital R by a. How much this should be? 

How much this should be? It should be log of 1 by 10. How much is that minus 2.3? 

Remember, the base of this logarithm is not 10. Base is e. So, this log of 10 on the base e 

is 2.10. So, this is 1 by 10, so minus this. 

So, r is equal to how much capital R minus 2.3 into a. So, this is capital R. This some 

value of a 2.3 times a. Behind here, the density will drop of to 90 percent. So, you can 

get the meaning of a from here. Similarly, it goes to 0.1. Now, you can do this 

calculation at what value of small r this rho becomes 0.1 times rho naught. The distance 

where this density falls to 10 percent of this core value that one can also calculate. Put 

0.1 here. Then, do the similar calculation. Then, you will find that roughly it is capital R 

plus similar value 2.2 a or so. 
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So, this operation will be almost 4.4 times a; 4.4 times at which operation the distance at 

which it falls to 90 percent and the distance where it falls to 10 percent 0.1. So, it means 

essential it is this nucleus in two parts. One is a central core, which is almost uniformly 

populated by neutrons and protons. One that there is a shell; there is a cap. That cap, this 

thickness is 4.4 a. So, from the data what one finds is that for all kinds of nuclei; heavy, 

light, medium weight, this a turns out to be almost same 0.5 femtometer for almost entire 

range. 
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So, you do the experiment with say carbon nuclei. From there, you get some data and 

from data, you find out how much is a. How much is capital R? How much is rho 

naught? Then, you do the experiment with say nickel, middle weight zinc nickel. You do 

experiments with heavy weights like bismuth or mercury or gold. So, in the entire range, 

one can do the experiment and get the values of this a and this rho naught and this capital 

r and what you find is a is almost same. But skin thickness, cap thickness or the surface 

of the nucleus where the density is decreasing, that cap that shell, that is almost same for 

all nuclei. 

If it is 0.5 and then for 0.4 times a something like 2.52 to 2.5 femtometer will be the 

shell. Capital R will be same for all nuclei. Small a is same almost same for all nuclei. 

Those capital R if you calculate for this capital R from different kinds of nuclei, you find 

that this R turns out to be some constant times A 1 by 3 with this naught almost 1.2 

femtometers. So, A is this. R is this. Then, rho naught is also almost the same 0.17 

nucleons per femtometer cube. 

So, these are the parameters. So, the core naturally, if you are working with heavier 

nuclei, then the core will be larger. If you are working with lighter nuclei, the core will 

be smaller. But the surface is still around 0.2 femtometers for almost all of them. The 

density of nucleons in the core is also almost the same; when we are talking of light 

nuclei or middle weight nuclei or heavy weight nuclei.  

Capital A is mass number Z plus n number of protons, number of protons plus number of 

neutrons that is capital A. So, if we are working with say carbon, 12 nuclei, you have a 

carbon sample. You have a carbon film. On the carbon film, you are bombarding those 

electrons. Then, you are measuring those number of electrons scattered in different 

directions. From there you are calculating what is this capital R. You still get this type of 

distribution of charge inside or when you scale up distribution of nucleon numbers. 

Then, you can get that R that will be this 1.2 femtometer times 12 to the power 1 by 3. If 

you repeat the same experiment with say iron 56, you have a iron foil. In iron foil, most 

of the nuclei are iron 56. That means 26 protons and 30 neutrons; total 56. So, this 

capital A is 56. So, this capital R will be 1.2 femtometer times 56 to the power 1 by 3. 

So, this is capital A; is your mass number depends which nuclei you are measuring it. So, 



 

 

this R, that mean radius, you can call it mean radius from the center up to the point 

where the density is decreasing in the skin. 

The density is decreasing to 50 percent in the middle of the skin. So, this is the average 

or mean radius. So, that means radius will depend on how heavy is the nucleus. How 

many total nucleons are there? If you have larger number of total nucleons, then this R 

will be large. But this A and rho naught, they are almost same for all varieties of nuclei. 

