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  Welcome  back to this course on Condensed Matter Physics and Topology. So, we were
discussing the Schur  Schrieffer-Higer model which is a simple paradigmatic model for
topological  consideration  that  is   it  has  a  non  trivial  phase  which  we  call  it  as  a
topological phase. And this happens by  tuning the parameters of the Hamiltonian that is
if you tune the inter cell and the intra cell hopping in a certain way when the inter cell
hopping  becomes  larger  than  the  intra  cell  hopping  then  the  system  enters  into  a
topological  phase. And the topological  phase is shown via calculation of the winding
number which is closed curve  in the d x d y plane and it encloses the origin. And the
trivial phase which is non topological  is also a gapped phase, but however, this closed
curve that we had just talked about  in the d x d y plane does not enclose the origin ok.
So, just to give you the preliminaries of that.

(Refer Slide Time: 1.50-5.55)

So,  we  have  written  down  the  Schur  Schrieffer-Higer   or  the  SSH  Hamiltonian  in
momentum space and it has this form here. So, it has this  form where you know these it
has an off diagonal form and these f of k is of course, these t1 plus t 2 e to the power
minus i k where k varies from minus pi to plus pi that is the Brillouin zone for one
dimensional system. So, this allowed us to write down the Hamiltonian  in the form of a
massless Dirac Hamiltonian which we have discussed is a d dot sigma.  And we have also
said that a possible realization would be these polyacetylene chain which consists  of
single  bond  and  double  bond  of  carbon  atoms.  These  each  of  the  carbon  atoms  are



connected  to a hydrogen atom, but the hydrogen atom is not important in this. So, it is a
carbon  atom and carbon has one electron available for conduction per atom. And so, we
should  get a tight binding Hamiltonian corresponding to this and this is the tight binding
Hamiltonian  where H alpha beta is has a form which is a massless Dirac form sigma's
are the Pauli  matrices sigma x sigma y and sigma z. So, the important information about
topology  is encoded in this d vector and it is very important to note that this d z is equal
to  0 for all k. So, for all values of k d z is equal to 0 which means that the spectrum is
gapped always and if the d x and d y which are nonzero.

    

So, d x and d y in this plane  it is possible to draw or rather plot closed curve by varying k
in the region minus pi  to plus pi or within the range minus pi to plus pi. And this will
determine whether there  is a trivial  phase or a topological phase depending upon we
enclose the origin which  is given by of course, I mean the d vector its components d x d
y d z that is equal to  a 0 0 0 ok. 

     

So, this d vector is has three components  and each of these components depend upon
these the k vector or rather the wave vector,  but which is of course, because it is a one
dimensional wave vector. So, we call it a  scalar ok. So, in fact, this not being there that is
d z equal to 0 gives rise to the topological  properties.

 Just one small point that I need to mention here is that if d z is not equal  to 0 that is if
you say add a mass kind of term. Now what I mean by that if there is  a term to go with
the sigma z then of  course,  all  these  visualizing  the  winding number  will   be a  big
problem because in the d x d y d z plane there are actually infinite number  of closed
loops that may include the origin or exclude the origin.  So, there is no unique way of
showing the winding number if all the three components  are nonzero. Fortunately here
the d z component is 0 and that is why the d x d y which both  are functions of k one can
actually plot a closed curve that either encloses the origin  in which case it becomes a
topological phase and if it does not enclose the origin it becomes  a trivial phase ok. 
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So, let us see the symmetries of these SSH  model. And what we mean by the symmetries
is we have already discussed various symmetries  that are there. So, say chiral symmetry
or inversion symmetry or parity or time reversal  symmetry and so on so forth. So, if we
talk about the chiral symmetry. So, let us first  talk about the chiral symmetry ok. And the
chiral  symmetry  would  actually  mean   that  so  the  chiral  symmetry  operator  in  this
particular case  is nothing, but sigma z ok which is that component of the Pauli matrix
which you see here ok.

