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 Kitaev model

  Welcome  to the lecture on Kitaev model which is a part of this course called Topology
and Condensed  Matter Physics.  So, we have been talking about Kitaev model and one of
the reasons that  after  you know  talking  about  the Schur-Schrufer-Hegel  model  SSH
model,  we have  started  talking  about  the   Kitaev  model  is  that  the  SSH model  the
topological consideration is fragile.  What I mean by that is that if one introduces a mass
term or a term which you know goes  in the diagonal elements that is which makes dz
equal to 0, then there will be no topological  phase and it will be a band insulator or an
ordinary insulator.  So, the topology in SSH model crucially depends on the dz term to be
0 and because of which  the chiral symmetry exists by the way this diagonal term in the
Hamiltonian this Dirac  Hamiltonian which is written in the form d dot sigma can also
come from a next nearest  neighbour hopping ok. 
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That  would  induce  a  to  a  hopping  or  a  b  to  b  hopping  in  that  case  also  the  chiral
symmetry  would be gone and it will be SSH model would you know boil down to a
trivial insulator.  Now this model Kitaev model which consists of spinless fermions and P
wave  superconductivity.  Now  you  could  ask  this  question  how  are  these  fermions
spinless I mean they could be spin  polarized fermions having only one kind of spin such
that the spin degrees of freedom  do not appear in the problem which can be done by



using a magnetic field.  However that would lead to further problems and in fact that is
discussed in the context  of Kitaev model in which one can actually talk about more
familiar kind of pairing which  is S wave superconductivity and in presence of a magnetic
field and spin orbit coupling  etcetera, etcetera.  Let us not go into that and let us only talk
about this P wave superconductor which is  shown as a green block that is there below
and then there is a wire which is that the  blue rod that you see and these red ones that
you know spiky ones at the edges are something  that we are going to discuss and called
as a Majorana fermions ok.  Now in this  model  the topological  phase is much more
robust and as long as we have this  superconductivity or the superconducting pairing the
particle hole symmetry protects the topological  phase and it is not going to go away just
the way we have done it for or I have seen  it for the SSH model and that is the reason
that we are doing a second tight binding model  in order to talk about the topological
phase ok.

  It is just a schematic diagram that you see here and so the superconductivity is induced
in this blue rod or the Kitaev wire or the Kitaev chain by proximity effects  ok.  So,
because it is in the proximity of a superconductor the semiconducting wire or the chain or
the  tight binding chain that is how the superconductivity is induced in that ok and as I
said that the  particle hole symmetry protects the topological characteristic ok.
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  This we have done it in the last class I still wanted to remind you of the notations that
are used.  So, we write down a two site Kitaev Hamiltonian this is site number 1. So, this
is the chemical potential of site number 1, chemical potential of site number  2, this is the
kinetic energy of which is because of the electron hopping from site  1 to rather site 2 to
site 1 and then the Hermitian conjugate takes care of the other  way hopping and both of
them will have to have the same amplitude in order for the Hamiltonian  to be Hermitian
and there is a superconducting pairing term.

  We have said this earlier that the operator corresponding to the pairing is this C 1 dagger
C 2 dagger plus a Hermitian conjugate and the amplitude of pairing the P wave pairing  is



given by this delta.  You see a spin nowhere in the problem and this is what we have said
that it is a spin  polarized problem and this is the model consisting of a chemical potential
here.  The kinetic energy or the energy due to hopping so, this is the kinetic part of it and
this  is the superconducting or P wave superconductivity.  So, P wave okay.  Now you
have to choose a suitable basis in order to write it in a matrix form and then  you you
know diagonalize the matrix and find the eigenvalues and eigenvectors and that  is about
it I mean and then use the eigenvectors and probably the eigenvalues too in order  to
make sense out of the problem in terms of its topological characteristic.

  So, we choose this as the basis it is a C1 dagger C1 and a C2 dagger C2.  So, it is not
that we choose all of them to be creation operator here and all of them  to be annihilation
operator here because the most convenient basis is the particle  hole at site 1 and the
particle hole at site 2 and just the conjugate of that.  So, it is a C1 C1 dagger C2 C2
dagger and then you can get this Hamiltonian. So, the easiest way for you to is to you
know write this the top line which I wrote and  then write down this basis.  So, you will
have terms like this term minus mu is the C1 dagger C1 term as you see its  minus mu
and the second term that is a C 1 dagger C1 C1 term that is this term is 0  there is no term
which is like C1 C1 and then there is a C2 dagger C1 which is minus  t and so on..