Now, you have all the relations. Now, answer roughly what is the weight of a light 

weight nucleus? Which light weight nucleus you would like to use? I am looking for this 

capital R. 

I have given you choice. You can choose whatever you want. But in the light nuclei, so 

what value of A you will take so that calculations are easy? A equal to, let us do it on 

excel, let us have some idea which nucleus has what mean radius. Let us use excel so 

that taking cube roots etcetera will be simple. So, I will go to compute. You all know 

excel. It is a calculation sheet. You will have some sheet. You will put numbers and 

formulae and quickly you will get all those calculations. So, let me do that. 
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You can see in that excel sheet. There is a value 27 there in below that capital A. Then, 

below that capital R is 3.6. So, I have already put a formula there. What is it doing? 

Whatever is the value in that cell below capital A, it is taking that as the mass number 



 

 

and calculating 1.2 into that mass number into the power 1 by 3. So, for example, 

suppose I put 1 here. So, what happens? It should be 1.2. See it is 1.2. 

So, 1.2 into 1 to the power 1 by 3 is here. So, if I use this formula for getting radius of 

the proton that will be 1.2 femtometers. But that is not good because all these electrons 

scattering and this that from s nucleus is not just for one proton. I will talk about how 

much is the proton radius, the charge radius inside the proton. I will talk about it later. 

But this is just for checking that formula is working well; capital A equal to 1 capital R is 

1.2. But now let us go somewhere else. 
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Let us have say 12. So, A is equal to twelve. What nucleus is this? This is carbon. How 

much is the mean radius? It is 2.7 femtometers. Do not go on 2.74731. This is just 

calculation. When you take cube root, it is an unending series. Locate wherever the limit 

of this calculator is, so it is 2.7 femtometers. 
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Then, let us say 60, somewhere around nickel, 4.7 femtometers the mean radius.  
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Then, go somewhere; let us say 100, 5.5 femtometers. Now, tell me a heavy nucleus that 

you know. Name a heavy nucleus that you know, very heavy. Uranium 235, capital A is 

235. 



 

 

(Refer Slide Time: 22:20) 

 

So, let us go for that 235, 7.4 femtometers. So, starting from say nearly to femtometers 

for light nuclei even for the very heavy nuclei, it is 7.4. 
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If you go for more exotic change, say 280 or so and 7.8 femtometers now, you have 

some idea of how big is the nucleus. So, I am coming to the board once again. So, that 

means all these nuclei starting from very light nuclei to very heavy nuclei, the nuclear 

size do not vary much. The nuclear size is say 2 femtometers to 8 femtometers, 7.5 



 

 

femtometers. So, in this, the entire thing, the whole range of nuclei that is available has 

this kind of radius. Now, what I would expect? I will ask. Let me ask a question. 

The nucleus is there because of nuclear attractive forces. Inside the nucleus you know, 

you have protons. Protons repel each other. Therefore, the nuclei should just fly apart 

from repulsion. But if the nucleus is there intact, it is because of the nuclear forces which 

are attractive in this separation range. They are much more dominant and coulomb 

repulsion. So, if it is there because of this attractive force, why it is not that at the center 

things are more crowded? The attraction will be towards the center just like say, Earth’s 

core. Earth is there because of the gravitational attraction.  

So, the density at the core is much higher. As you come towards the surface, the density 

starts decreasing there itself. You come 500 kilometers from the center. You say that the 

density significantly dropped; then, 1000 kilometer, 2000 kilometer and so on. The 

density in the core is very high. As you come out, the density gradually decreases. But 

here the density remains same up to the last 2 femtometers that last side. So, can you see 

some, can you draw some conclusion from here?  

Why it not crowded at the center is because of the attraction atmosphere. Look at the 

atmosphere. The density here at the surface of the earth is larger. As you go up, the 

density gradually decreases. So, if there is an attractive force, which is pulling it down, 

the density is likely to be more as you go towards that attraction center. But here it is not. 