So, that is the chiral symmetry operator and we need to check that whether sigma z h of
k we have already defined h of k sigma z dagger this is equal to what for you know  one
to have a chiral symmetry ok. Now, it is important to note that sigma z dagger is  equal to
sigma z because it is a it is a Hermitian operator. So, we need to check what is sigma  z h
of k sigma z ok. This is equal to a sigma z then we have a d x of k sigma x plus a d  y of k
sigma y and as I said that we are fortunate not to have a d z term here ok and then we
will have to write a sigma z here. So, we need to check these quantities d x  is a function
of solely a function of k and is just a function it is not matrix or an  operator.

So, we have to check it is a sigma z sigma x sigma z and plus a d y k sigma z  sigma y
sigma z what it becomes. So, we need to calculate this and we need to calculate  this. So,
one way of course, is to multiply 3 2 by 2 matrices that you see here, but we  can do
better than that we can use the properties of this Pauli matrices and the properties  of the
Pauli matrices are like this. So, this is a sigma z or say sigma x sigma  z that commutation
relation is equal to or we can we can write you know if you do matrix  multiplications
then of course, you need to start from the end and this is what we are  doing so, or we can
do the other way round as well. So, we just write down a sigma z  sigma x commutator
which is nothing, but I sigma y ok.



So, this is a known result from  the properties of the Pauli matrices and also we can write
down the anti commutation relation  of sigma z and sigma x which are of course, distinct
and this is equal to 0.

 

 So, if you take both of them so, from both of them what we get is the following that
sigma z sigma x minus sigma x sigma z this is equal to i sigma y and sigma z sigma x
from the second one a plus sigma x sigma z is equal to 0 ok. So, if you add both of them
this will cancel out and we get a 2 sigma z sigma x this is equal to i sigma y which
means that sigma z sigma x is equal to i over 2 sigma y ok.  So, this is this only this part
that is sigma z sigma x is what we have found out here and  now we have to multiply it
by a right multiply by a sigma z ok. So, that is what we will  do.

(Refer Slide Time: 10.41-14.50)

So, we have a sigma z sigma x sigma z this is equal to i by 2 and what we got here  is i by
2 sigma y. So, we will write i by 2 sigma y and sigma z ok and again we can  sort of use
this  same  technique  in  order  to  find  sigma  y  sigma  z.  So,  sigma  y  sigma  z  the
commutation relation is equal to i sigma x remember that this is  cyclic these indices x y z
are to be used in a cyclic fashion if you break the cyclic  property then you should bring
in a minus sign and a sigma y sigma z anti-commutation  is equal to 0. So, this again
gives a sigma y sigma z minus a sigma z sigma y that is  equal to i sigma x and sigma y
sigma z plus sigma z sigma y is equal to 0. Again we cancel  these two and get a 2 sigma
y sigma z is equal to i sigma x and sigma y sigma z becomes equal  to i over 2 sigma x.

           



So, if we go back to this term the first term that we were trying to calculate. So, that  is d
x k. So, we took this term we write consider ok and so, this becomes equal to the first
term and let us give a name to this let us call it as equation 1. So, the first term  of 1
becomes equal to it is i by 2 into well there is there is a i by 2 that we have to  take into
account because this itself gave a i by 2. So, i by 2 into i by 2 which have  to be taken
twice and the sigma x and of course, you have a d x a function of k.

So, this is  nothing, but a d x k and then there is a 1 over 4 which comes from this thing,
but that  can be you know absorbed in there is just a constant factor and sigma x.  So, you
see what happens is that the term which is a d x k sigma x becomes minus d x  k sigma x
ok. And similarly you can check that the second term of 1 is a d y k and again  that same
thing it is i by 2 into i by 2 sigma y. So, this is equal to minus 1 by 4  d y of k and sigma
y. So, if you combine these 2.