 

 So, you can create this 4 by 4 matrix and then can solve it.  So, we decided to you know
resort to a slightly different notation in which we talk about  creation of a particle at site 1
to be a ket like this for the annihilation to be like  this and for the second site it is like this
ok.  So, these are written in Brian ket notation and in which we use this E and H, E for
electron   and H for hole.   So,  the creation operators  are  associated with particles  or
electrons and the annihilation  operators are associated with holes ok. 
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 In  this  notation  we  can  go  to  this  N  site.  So,  we  wrote  down the  first  the  2  site
Hamiltonian here and which is the same Hamiltonian as  you see here written in this
matrix form this is written in terms of this E and H the  bras and the kets and we can
generalize this to N sites here.  So, this is for a N site Hamiltonian and it has these minus
mu and so on and then there  is a t term and then there is a delta term you have to see it
carefully that it is a  C 1 dagger C 2 and C2 dagger C3 all these terms are there and then
you can you know  combine these terms.  So, this is the of course, the diagonal term
which you know is on site term at a site N  and these are connecting the N plus 1 N to N
plus 1 at site and N to N plus 1 at site  with an amplitude minus t plus delta and t minus
delta ok.  
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So, this is an exercise for you to write down the N site Kitaev model in this particular
form and once you do that one has to Fourier transform now it became a not a 4 by 4
problem  which you could probably solve analytically or by hand and now this for the N
site problem  you definitely do have to go to the computer and solve it, but if we do a
Fourier transform  that  is  if  we write down the Hamiltonian in the momentum space
because the reason that  we could do this is that we have a translational invariance of the
system and K is a good quantum  number.  So, we write down the C k and C k dagger by
usual notations of course, you do not see  a 1 over 2 pi etcetera, but that is you know it is
not written here and it is not required  in fact, you could write it like this.

There is one very important identity that you need in order to write the Hamiltonian  in
that massless Dirac form and this is that important step which is it  is like an identity
which is it is a minus exponential minus ik C k dagger C minus k dagger is equal to an
exponential ik C k dagger and C minus k dagger and so on ok.  So, the massless Dirac



form is this ok.  Now you see that again we can write it as a d dot sigma now in the z y or
y z plane  ok.  So, your x component is 0.  So, d vector is contained in the y z plane to
remind you that in the SSH model it was  in the x y plane and dz equal to 0 and that is
what was very important for that model  to have topological character.

However here the dx is equal to 0 and we have dy and dz and it is written in terms of d
dot  sigma.   Now remember  that  sigma here  represents  the  particle  whole  degrees  of
freedom  and in the SSH model it was the sub lattice degrees of freedom that is whether
you know  we are talking about a sub lattice or b sub lattice here of course, we are not
talking  about sub lattices, but we are introducing the particle whole degrees of freedom
ok.
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  So, the d vector is of course, given by this with you know dy and dz here this dy and dz
and  one  can  actually  solve  this  Hamiltonian  easily  and  find  its  eigenvalues  and
eigenvectors  and the eigenvalues and the eigenvectors are plus and minus of this where
corresponding  to the plus sign you have this eigenvector and corresponding to the minus
sign.  So, this plus sign and this correspond to the minus sign ok.  So, these are the
preliminaries of the Kritaev model and are in exact parallel with the ones  that we have
seen for the SSH model excepting one very crucial point which I had indicated  to you,
you have to use an identity in order to get the other Kritaev model in a closed  form that
is right in the form of d dot sigma and that is what we have done ok.



So, there is nothing new so far excepting that the SSH model we had dz equal to 0, here
we have dx equal  to 0 and the wave vector  or rather  this dy and dz which are both
functions  of K. So, we will vary K over the Brillouin zone and try to draw you know a
curve closed  curve that winds the origin if it does as a function of these changing of mu t
and delta  then we call it a topological phase and if it does not we will call it a trivial
phase  just like what we have done. So, we know the definition of the winding number
and that  is what has to be computed here.
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 Now you can see it here that the dz can be  either greater than 0 or it could be a smaller
than 0 depending on these conditions that  is whether mu is greater than minus 2t or mu is
less than minus 2t ok.