This has a very important physics behind. That physics is that nuclear forces are short 

ranged. This part here does not have much influence on this part here. So, it is not that 

the entire thing is getting attracted at the center. This is being attracted by only these 

nucleons a short range.  

It is because of that short range whether it is here or here or here or here or here do not 

have too much of crowding at the center. Now, let me give one more process by which 

people measure this radius of nucleus. So, this is one experimental process that I 

described last lecture. One more process I would like to give that has to do something 

with the atoms and the atomic energies. We are talking of nucleus. But this method that I 

am going to describe to measure the radius of the nucleus depends on the electrons of the 

atom, in which this nucleus is at the center. 
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So, if you look at the atomic structure, you have a nucleus here. Then, you have electrons 

around. I will not draw those circles which are there in elementary text books. Bohr’s 

circular orbit, Bohr’s circular orbit is something which is a very good explanation or 

understanding of those hydrogen spectral lines. But once the sensitivity of apparatus 

increased, find the structure of hydrogen and all those things came in. One had to do a 

better modeling in terms of contour mechanics. So, what you are, how do you get the 

energy of the atom? 

Let us say for hydrogen atom. Remember contour mechanic classes of hydrogen atom or 

hydrogen like atom. Now, ions just 1 electron, with 1 electron left. So, your potential 

energy term would be minus z e square over 4 pi epsilon naught r. z e is the nuclear 

charge positive nuclear charge minus e is the positive electronic charge. So, the energy 

of electron, we are looking for so potential energy will be this. With this potential 

energy, you will write time in the potential linear equation H psi equal to E psi.  

E will have a kinetic energy part. This H will have a kinetic energy part. This is 

Hamiltonian which H will be minus h cross square by 2 m. Then, the potential energy 

part, so with this Hamiltonian, you will solve this equation to get the energies. Then, you 

find that there are too many levels n equal to 1, n equal to 2, n equal to 3 and so on. Now, 

when you solve this, look at the lowest energy; how much is this for hydrogen? 



 

 

It is almost minus 13.6 eV. I can write in terms of fundamental constants h cross and 

mass of electrons and this and that. Some energy is obtained. What is the weight function 

corresponding to the hydrogen weight atom? Generally write it 000100, n equal to 1100. 

This will be pi a naught cube z cube here. Square root of this e to the power minus z r. 

What is z number of protons in the nucleus? What is this a naught? This is Bohr’s radius. 

So, this is the wave function for the first lowest energy. Now, this wave function is not 0 

at r equal to 0. If you put r equal to 0 here, this will be a to the power minus z minus 0 r 

is 0, which will be 1. So, it is not 0. 
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So, this is not 0 at r equal to 0. So, that means it is going through that nucleus. The 

nucleus is r equal to 0 and this wave function is not 0 there. So, that means there is 

probability of finding the electron at the side of the nucleus. So, if the nucleus is 

penetrating the electron, is penetrating the nucleus, then any structure in the nucleus will 

affect it. Now, this Coulomb potential that you have written, Coulomb potential energy 

that you have written assumes that nucleus is just a single mathematical point at the 

centre at the origin that is why I have written it like this. 

But if the nucleus has a radius, if the nucleus is like a sphere not like a point and this 

electron is penetrating in that, this electron is going close to r equal to 0 and going to r 

equal to 0, then whether it a point, whether it a 0, whether it is a small sphere, whether it 

is a big sphere, it is going to affect the energy. How much is this changed that is related 



 

 

to how big is the nucleus. If the nucleus is really like a point charge, then this relation 

will be there. But if the nucleus is not like point; if it is an extended sphere, then, the 

energy will be different. If this difference energy can be measured, then from there, we 

will be able to know how much the radius of this nucleus is. So, let us give it a try. I will 

make so many assumptions. Still let us make it an attempt. 
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So, what I will do? What is the change? The change is in potential energy. Look at the 

Hamiltonian. The kinetic energy will remain the same. That term minus h cross square 

by 2 m square that will remain the same. It is only the potential energy which is getting 

changed. So, this potential energy is minus z e square over 4 pi epsilon naught r of point 

nucleus. If I assume that nucleus is a point, then, this is it. Now, assume that it is a 

spherical nucleus. Suppose, it is a spherical nucleus of radius r also, charge is uniformly 

distributed. Let us make all these assumptions to make an estimate charge is uniformly 

distributed, which charge is this I am talking about?  