So, you have a d y of k sigma y. So, I  mean this becomes equal to under this chiral
symmetry operation it becomes minus d y by  k sigma y and so on ok. So, this is the
transformation of this and.  So, that tells you that a sigma z h of k this is equal to and
sigma z this is equal to minus  h of k ok. So, this is the chiral symmetry of the model and
this is what the chiral symmetry  demands ok alright.

(Refer Slide Time: 15.00-17.40)

So, let me see the inversion symmetry first. So, this is number 2 inversion  symmetry ok.
And so inversion symmetry requires 1 to go from x to minus x y to minus y and  so on
ok, I mean z to minus z. So, what I mean is that so sigma x is the operator that  does that.
And what I mean is by the operator is that  the sigma x acting on these operators C A and



C B where A and B refer to the 2 sub lattices  that we have talked about this becomes
equal to a 0 1 1 0 C A C B. So, this becomes C B  C C A alright. So, what it tells you that
A and B sub lattices are interchanged under  this inversion operation and that that is what
we want by the inversion operator. 

 So, you can do this again you can you can see this the sigma x h of k and sigma x dagger
which means it is same as sigma x equal to what and then you can see that your d x of  k
that becomes d x of minus k. So, this is what it becomes under this inversion symmetry.
If you want to understand in a hand waving way k is nothing, but the momentum which is
d r d t since r changes sign the k will also change sign and that is what is shown here.

And similarly a d y of k is same as d y of minus d y of minus k ok. So, that tells you  that
your  sigma x h of  k  sigma x is  equal  to  h of  minus k ok.  So,  this  is  the inversion
symmetry of SSH model alright. So, 2 symmetries we have worked out and let us look at
the  time reversal symmetry number 3.

(Refer Slide Time: 17.43-25.30)

So, the time reversal symmetry can be obtained  or rather the corresponding operator is
what is we call it as k which is a complex conjugation  operator. So, what it does is that it
changes i to minus i and so on so forth ok. So, under  this you can you can see that your d
x of k becomes equal to d x of minus k. So, what  you need to look at is what is k h of k,



k dagger equal to what.  So, the d x component  of the d vector x component of the d
vector it sort of transforms according to this and  d y will pick up a minus sign which is d
y of minus k and so on.  And so you see then the time reversal operator or we can call it
or t h of k t dagger equal  to what.

So, t h of k t dagger this is equal to h of minus k and h star of k is equal to  h of minus k
ok. So, this is h star the left hand side and this is equal to. So, this is  the symmetry that is
if you take the complex conjugate of the Hamiltonian then this becomes  same as the
Hamiltonian with its k reversing sign ok.  So, these are the in short the symmetries of this
SSH model and if you really combine  you know t and i. So, we will call this by i because
of the inversion we can call this  as chiral.

So, let us call it as c and this has of course, a name which is t. So, if you  look at you
know a combination of i and t. So, i and t leaves the Hamiltonian invariant.  What I mean
is basically if you combine these two symmetries that is i and t then both i  and t this
causes the momentum to reverse its sign, but also has there is a minus sign  in front of the
d y because d y is complex and it is done by the inversion operator as  well as the time
reversal symmetry operator. So, if you combine them the minus sign goes  away and then
you get this the Hamiltonian to be invariant.

So, what we have discussed so far is a simple one dimensional model with dimerization.
What  I mean by dimerization is that there are two different hopping one within the unit
cell  and the other outside the or rather between the unit cells and these two hoppings are
different,  and  as  one  of  them becomes  larger  than  the  other  one  kind  of  you  know
insulating state happens or occurs and this insulating state the nature of the insulating
state rather  is determined by the winding number which is a topological invariant.  So,
the winding number is finite or it is equal to 1 as you change k there is a closed  loop that
forms that winds the origin. The origin is like that singularity that we have  talked about
earlier and if the other condition holds that is the inter cell hopping is less  than the intra
cell hopping in which case this closed curve in the dx dy plane does  not enclose the



origin  and  represents  a  just  a  normal  band  insulator.   So,  this  is  a  very  important
distinction between the two gapped situations. Gapped means the  both have a spectral
gap, but however one has a winding number equal to 0 the other  has a winding number
nonzero which is equal to 1 and since the spectrum corresponds both  of them being
gapped and the gap actually closes or you go from one type of insulating  state to the
other insulating state by closing the gap at the edges of the Brillouin zone. 

