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 Welcome  to the fourth lecture on Topology and Condensed Matter Physics course.  We
have  been  talking  about  discrete  symmetries  and  how these  symmetries  actually  are
responsible  for the topological phases of matter.  And if you actually destroy one of the
symmetries then the system may not remain topological  or may make a transition from
one topological state to a trivial state or a topological  state to another topological state
which  will  happen  via  you  know  the  gap  closing  of  the  energy  spectra  of  the
Hamiltonian.

(Refer Slide Time: 1.26-7.50)

 

So while we were discussing the discrete symmetries and we have talked about these time
reversal  symmetry which has been you know discussed in the previous day and we have
done it for  both spinless systems that is the Hamiltonian does not explicitly involved spin
or even  in the case when it does explicitly involved spin because if particularly if the
system  has this spin orbit coupling then you need to take into account spin degrees of
freedom  else it can be considered as spin polarized which are both the cases we will see
over  as we progress through the course.  Alright so now since we have done this time
reversal symmetry the one that is remaining  a few of them are remaining we will now
talk about the inversion symmetry this is also  called as parity.  So what is an inversion
symmetry if you change x to minus x or r to minus r then that is  called as inversion
symmetry I mean r to minus r what I mean is that so the vector r goes  to minus r  that



means the magnitude r remains same theta changes by certain angle and phi  changes by
certain angle and that is what is called as a parity operation this you might  have learned
when you did hydrogen atom and or the angular momentum.

So in fact you wanted to know that what are the sort of inversion symmetry or parity of
the spherical harmonics and the spherical harmonics actually pick up a minus 1 whole  to
the power L under parity transformation.  So this is like minus 1 whole to the power L
Ylm so this theta phi and so this is equal  to theta plus pi and phi minus so it is probably
minus here or plus here anyway this can be  settled if you look at the relevant discussions
in hydrogen atom.  Here we are talking about discrete symmetries that is under these
transformation the let's  talk about this parity or the inversion symmetry operators by a pi,
i stands for inversion  and p stands for parity why I am writing both the with a subscript
is that we will also  use the particle whole symmetry with p that is why I am just writing
it with a pi.  So if you have a pi acting on you know r and a pi so this is a dagger then this
becomes  equal to minus r so r is the position operator so this is the definition of that.

So in a simple case you know pi could be just a matrix like minus 1 0 0 0 minus 1 0  and
0 0 minus 1 which inverts all the r to minus or the x to minus x y to minus y and  so on.
So if you write it  like that then pi r these are unitary operators which means that uu
dagger equal to 1 so pi dagger equal to 1 so this becomes equal to minus r pi and so  on
so what I do is that I write multiplied by the pi dagger on both sides and the pi  pi dagger
becomes equal to 1 and that tells you that I mean this or what you can do is  that you can
also write left multiply by p let us just do that instead of this step. So I will write it so left
operate by pi and that will become r pi because pi pi dagger  will become equal to 1 and
minus pi r and so that tells you that they anti commute because r pi plus pi r equal to 0
and hence they anti commute so pi and r anti commute.



And what happens to the momentum variable in fact we mostly talk about the position
variable momentum variable and if it concerns spin now of course parity has got nothing
to do with spin so it will leave it unchanged.  So this is for the real space operator R and
for the momentum operator p it has a very  similar thing because p is nothing but dr dt
which means that it's proportional to  the velocity multiplied by the mass so this will also
give  rise  to  this  pi  then  p  and  then  pi  equal  to  minus  p  okay  and so  the  p  is  the
momentum operator and then again you  we have these pi and p that anti commute and
will  give to  0.  This  what  it  means by when a Hamiltonian  has  p and r  Hamiltonian
contains p and r and this  is individually how the inversion operator or the parity operator
acts on each of R and  p and will transform them. So if Hamiltonian has both R and p so
you can check whether  you know it changes sign under this inversion operation.  

(Refer Slide Time: 7.52-15.00)

So  let  me  write  down  a  few  important  points  so  if  you  consider  say  a  2D  block
Hamiltonian  just for an example what I mean by 2D block Hamiltonian is that it's a  H
which is a function  of k and k is a function of kx and ky just a 2D thing and if it is
symmetric under both  function which is what we have seen just now and time reversal
symmetry I'm in short  I'm writing it as a trs which is t then the inversion of course maps
to so pi maps k to  minus k, k is nothing but the wave vector which is related to the
momentum by just multiplying  it by h cross and it also satisfies that p square is equal to
1 because if you do the  inversion twice it comes back to the same configuration and then
if we have trs as well  then it sort of so trs does the same thing so trs also maps k to minus
k and t square  of course will square to 1 or minus 1 depending on whether we have the
spin variable in the  problem or not because the spin is not included here explicitly as we
can see in this block  Hamiltonian then we can write it as t square equal to plus 1.  So if a
Hamiltonian has both t and pi okay then H of k remains as H of k I mean that  so they
remain invariant under this both time reversal and the inversion operation  okay so let me
now look at in brief we'll talk about it we'll talk about the particle  hole symmetry. 