I am talking about nuclear charge. Nucleus is a sphere. All those z e charge is uniformly 

distributed. Now, how do I get the potential energy? Now, I have a sphere of radius R. 

Then, the charge is uniformly distributed here. Nuclear charge, positive charge is 

distributed here. Total charge is z e. First let us write potential. Now, remember your 

electro static lessons. If you have a uniformly distributed spherical charge distribution 

and total charge is given, radius is given, you can write potentials, electric potential 



 

 

outside. Thus, sphere is all the same. Whether this is extended or it is a point charge, 

remember that outside this sphere, the electric field potential is same as if this whole 

thing is concentrated at it center. So, for outside, r is greater than capital R.  

I am now writing for potential, not for energy. This is energy. So, let me give some other 

name. Let me call it V potential energy. Here, I am only writing potential V at r will be z 

e over 4 pi epsilon naught r. This is because for an outside point, this spherical 

distribution, spherical charge distribution can be considered to be a point; everything 

concentrated at its center point charge. So, it is this. But inside the story is different. So, 

up to here, the potential I know all outside point, up to here the potential I know V at 

capital R.  

I know V at capital R will be z e by 4 pi epsilon naught capital R. Now, I am getting into 

the sphere. So, how do I calculate potential? Get electric field. Get electric field inside 

first. Then, integrate the electric field to get the potential difference and add to this 

potential. So, what is the electric field? It is z e total charge 4 pi epsilon naught, r here 

and capital R square here. So, the potential here at some point r is V at small r minus v at 

capital R. So, I am taking potential difference at some point inside and the surface V r 

minus 8 s V capital R. This is by definition minus integration from capital R to small r e 

dot d r. That is how you define potential difference V r minus d r. 
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So, you have this 9 s equal to V small r minus V capital R is equal to minus integration 

from capital R to small r e dot d r. Here, it is electric field. Now, I am talking of inside. 

Here is electric field. It is z e r divided by 4 pi epsilon naught capital R square r unit 

vector and dot that d r. So, it is just d r. So, this d r has also vector unit dot r care. So, dot 

product of this r care with that r care will be 1 this d r. So, integrate this. It is equal to 

minus z e over 4 pi epsilon naught R square. So, minus z e 4 pi epsilon naught r square r 

d r. This is r square by 2. 

Then, put the limits. So, it is r square minus capital R square by 2. Hence, this V at r is 

equal to V at capital R plus this. V at capital R, I can write from here. That will be z e 

over 4 pi epsilon naught capital R and minus z e over 4 pi epsilon naught r square and r 

square minus R square by 2. So, I have gotten the potential at the distance. You can 

make some simplifications. I can take something common. z e by 4 pi epsilon naught r 

common. So, it is 1 here. Then, it is minus r square by 2. This r square is there. What is 

this? Let me see this. I have taken common. So, 1 will be there minus z e. I have taken 4 

pi epsilon naught. I have taken r. So, one R will be there.  

Let me take this bracket so that this minus is outside. So, take 4 R square small r square 

by 2 capital R minus 1. So, make it better looking. But this is wrong. This cannot be 

correct. This expression cannot be correct. This has to be wrong because the thing that 

you have told here has a dimension of length. It is r square divided by R. This is 

dimension less. You cannot add dimension quantity to a quantity with dimensions. Can 

you do that? That is because this expression itself is wrong here. This is dimension. This 

r square by R square. Here, it is 1 by r. So, take from here V at r. Let us check everything 

is this electric field. It is not electric field. 
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This is electric field. The electric field should be q by R square. q by 4 pi epsilon naught 