 So, dz will be  greater than 0 for mu greater than minus 2t and dz will be equal to 0 for
mu less than  minus 2t. In fact, these are the topological the parameters that distinguish
between the  topological  phase  and the trivial  phase.  So,  let  us  explore the winding
numbers in each  of these cases and find out whether they do really distinguish between a
normal insulator  and a topological insulator. 
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So, we have the same formula for the winding number which  call we call it as nu here 1
over 2 pi and then there is a sum over the Brillouin zone  and what I mean by Brillouin
zone is that it goes from K goes from minus pi to plus  pi and there is a mod of this d dK



of hK and hK is given by this. So, it is the same  you could use the same expression that
we have discussed in the context of SSH model.  However this one is also equivalent to
that.

So, h of K is equal to tan inverse of dz by  dy and which is equal to tan inverse of mu plus
2t cos K to delta sin K. We will tell  you about this you know this 2t cos K is nothing but
the epsilon K which is equal to a minus  2t cos K a we have taken a equal to 1. So,
epsilon K is minus 2t cos K that is a band  energies that is a tight binding energies of the
wire mu is of course, the chemical  potential and delta is the superconducting pairing
amplitude. Superconducting pairing  amplitude is usually or rather the gap function is
usually a complex number having a form  delta equal to you know delta exponential i phi
where phi is the related to the phase  of the wave function that is the phase of the wave
function. And however here delta is just a real parameter which we have considered here.
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 So, if you  calculate this winding number by all these quantities that you have now and
then integrate  it  over minus pi to plus pi you get two different curves one for a mu
greater than minus 2t  that is what exactly was said here that mu greater than minus 2t
and the trivial phase  is that there is no winding it is just simply a line and not a closed
curve in the dY dz  plane. So, these plots are prepared for some specific  values of mu t
and delta you see mu is equal to 0. So, here t equal to delta equal to 1  means that mu is a
greater than minus 2t minus 2t is minus 2. So, 0 is greater than minus  2 which is correct.
So, this is the topological phase and the trivial phase which you see  on the right is mu
equal to 1 and we have put t equal to delta equal to 0. Of course any other values or for
the for these parameters are fine I mean in the sense  that we do not have to stick to these
values, but these values are such that they correspond  to the topological phase where mu



is greater than minus 2t and for the other case mu is  less than minus 2t. So, these are the
topological and the trivial phases of the problem.  

(Refer Slide Time: 17.21-18.40)

So, let us explore the parameter space a little bit and try to understand that what are these
different parameter values and corresponding to that the band structures etc. So, we have
taken a number of them I mean 1, 2, 3, 4, 5, 6, 7, 8, 8 of them where we have taken
various values of mu t and delta. So, this corresponds to of course the topological phase
that  is  familiar  to us and this  of course corresponds to the trivial  phase that  is  again
familiar to us for which the windings are shown in the d by dz plane.