So this means that if we convert a particle into hole then  the Hamiltonian whether the
Hamiltonian remains invariant it's a property of a superconductor  to have particle hole
symmetry okay so the number of particle  states will  correspond  to exactly  the same
number of hole states and so on and corresponding to a particle  of energy E particle state
of energy minus E there will be a whole state of energy plus  E and so on. So let's write a
P H S less that the operator  be for the particle hole symmetry and then a Hamiltonian
will have this kind of operation  which is minus H okay so this is the symmetry operation
of that so we can write down this  P P H S usually as a sigma x and a k where sigma x is
a Pauli matrix which is written  as 0 1 1 0 and k is the complex conjugation operator
okay and as I said that this is inbuilt in the in the case of the superconductors.  Now to
wind up the discussion we'll  talk  about  the  chiral  symmetry  this  is  a  very important
symmetry of the Hamiltonian and vis-a-vis its relation to topology and in a very simple
model  which we are going to  see just  after  this  discussion say a model  has like  for
example  graphene has chiral symmetry which means that both the A and B sub lattice
they are like  this so it's a honeycomb lattice and there are two unit cells two atoms per
unit cell   and both the atoms we name them as A and B but both the atoms contain
carbon. 

So if A  changes over to B or B changes over to A it's like an inversion about this dotted
line  then the Hamiltonian remains invariant because both of them correspond to carbon
atoms  okay.  This  is  a  particular  example  in  graphene  but  we'll  see  more  examples
particularly tight  binding Hamiltonians and at this moment I do not want to elaborate on
it  much but a   similar  operation which we do it  by tau so this  is  a  chiral  symmetry
operator it has  a similar effect as the particle hole symmetry so this is equal to minus H
okay. So this  is the operator and these are how it sort of transforms now I'm just saying
that chiral  symmetry for a very simple case is the inversion symmetry or it's a this called
as a sub lattice  symmetry so the chiral symmetry for graphene is a sub lattice symmetry
what graphene is  we haven't said yet but we'll make that clear as we you know go along



the course and of  course all these symmetries are unitary symmetries or anti unitary.

 So these gamma, gamma dagger  is equal to 1 and so on okay. So these are some of the
discrete symmetries that we'll  be needing in during the course and let's now go into a
simple problem which is a tight  binding model that shows topological features and it's
the simplest paradigmatic model for  seeing topology and is widely studied in this context
it's simple and as well as it's quite  intuitive for us to understand okay.

(Refer Slide Time: 15.09-21.44)

 So  we'll  do  that  and  but  before  that  let's  do  a  quick   recap  of  the  tight  binding
Hamiltonian  or tight  binding model  and to  understand what   that  is  it's  a  method of
calculation of the energy spectrum for a particle that is subjected  to a periodic potential
and what I mean by periodic potential is that we talk about crystal  lattice where there are
presence of ions or atoms at regular interval and this regular  interval is called as a lattice
constant okay. And as if I consider an electron to be you  know moving in this array of
ions or atoms these ions say for example are going to sort  of exercise or the electron will
actually see perceive this interaction or rather a potential  due to this presence of these
ions or the atoms okay. And since these are periodically placed one  can write down V
equal to V of R equal to V of R plus capital R where capital R is the vector that  connects
from one lattice point to another okay. 

So this is the R and this is equal to if you write  so R vector is equal to a say R R cap or
something okay. So this direction is R or you can write it  simply as X cap okay. So this
is called as a periodic potential and Bloch has said that the  wave function of a particle is
subjected to such a potential has a form which is psi k of R this  is equal to u k of R
exponential i k dot R this k is a vector. So where is the periodicity  information embedded
the periodicity information is embedded here in this u of k which is equal  to u k of R
equal to u k of R plus R okay. Now this is well known and the proof is also  quite simple



and straightforward will  not follow that this is the first course of solid state  physics
would teach you that this is the wave function but just getting the wave function is  not
enough to arrive at the solution of a problem we also need to know the energies.