 So, now these two insulating states are definitely not identical and that is what we are
trying  to say over and over again, but it is very important to realize that the topological
insulator or rather the one that winds the origin actually houses two large edge modes,
static edge modes or stationary edge modes at the you know and edges of the system the
two edges  of  the  system and  these  are  shown by  calculating  the  probability  density
corresponding  to  the Hamiltonian and they seem to have large weights at  the edges
whereas, the bulk is  absolutely you know conducting which means that it is a the bulk
states are like exponential like x or they are like conducting states and at the edges one
has  complete  you know insulating  behavior.  So,  the  bulk is  different  than  the  edges
makes it a topological insulator  ok.  So, we will see another model simple model of this
kind before we go to more complicated  two dimensional model and that model that we
want to see now is called as a Kitaev chain  ok and it was sort of proposed by Kitaev and
it has you know it is a nice model with superconducting  correlations ok. So, it shows
topological  superconductivity  what  I  mean by that  is  the   states  in  the  bulk  are  not
superconducting and the states at the edges are superconducting  and it is in the same you
know  spirit  as  earlier  the  bulk  behaves  differently  than  the  edges   and  so  it  is  a
topological insulator.Before we go into that let me give you because this model actually
concerns superconductivity  so and superconductivity is not a main focus of this course.
However, I just want to give  a very brief overview of superconductivity this is usually
you know taught at the undergraduate  level or even at the masters level towards the end
of  the  solid  state  physics  course  and sometimes  it  is  you know either  covered  very
hurriedly or sometimes not covered at all. 

(Refer Slide Time: 25.37-28.25)

So, it is important that this topic to be learned you know with interest among  the students
and it is very important sort of part of solid state physics in fact you  need to invoke the



interaction  between the electrons  and within a  non-interacting  model  this  phenomena
cannot be understood. So, it is a it is in the many body system the pairing  occurs and
actually there are cooper pairs that are formed you must have heard of cooper  pairs and
so on which are paired state or bound states of electrons ok. So, this was in 1911 when
K.M.  Onsus  picture  is  here  he  about  3  years  before  that  this  temperature  has  been
discovered what I mean by that is liquid helium or rather helium was liquefied in 1908
which makes these 4 Kelvin or 4.2 Kelvin accessible to the experimentalist  I mean it is
very close to 0 Kelvin or rather  the absolute  0 just  4.2 degrees above that   and this
temperature is very essential for seeing superconductivity in those days where he took
this Kamerlingh Onsus H. Kamerlingh Onsus.  So, he was in Leiden Netherlands and he
was doing this experiment and so on and then he  was he had this ultra clean mercury and
it showed a sudden drop in the resistivity.

 So,  this is the y axis is a resistivity. So, it was coming like this and then suddenly fell  to
0 within a very small window. So, this window is really in temperature in  it is some 10
to the power minus 3 4 Kelvin it just drops to 0 and he almost immediately  realized that
this a new state of matter because if it is comprising of just electrons they  would collide
with each other and if they collide with each other that will give rise  to resistance and if
the resistance is becoming 0 it became something like 10 to the power  minus 5 which is
definitely a non measurable quantity in those days and even now you cannot  measure
anything lower than that. So, if something falls to 10 to the power  minus 5 we usually
take that to be 0 and it happens at a temperature which is 4.2 Kelvin  and so as you
reduce the temperature you come from larger to smaller temperature and you  see that
there is a sharp drop in the resistivity and this gives rise to a new state of matter  which is
called as the superconducting state. 