These are some values in middle or in between them and you will see that you know
there  are these gap closing transitions that are occurring and let us call this as a 1 case  1
and this as case 8 because there are 8 cases and whenever these condition mu greater than
minus 2t is satisfied one has a topological phase else we have a trivial phase.  So, these
are  these  8  things  that  are  8  plots  band  structure  plots  that  are  shown.  So,  this
corresponds to 1 and this corresponds to 8 and all the all of them this 2, 3 etcetera  they
are all you know shown here and you see that there are these gap closing points here  here
and so on.  So, these are the you know the points which demarcates  are  trivial  to  a
topological  phase ok.  So, that the system undergoes a gap closing transition this  gap
closing transition has been told a number of times earlier. In fact, if a system is going
from one topological  phase to another topological  phase or a topological   phase to a
trivial phase then it goes through a gap closing point or it goes through a critical  phase
where the winding of the d vectors it does not wind, but it just touches the exceptional
point or the singularity point ok.
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 So, these are band structure which you can easily calculate  by changing varying k from
minus pi to plus pi. So, that is a k this is a k. So, k is  written here of course, for each of
them k is from minus pi to plus pi and this is how  we get these various topological and
trivial phases ok.  So, in principle you know the discussion of the Kitaev model should
have ended here  saying that well there are realization of trivial insulator and topological
insulator  depending on the winding of this the d vectors in the d y d z plane here d x is
identically  equal to 0 and well I mean even if you introduce a d x here as long as the
particle hole symmetries  are maintained what I mean by particle hole symmetries as long
as  the  superconductivity   is  not  destroyed  the  superconductivity  is  intact  and  the
Hamiltonian can be written  in the form that we have written it in we still have all these
things to you know all  these discussions that we have made so far they are valid.
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Now additional  interest  was you know put into this  problem of these Kitaev wire or
Kitaev  chain with P wave superconducting correlations by due to I would not say by
because by is  it's been you know introduced in this context later 2012 we will discuss
some experiments  on that  by Ettore  Majorana  this  j  is  silent  and his  name is  Ettore
Majorana who discovered  it in this Majorana fermions in the context of and he said that
they are relevant to neutrinos.  So this was done in 1938 so he was probably born in 1906
but no records are found after  this proposal of this Majorana fermion so we do not know
much about him after that.  So what it did was that under certain conditions he solved a
Dirac equation and he got real  solutions for this Dirac equations and these real solutions
have very strange features  what I mean by very strange features is that they correspond
to quasi particles which are  we call them as Majorana fermions because it is named after
Majorana.  So they have this property that they are same as that is their dagger or their
complex conjugate  okay so it's like saying that the particles are same as their holes so
you want to create  a particle or you want to create a hole it really doesn't matter I mean
they are they  are the same thing so we are just talking about two different Majorana
fermions and  we will come just in a while that why we are talking about two of them so
each one of them  have property gamma 1 equal to gamma 1 dagger and gamma 2 equal



to gamma 2 dagger.  So these gamma 1s correspond to Majorana fermions just like the C
corresponds to usual fermions  that you have used in order to write down the these you
know Hamiltonian so here you  see that here you have taken the Cs to be fermionic
operators the electrons and these  are used in order to write down these you know the
Hamiltonian they have we know that  they have anti commutation relations they obey
Pauli exclusion principle and so on so  forth okay.

And so here we are finding very different kind of particles which actually are their  own
conjugates I'm repeating the statement but this is something very strange and that  means
that you can express this Majorana's at any given site by a combination of two  Majorana
fermions so a Ci and a Ci dagger it can be written as a half of gamma 1i minus  i gamma
2i now this i is equal to root over minus 1 and this i is the site index so please  make a
distinction between the two if you want you can write it as Cj equal to half  of gamma 1
gamma 1j minus i gamma 2j and so on so forth okay.  And similarly the creation operator
comes with a positive sign now that is like saying  that each usual fermion operator is
expressed in terms of two Majorana operators okay and  these two Majorana operators
gamma 1 and gamma 2 actually denote a one fermion so this gamma  1 and gamma 2 are
always together they cannot be separated you cannot separate Majorana  fermion one I
mean this gamma 1 from gamma 2 okay.
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 So each fermion is composed of two Majorana's and you can write down these anti
commutation  relations and where do they come from you can use these relations such as
Ci Ci dagger  this is equal to 1 and Ci Ci or Ci dagger Ci dagger i dagger comma this is
equal to  0 okay.  So, if you put all these gamma 1's etcetera there gamma 1 and gamma 2
there and then you  get a gamma 1 gamma 2 anti commutation relation is equal to 0 same
with gamma 1 dagger gamma 2 dagger just like here you have these Ci and Ci and Ci
dagger and Ci dagger both these  anti commutation give rise to 0 and on top of that this
gamma 1 square is equal to gamma  2 square is equal to 1.  It's very strange that because
a particle is its own conjugate so instead of you know saying them they are filled or
empty that we use usually for a usual fermion operators that these we use as the complete