R square. So, here is q and 4 pi epsilon. It should be 1 by R square. It should have a 

dimension of 1 by R square. So, if it is small r here, it has to be capital R q here. So, that 

error is coming from there make correction. In the previous thing also, you have this R 

cube here. Therefore, you have this R cube here. Therefore, what happens now? Now, 

what happens? 1 by R and this is 1 by 2. Now, it looks fine. This is dimensionless. r 

square by R square is dimensionless. 1 by 2 is dimensionless. So, everything is 

consistent. So, make this a practice whenever you do algebra and you get expressions 

periodically, you see if all expressions have the same dimensions or not. If they are not, 

trace the error somewhere has been made. 
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So, this is equal to z e by 4 pi epsilon naught capital R. Then, 3 by 2 minus r square by 2 

R square. You can write this as z e over 8 pi epsilon naught capital R and 3 minus r 

square by capital R square. What is this quantity that we have gotten? This is potential at 

a distance small r from the nucleus inside the nucleus that is this so point nucleus. You 

know that this is spherical. Now, you know how much is the change this will be and 

minus z e by 4 pi epsilon R. This is a potential assuming nucleus to be a point charge. 

This is a potential assuming nucleus to be a uniform sphere. So, that is the difference in 

potential. Therefore the difference in potential energy multiplied by minus e multiplied 

by minus e, so this will be minus z e square 8 pi epsilon naught R 3 minus r square by 

capital R square. Then, minus, minus z e square over 4 pi epsilon naught r. So, this will 

be minus z e square by 8 pi epsilon naught R 3 minus r square by capital R square. Then, 

minus, minus z e square over 4 pi epsilon naught r.  

Now, little bit on contour mechanics. What I have obtained is that the change that you 

have to bring in if you want to write the spherical potential nucleus. Now, look at the 

Hamiltonian. The Hamiltonian also changes by this amount. It was minus h cross square 

by 2 m del plus potential energy. Potential energy is changed by this amount. So, 

Hamiltonian is also changed by this amount. So, original Hamiltonian, I can now erase 

all the original Hamiltonians with point nucleus; H with point nucleus. 
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Assuming that the nucleus is just a point, call it H naught. Then, Hamiltonians with 

extended nucleus is H naught plus H 1. This H 1 is given by this expression. That is 

there. Is this fine? This is the change in that potential energy term. Kinetic energy term 

remains the same. So, change in Hamiltonian that I have to bring in this extra term that I 

have to bring in is just this. Now, how it affects the energy? Remember energy we have 

gotten from solving the Schrodinger’s equation H psi equal to E psi become H naught 

plus H 1. 

Previously, it was H naught. Now, it has become H naught plus H 1. Now, we have to 

again solve this H naught plus H 1. With this, I have to solve this. This is the new 

energy. So, this is the new energy. So, I should use this Hamiltonian and get this energy 

from the contour mechanics rules. The procedure is quite simple first order correction. 

The first order correction is done by what you call first order perturbation theory. That is 

that from this H naught, first you get this wave function. You call it H psi naught or psi 

point or whatever. From H naught, get this wave function from H naught.  

If H 1 is a small correction in H naught, this procedure works that get your wave 

function from H naught. Use that wave function. Calculate delta E. To calculate delta E, 

which is that psi naught here and this H 1 here, psi naught here remember what does this 

mean? Let me erase this also. What does this mean? This is integration psi star. Then, 



 

 

this H 1, that operator H 1 here this will be just delta U that I have calculated and psi 

naught r deta. 

Since that kinetic energy term is not there, del square term is not there, it is just 

multiplication. That kinetic energy term differentiates whereas, this potential energy term 

just multiplies. So, it will be multiply this and this mod psi naught r square into this delta 

U that you have calculated times delta. So, we stop here. In next class, we will start from 

here. We will do some integration. We will calculate the change in the energy from 

there. How do I get the radius of the nucleus? That will be our next lectures topic. 