(Refer Slide Time: 28.30-31.18)

So, this is that same thing I just want to  show that this is just a graph and it is a 0
resistance state which means that the state has no resistance which means that it has no
free electrons present. If there are free  electrons then they would collide with each other
and  collision  of  electrons  would  give  rise  to  a  resistivity  which  it  is  not  there.  So,
somehow the electrons become very quiet particles and they do not you know collide
with each other now that cannot happen ok. So, something must have happened to the



state and in fact what happens is that there are  cooper pairs that are formed below this
temperature and what I mean by cooper pairs is that it is a bound state of electrons. So, an
electron with an up state in the k wave vector k and an electron in the spin state with a
minus k they form a bound pair. And this is what was very sort of simply seen through
some seminal works of Leo Cooper who  has one of the persons who has given rise to a
microscopic  theory  of  superconductivity  in  1957  which  was  by  Burdin  Cooper  and
Schrieffer and this called as a BCS theory which later  won a Nobel Prize ok. 

So, the electrons below this temperature they go into condensate or  they go they become
a bound state and when they become a bound state they do not interact  with each other
ok. That is they do not collide with each other  giving rise to a state of zero resistivity
which is what is said ok. Schrieffer in his  book has said that consider there is a room
which is full of you know males and females  who are dancing you know in pairs and
these cooper pairs are like all the these males  and females forming pairs and dancing and
one is completely oblivious of the other that  is one pair does not recognize that there is
another pair.  So, they do not collide they do not give rise to any resistive phenomena
which would have  been there in presence of just electrons that is single electrons ok. So,
they form a bound  pair and how can they form a bound pair that is another question
which Cooper tackled.

(Refer Slide Time: 31.18-35.05)

 And  some of the properties before we go why it happens there are certain properties. So,
these are the metallic resistivity you see that it sort of you know goes to some  value here
at even at 0 Kelvin. So, it does not become 0 whereas, the superconductor at  a finite
temperature which could be say for mercury it was 4.2 Kelvin and then there were  very
large number of superconductors that are discovered and a large number of them  also
obey BCS theory, but so this is the resistance is plotted versus temperature and  the first
graph shows difference between a good metal and a superconductor ok. So, this is for a
good metal and this is for a superconductor.

 So, it becomes superconducting  at Tc. So, this is what the zero resistivity is all about.
Now there is another interesting  phenomenon and acid test for a superconductor. The
superconductor not only can you know sort of lose resistivity and but it also goes into a



state which is a perfect diamagnet. What  I mean is that if you put a superconductor in a
magnetic field then the magnetic flux  lines are pushed out of the sample and this is the
main you know principle behind what is called as a magnetic levitation which would
levitate a train and wheels of the train will not touch the rails and would be levitated
because  of  the  these  flux  because  of  magnetic  energy  that  is  there  is  a  tremendous
magnetic  energy  because  of  the  bunching  of  the  flux  lines  in  the  vicinity  of  the
superconductor. And that is being you know shown here that  you have sort of liquid
nitrogen and you have say a superconductor which is kept here  inside the liquid nitrogen
and is a there is a magnet that has been held here and the  magnet will just keep floating
on the superconductor till the superconductivity exists that is  it till you know the liquid
nitrogen can support superconductivity this will keep floating  and so on.

So, it  happens because there are large number of flux lines that are just  outside  the
outside the superconductor and this is what is shown here.  So, complete expulsion of the
flux lines is a property that is known as perfect diamagnetism  and this is actually shown
by someone called Meissner and Meissner and I think his name is Akshenfeld ok. They
have independently shown this and this is also gives rise to  what is called as a perfect
diamagnetism ok.

And in fact, what I mean by perfect diamagnetism  is that the M by H which is defined as
a chi which is equal to minus 1 and if you remember  the susceptibility of diamagnets is
negative. So, usually for metals it is of the order  of 10 to the power minus 3 10 to the
power  minus  4  negative  I  mean  with  the  sign  negative  sign,  but  however,  for
superconductors it  is completely cancelled and it  is equal to susceptibility  is equal to
minus 1. So, there is a best known diamagnet that one can get.  