set of basis sets for usual fermions that either it's occupied  or it's not occupied you can
never make that comment for the Majorana fermion so it's never  filled or never empty
okay so they are really distinct from a usual fermions.
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So  people  wanted  to  see  in  condensed  matter  physics  and  that  whether  Majorana
fermions  exist I just made a passing remark that these Majorana actually thought that this
is relevant  to neutrinos and then it was never seen in the context of neutrinos.  So people
have wanted to see whether in condensed matter systems it can be there and it was  in a
science article in 2012 April 2012 the cover was this and then the front page had  a saying
that  Majorana's  arrived and it  says that when a negatively charged electron  meets  a
positron is positively charged antiparticle they annihilate each other in a flash of gamma
rays  a  Majorana  fermion  on  the  other  hand  is  a  neutral  particle  which  is  its  own
antiparticle  this is what we have said no sightings of Majorana have been reported in the
elementary  particle this is what I just said that in the elementary particle world there was
no  evidence of Majorana fermion being detected but recently they have proposed to exist
in  solid-state system and suggested to be of interest in quantum computing platform.  I'll
make a  passing mention  of  how it  is  interesting  to  the quantum computing  platform
which is  you know the call of the hour now a lot of effort has been put in quantum
computation  quantum information quantum technologies quantum sensing and various
other things.
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  So it was by Maury et al in April 2012 edition of the science article they have said that
they set up a semiconductor nanowire and they did a tunneling experiment so by putting
normal and a superconducting electrode that revealed evidence of Majorana fermions and
this was  the experimental setup so you see that there is a normal metal and then there is a
superconductor  that are there and they are being a normal metal is put in a positive bias
and so this  is really equivalent to like a schematic plot like this where the electron comes
from this  side and a the green patch or the green sort of you know shaded region that you
see is  the barrier okay and on the right you have a superconductor just like a normal and
a  superconductor we have a normal and a superconductor here and the superconductor is
because there's  a 2 Delta gap with respect to the Fermi level of the metal and these two
stars are basically  the you know the Majorana that are seen here so these are like stars
here and so on. 
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So the experiment was simply to look at the differential conductance what is differential
conductance that is di dv okay so you see di dv in unit of 2 e square by H and what  you
see is that you see it at 0 magnetic field and you see it at something like 490 milli  Tesla
magnetic field and you see that the zero bias peak remains where it is okay so which
means as if  the zero bias  peak is  like you know spinless  particle  where the Zeeman
energy doesn't  cause anything or rather  it  doesn't  you know disturb it.  So this  is  the
evidence that these even if you know introduce the magnetic field we of  course haven't
talked about magnetic field in our discussion of the Kitaev chain but  as I said that there's
a  parallel  description  that  exists  where  you  can  actually  do  instead  of  a  P  wave
superconductor which is very very rare in nature probably non-existent to be  you know
for all practical purposes but probably there as well I do not want to commit on that  but
S wave superconductivity is definitely there I mean Aluminium, Mercury, Niobium etc
all are S wave superconductors.  So if you take a S wave superconductor and want to do
the same experiment and that's what these people did a Morik et al in the science 2012
paper in which they have taken



These I think indium antimonite kind of thing where there are spin orbit coupling also
there and they put it in a magnetic field and this magnetic field sort of the zero bias peak
continues to exist this peak that you see here and this is an evidence so the Majoranas are
there  at  zero bias  or  zero energy and these Majoranas  do not go away they are like
spinless particles and they are completely immune to the magnetic field will tell you  that
why do we think that these are evidence of Majorana.  That is because that they occur at
zero energy in fact it is in the same spirit if you remember  the SSH chain that we have
talked about in the topological regime we have two atoms at  the end of the chain to be
completely decoupled which means that whether they are there or  whether they are not
there it really does not make any difference to the energy of the  system which means
they are at zero energy if you introduce them they are at zero energy, these Majoranas are
at zero energy as well and they are completely you know like a compound  object and
you cannot separate the Majoranas.  

(Refer Slide Time: 32.24-35.00)

Alright  so if  you want  to  understand a  little  more about  how the Majoranas  play an
important  role in this Kitayev model once again I just want to remind you that you know
we could  have wrapped up the discussion of Kitayev model by just saying that these this
is the  topological phase this is the trivial phase and we are pretty happy with this Kitayev
chain  for  the  reason  that  as  long  as  the  superconductivity  exists  the  particle  hole
symmetry  would  make   the  topological  state  robust  and  will  also  the  system  will
definitely show a transition  from a topological to the trivial if you somehow can tune the
chemical potential from  being greater than minus 2T to less than minus 2T.  So there a
transition will occur from topological to trivial and so on but these additional  discussion
with respect to Majoranas are very important as I said from the perspective of  quantum
computation and using them as qubits because they are correlated over large distances.