(Refer Slide Time: 35.11-39.10)

So, this is the cooper pair. So, what happens is that is it take an analogy of so there  is a
lattice in which the lattice you see this here the lattice is deformed, deformed  because of
lattice excitations and the electrons which are usually repulsive now mediated by  this



lattice excitations which are called as phonons they start forming a bound pair  and you
see a bound pair here. So, both are electrons that is why these within the green  circle you
see a negative sign and they are oppositely directed which means one is an  up spin the
other is a down spin and they form a bound pair. In momentum space the bound  pair is
formed between k up and minus k down. And we usually talk about S wave pairing that
is the net angular momentum for the pair is equal to 0, but there could also be a higher
angular momentum pairing such as P wave, D wave and so on though at least for the P
wave  the experimental realization is very limited nevertheless we will still talk about a P
wave superconductivity as we talk about Kitayev model.

This picture that you see here can also be given another analogy that suppose there is  a
dusty field and there is a horse running in the dusty field. So, as the horse moves  through
the field and you see it from distance you do not see the horse you see that there  is a ball
of dust which is migrating or which is being you know which is moving in one particular
direction. So, another horse will not see this horse, but will see a dust of cloud.  So,
exactly in the same spirit because of this lattice excitations and because of this  phonons
one electron sees the other electron not as an electron, but as a positive cloud  which is
picked up by the you know the motion of the electron and the positive charges are  picked
up around it.  And that  is  why one  electron  gets  attracted  towards  the  other  electron
which now is engulfed by a positive charge.

So, it sees it as a positive charge and get  you know attracted to it and forms a bound pair.
You could ask the same question that  why does not this  first  electron see the other
electron that is a second electron as a cloud  you know that will happen, but that will
happen at a time scale which is much larger, ok.  So, this electron actually sees a positive
cloud will  happen at a much lower time scale  and that is why the cooper pairing is
formed. And there are various you know sort of support  for this pairing scenario and
people have gone ahead and calculated what is called Tc  the transition temperature at
which this happens.  So, this  Tc is  the transition temperature  at  which the resistivity
vanishes and so on.

And I mean unfortunately we will not talk  about a K up and a K down minus K down
kind of pairing which is called as a S wave pairing,  but here let us write it in real space
and we will talk about pairing between up up electrons  and down down electrons and so
on, ok. So, it is and these are called as the P wave  pairing and the Kitaev chain consists
of a P wave superconductor, ok. So, superconductor with P wave pairing. Let me give
you preliminaries before we do calculations on this.  

(Refer Slide Time: 39.20-44.05)



So, this is the schematic picture of so this blue thing that you see here the wire it is  a
semiconducting wire, ok or it has conducting properties like a tight binding chain and
this green base that you see is actually  a P wave superconductor.  And so these tight
binding chain or the semiconducting chain picks up these because it is in the vicinity  it
picks up the P wave superconducting correlations, ok.  Just one or two words on what we
want to show is that usually you know CL dagger CM dagger  CP CQ is a form of the
interaction where LM PQ can be real space indices or maybe  momentum indices and so
on. So, this is the interaction term and there is a coulomb interaction with some you know
some V 0 and things like that which depends on either momentum or position  and so on.
So, this is a four particle operator and from  whatever little we have discussed about the
tight  binding model  or  the  second quantized   notation  the  kinetic  energy is  a  single
particle operator which looks like you know CK dagger CK, ok with some epsilon K here
and so on so forth. And there could be a spin which  is not included here, but then you
have to sum over spin and so on.

 So, this is a kinetic  energy or we can write it in real space as say for example, Tij Ci
dagger Cj, ok  and i and j are nearest neighbors. Now, you see that this is two electron
problem  and there is a four electrons. So, two electron and four electrons and this is what
creates  a problem because you cannot write it in the form of a matrix because one term
contains  four particle operators and the other term contains two particle operators. So,
there  is no common basis for one to represent both the terms within the same formalism.

  But a solution of that is that you do a mean field decoupling. What is a mean field
decoupling?  It is like saying that you know what is the average field felt by a student in
the class  of many other students. The student the under consideration can have different
you know interactions  with  different  people,  but  then  we disregard  that  there  is  any
difference in interaction we replace the entire student accepting him or her by all other
students and this is the essence of mean field theory. And in the mean field theory what



we do is  we calculate the CL dagger CM dagger we calculate the expectation of this and
leave  these as operators. So, now when you take the expectation it becomes a number or
you  do a C L dagger C M dagger and a Cp Cq, ok.  So, you take you know the average
values or expectation values of these things which are  the expectation values taken with
respect to the ground state of the Hamiltonian.

Now  these are if they are numbers then let them let us call them as some delta which is
the  superconducting pairing amplitude because there are pairs that are being considered.
So, a dagger and a dagger means there are two particles the correlator of two particles
being you know generated into the system because CL dagger CM dagger acting on a
vacuum would give rise to you know two particles at L and M. L and M could be site
indices  could be momentum indices and so on so forth. So, these is called delta which is
a superconducting  gap and this called as a delta star which is the complex conjugate of
that.  So, now we are left with operators which are Cp Cq and CL dagger CM dagger, ok
or you  can simply write it as you know a delta Cp Cq plus a Hermitian conjugate, ok.
The  Hermitian conjugate will be the second term which is here, ok.
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With all these considerations  We write down a chain Hamiltonian, ok which is just like
what we have talked about here  there are n sites of this chain if it is a tight binding chain,
but however only for  the sake of simplicity we only consider two sites of this Kitaf
chain, ok and this is  a two site Hamiltonian. This is the chemical potential corresponding
to site 1 let us call  this a site 1 and call this site 2. There is a chemical potential for site 2
both are  same in this  particular  case and there is  a kinetic  energy which allows the
electron  to hop from 1 to 2. So, we are taking when I say semiconducting  wire or a tight
binding chain we implicitly assume that there are electrons being present.  So, this is the
kinetic energy of the electrons and this is the important one which is the  superconducting
term.This is the kinetic energy and this is the chemical potential  which fixes the number
of particles. So, mu is the chemical potential and T is the hopping  term etcetera and delta
is the P wave superconducting order parameter, ok. 



As I said earlier that P wave superconductivity is not very common in nature in fact very
uncommon probably there is just one realization of P wave pairing, but however for the
sake  of studying an interesting  model  which gives  rise  to  topological  properties  we
assume a  P wave correlation. In fact it could be a S wave superconductor  which is much
more  commonly  available  in  nature,  but  that  requires  you  know  more  terms  to  be
considered such as you know the spin orbit coupling and various other things I mean
magnetic  field and other things, ok.

So, we are talking about a P wave pairing. This is a P wave superconducting  term. This
is the these amplitude or this called as a gap function, ok.  So, this is a gap function and
this is kinetic energy and then the chemical potential and  I have just taken two sides of
that  tight  binding chain.  In  general  there  are  n sides,  but let  us  just  do the two side
problem. 

(Refer Slide Time: 46.53-49.05)

The Hamiltonian if you write it in this basis  now this is slightly different than what we
have considered earlier. There is a C1 dagger  C1 and the C2 dagger C2. So, both dagger
and undagger things are here and in general we are familiar in writing with C 1 dagger C
2 dagger etcetera etcetera, but however this is to you know bring out. So, this is a particle
degree  of  freedom  and  annihilation  is  related  to  whole  degree  of  freedom.  So,  the
Hamiltonian can be written in the particle whole basis, ok which is like this and because
the number of entries in the basis is 4. So, we have a 4 by 4 matrix where minus mu plus
mu and minus mu and plus mu are there in the  diagonal elements because you see that it
is C 1 dagger C 1 and C 2 dagger C 2. So, if you write down all these things the way we
have written it down here then you get this 4 by 4 matrix and which had it is a spar matrix
I mean the sum elements which is equal to 0, but then there are these all these elements
that are nonzero you know I mean this block this block none of the blocks is equal to 0
even though some of the terms  vanish, ok.