  So I gave you the relationship between an electron and Majorana so the Ci and Ci
dagger  are expressed in terms of the Majoranas and one can write down the Majorana
Hamiltonian  I mean basically the Kitayev Hamiltonian in terms of the Majorana like this
you have  to write down it in terms of C and C dagger and then convert the C and C
daggers to gamma  1 and gamma 2 and then write it here I was more careful in writing in
terms of J. 

 So these J denotes the site indices and mu is of course the chemical potential delta  is the
superconducting pairing and T is the real space hopping amplitude.  Now this one would
correspond to a topological phase that is if mu is greater than minus  2T you have a
Hamiltonian which looks like that and will the Hamiltonian for the trivial  one with will
look like this.  So you have a gamma 2J and a gamma 1J plus 1 whereas a gamma 1J and
a gamma 2J and they  come with different coefficients.  So these this is the Hamiltonian
corresponding to the topological limit and this is the Hamiltonian  that corresponds to the
trivial limit.
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Alright so these are the Kitayev chain in terms of the Majorana and now you see that  the
trivial would correspond to this gamma 1, gamma 2, gamma 3, gamma 4 etcetera I have
just taken a 4 site chain and 4 site means there are 4 fermion operators which are like  C1,
C2, C3, C4 or C1 dagger, C2 dagger, C3 dagger and C4 dagger but there are 8 Majoranas
because each fermion or each electron would correspond to 2 Majorana.  So these are
these gamma 1, gamma 2 etcetera for these n equal to 1, 2, 3, 4 and in the  trivial limit
which means that mu is less than minus 2T this is what we have been saying  it will look



like that all the Majoranas were are paired up at their sites.  Now for the other case when
it is equal to minus 2T you have the 2 Majoranas here use  a color these 2 Majoranas here
they correspond to zero energy because they are you know they  are completely separated
from the chain.  So whether they are there or they are not there it does not matter to the
energy and  they correspond to zero energy and so the zero energy is a 2 fold degenerate
line which  correspond to these 2 Majoranas in the system okay.  And because we have
just taken as 4 site system we could in principle take it as 1000 sites  or 10,000 or 1 illion
sites  you  will  have  them  as  you  know  correlated  but  they  are  at   great  distances.

  So that is how they could be used as you know qubits and would aid in the quantum
computation   of  some kind alright.   So these  are  the  discussion  about  the  Majorana
physics that is intimately related to the  Kitaev chain that we have talked about and how
the trivial and the topological states  of the system are related to these 2 Majoranas being
there at zero energy and there is no  free Majorana or there is no zero energy mode of the
system.  So not having zero energy mode means that the shear on the top panel that you
see for  corresponding to the trivial phase the bulk and the boundary there is no difference
between  them and here you see the bulk and the boundary in the lower panel there is a
difference because  there are 2 Majoranas that are completely free corresponding to the 2
edges  of  the  chain   the  Kitaev  chain  and  that  is  why  there  is  a  bulk  boundary
correspondence and it  corresponds  to the lower panel corresponds to the topological
limit.  
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So to finally you know wind up the discussion let us talk about the symmetries of the
Kitaev  chain ok.  So I write down the Hamiltonian once again so this is minus mu and
then there is a Ni  from 1 to L and minus well I can write it as inside the bracket so this is
i equal to  again 1 to L you write i or j it does not matter so this is like Ci dagger Ci plus 1
plus delta Ci Ci plus 1 or you can write it as dagger dagger this is what we have written
earlier and plus a Hermitian conjugate ok.