It is you can just write it down so easy to write down and then what you can  do is that
you can write down a slightly new notation in which because you are creating  a particle
so you can write it as 1 electron E for electron and 1 stands for the site and  when it is
annihilating you can write it as 1 H C 2 dagger will be 2E and C 2 will be  2 H. So, now
instead of writing it C1 dagger C1 C2 dagger C2 we can write in terms of  these you
know the basis which is 1E 2E 2H etcetera etcetera and E and H refer to  the electron and
the whole states, ok. 

(Refer Slide Time: 49.10-50.28)

So, let me stop with stating only the 2 site Hamiltonian because it will require you know
time to sink in these ideas that we are writing  down a 2 site Hamiltonian. So, now we
have written it as 1 electron 1 electron these  are kets and bras and there is a 1 hole 1 hole
there is a 2 electron 2 electron 2 hole  2 hole and then there is a 1 electron 2 electron 1
hole 2 hole 1 electron 2 hole and 2 electron  1 hole.

 So, that kind of a basis and nevertheless you can also diagonalize this Hamiltonian  and
this Hamiltonian gives rise to the eigenvalues which are given by these 4 eigenvalues
which  are t divided t plus square root of delta square plus mu square t minus delta square
square root of delta square plus mu square minus of t minus this that is this one here  with
a minus sign and this one here with a minus sign here, ok. So, these are the 4 eigenvalues



lambda  1  lambda  2  lambda  3  lambda  4  and  corresponding  to  that   the  4  column
eigenvectors can be figured found out. 

(Refer Slide Time: 50.30-55.58)

So, this is what we have done these  are that is an element that is an element that is an
element and that is an element.  So, it is a 4 column vector 4 element column vector and
there are 4 of them corresponding  to the 4 eigenvalues. We are going to generalize this to
n sites and we will see that we will  see the topological properties of this model and how
the  concept  of  Majorana  fermions  emerge   from here  a  concept  that  was  originally
proposed in the high energy physics, but could never  be realized in nature whereas, we
actually see that there are Majorana fermions which  are nothing, but the particles which
are their own conjugates are called as a Majorana fermions,  Majorana is a name of a
scientist who has proposed this and we will see Majorana fermions  and we will further
talk about the properties of this the topological properties of this  model again try to write
it down in terms of a d dot sigma.  So, that the winding can be defined and one can
actually look at the how in the dx dy  plane the loop encloses the origin or it does not
enclose the origin which will decide  that whether this has topological features or not and
these are zero energy modes just  like we have seen zero energy modes in the SSH model
this Majorana fermions will be the  zero energy modes and which can because of their
property that the particle is same as  its conjugate they cannot be separated.

 So, you cannot split a Majorana fermion and make them separate.  So, if you at all do
anything you can shift them up from the zero energy by giving an  additional energy, but
you cannot separate them and the whole idea that these Majoranas  are really formed at
two ends of the chain that is the two edge modes that are the static  edge modes of the
system and in principle they are they can be infinitely far away depending  on the length
of the chain.  Now, if these two are so correlated so much so correlated that means the
whole idea is  that whether they can be used for any quantum information processing of
quantum information  or quantum computation because they are far away yet they are



correlated which means that  if you know that in one end they are there it will all they
will also be there in the  other end.  So, we will see that in the following lecture which
will be totally on this N site Kitaev  chain and this is the second paradigmatic model for
topology.  We will stop here.  Thank you for your attention.  Thank you.
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