So that is your Hamiltonian for the N side chain and we have given a prescription of  how
to write it in the K space so if you write it in the K space then it resembles a form  which
is H equal to K and a phi K dagger H of K and we write this as a BDG because this
something  that  you  will  be  seeing  if  you  look  at  literature  and  the  BDG  means
Bogoliubov  Dzhen which is written in the particle hole basis.  So Bogoliubov Dzhen so
this called BDG so you write down this HK of BDG there and then  phi of K where phi K
is the basis which denotes that it is the dagger of that is equal to  C K dagger C of minus
K ok.  So HK and then the BDG is basically the same Hamiltonian that we had written
down earlier  now I am just writing it in terms of the basis so this is equal to epsilon K
delta  K star and we write it with a notation and just explain the notation and then delta K
star and there is a minus epsilon K ok.  So that is the Hamiltonian and this Hamiltonian
your epsilon K equal to minus 2T cosine K  A but you can write that put that A equal to 1
so you have equal to minus 2T cosine  K and delta K tilde is equal to minus 2I delta sin K
A or which is nothing but minus  2I delta sin K ok.  So that is your delta K this is often
called as the P wave be careful in there is a I here  ok now this is called as a P wave
pairing amplitude  and of course this is a tight binding energy in 1D of the chain energy
of the chain ok.

  So that is the tight binding energy there and so on so usually as I said that this delta  is
usually a complex quantity written with amplitude and a phase but here of course we
have taken this to be a real parameter of here ok.  
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So you can write down the H of K BDG, BDG as I said stands for Bogoliub of Degen this
is equal to that Dirac form which is D of K and you can write a BDG or you do not need
to write a BDG you can write it a D dot sigma where D of K is nothing but 0 minus 2
delta  sin K minus mu minus 2T cosine K ok. 

 So that is your D and the E the energy E plus minus K for this Hamiltonian if you solve
this Hamiltonian it is plus minus root over epsilon K square plus a delta K tilde square
mod square of that ok.  So that is the energy and so dX equal to 0 so there is a gap for all
values of K and  so on.  So we are talking about the symmetry and the symmetry the most
important symmetry that  protects the topological phase  and this symmetry basically the
parent symmetry is the particle hole symmetry ok.

So if that is the case and we have been writing a particle hole symmetry with the PHS and
then you have a H star K well I mean whether you want to write the star here or you want
to write a BDG here and then a star there ok.  So this is the thing and then PHS dagger
this is equal to minus H minus K BDG so this is  the invariance of the Hamiltonian if the
Hamiltonian obeys this relation then of course  it is invariant.  So here this is the PHS is
equal to sigma X which is nothing but it is a 0 1 1 0 now  each of these do not think that it
is just a 2 by 2 matrix this is actually a each of  the element is an n by n block and so
sigma X it has a form which is 0 1 1 0 so one can  check that sigma X H of K BDG and
star sigma X because sigma X dagger is equal to sigma  X and this is equal to its minus H
BDG BDG minus K ok.  So this you have to check and if you get this then it is invariant
and you should get this  ok because that is the parent symmetry of the Hamiltonian ok
and so if this is true  then you should also get a sigma X DX K we write it here so DX K
sigma X is equal to  minus DX minus K sigma Y DY K sigma I mean not sigma Y sigma
X sigma X is equal to minus  DY of minus K and sigma X DZ of K sigma X is equal to
DZ of minus K ok.  So this is the symmetry properties I mean this denotes the symmetry
properties of this  Hamiltonian of the Kitaev Hamiltonian and as I said because of this
particle hole symmetry  even if you put an onsite term onsite potential at each site or if
you you know introduce  some other even if you introduce a DX it really does not matter
it will still have the topological  phases and the trivial phases etc.



  Meaning the fact that visualization of the winding would be a problem if all DX DY DZ
exist  in which case also there are you know remedies  that  allow us to  transform the
Hamiltonian  such that it  loses one of the key X or Y or Z components and then the
visualization becomes  you know simple.  So to sum up things Kitaev model with P wave
superconducting correlations is an important  model tight binding model which shows
topological behavior in certain region of the parameter  space it  is just like our SSH
model however the topology is much more robust here and  it is protected by the particle
hole  symmetry  which  is  inherent  to  this  problem  because   of  the  superconducting
correlations  the particle  hole symmetry  is  intact  and we show the invariance   of  the
Hamiltonian with particle hole symmetry via this sigma X operator it being acting  on
this H of K BDG it transforms according to this formula.  And because of that each of the
DX DY and DZ would transform accordingly okay.  So this  is how we wrap up the
discussion on 1D tight binding models which are paradigmatic  models for showing the
topological considerations and we will now move on to something else  which also has
rather very close connections with topology.  Thank you very much.  .
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