 And in order  to get the energies we need to resort to some approximations and tight
binding approximation  or tight binding model is one such approximation in which it is
assumed that the electronic  wave function is tightly bound to this these ionic cores I am
just for a moment I am consider  them as iron so that the electron feels a potential it could
be an atomic potential  also but let's just consider that there's a potential like this like this
that is an  attractive potential given by these ions. So these ions are positively charged
and then  it gives a potential which is which is given by this let me use a color so that
overwrite  on this so this is the potential on in red that you are seeing so an electron that's
going passing through these potential so the electron will be passing like this and it  sees
a  potential  a  series  of  potential  which  are  periodically  placed  which  means  they  are
placed at regular intervals which are given by this a which called as a lattice constant.
Okay so the assumption is that this electrons are they have the majority of the amplitude
of the wave function is centered at the core ionic core that is it peaks here where the  ion
is and so on at all of them it has very little overlap between the wave function at  the next
core as the next ionic core. So you see this overlap region of overlap and this  region of
overlap is very small and that's why it's called tight binding it's tightly  bound to the ionic
core and these small overlap renders a mobility to the electron because  the electron has
to go from one ion to the next ion and to the next time it will move  around it's a mobile
charge. So it is tightly bound to this and in this approximation one  can work out what the
energy is as I said that the energy is still missing into this  this blocks theorem which
gives you the form of the wave function. 

So H is in this particular case H is equal to say for example a p square over 2m which  is
coming from the electrons and plus a Vi. Okay and so this can be written as the kinetic
energy plus the Vi where Vi are these ionic potentials at a site i so i equal to 1 to  n
whichever the number of sites are. Okay and one can write down the wave function as
psi k and it can be expanded in the basis of phi alpha this is equal to Ck and a phi  alpha.
Okay so this is like a expanding it in a complete set of states where phi alpha  is the basis.
Okay psi k obeys blocks theorem.



(Refer Slide Time: 21.44-26.24)

So I am trying to give you a very simple derivation  of the tight binding Hamiltonian and
which is going to be essential for a lot of the  discussion that is going to follow and phi
alpha of course are the basis states.  So if we write down the matrix elements of the
Hamiltonian  that is H alpha beta where alpha and beta are two orthogonal basis phi alpha
H phi beta  we have already written H and this is equal to a phi alpha k plus Vi and a phi
beta. Okay  and this is so the kinetic energy is a one body term which we have discussed
so this  can be written as the atomic energies so let us write it as epsilon At for the atomic
energies  and what is important is this term to calculate which is equal to i and a Vi phi
beta.

 Okay  this basic quantum mechanics so these epsilon At are the onsite atomic energies
basically  because of the kinetic energy of the electrons and this is the thing that one
needs to compute  and one can make an ansatz as follows phi alpha sum over i Vi and a
phi beta so this  is equal to V0 for alpha equal to beta it is equal to minus T for alpha
equal to beta  plus or minus 1 we are talking about one dimensional system and it is 0
otherwise. Okay so what  I mean is the following that the matrix element for this Vi will
this Vi will vanish if these  i and j or rather these alpha and beta are not these wave
functions that correspond to  the neighboring sites and at the site for alpha equal to beta
that is the onsite that  term can be of course absorbed in this epsilon At. 



Okay and so if we leave these epsilon  At and V0 which we can all combine that is we
can write down H alpha beta equal to some  epsilon 0 delta alpha beta and then we can
write down a minus T, T is the amplitude for  that matrix element for which alpha equal
to either beta plus 1 or beta minus 1 where  alpha and beta here refer to of course they
refer to the basis indices but the basis is  written in terms of the onsite indices the site
indices for the system.  

So this is equal to delta alpha plus 1 beta plus delta alpha minus 1 beta and so on. Okay
so and where epsilon 0 is of course this epsilon At plus a V0. Okay that's a constant that
we don't need to worry about that anyway this gives you the diagonal elements of H
alpha  beta and minus T they lie on just  the band above the diagonal and below the
diagonal  and this  is the form of the this  Hamiltonian and the energies are these are
basically  nothing   but  the  energies  and these  energies  are  obtained  within  this  tight
binding approximation as  this. So this is the tight binding approximation and this is the
energy corresponding to that  so when I write down H alpha beta which means that I'm
writing down the matrix elements  of the Hamiltonian.

(Refer Slide Time: 26.24-32.42)

Okay so this can be written as so your psi k H psi k which gives you the  energy it can be
written as alpha beta exponential minus i k R alpha I'm writing it as a vector  but in one
dimension it will be a scalar so phi alpha H phi beta and exponential i k dot  R beta so
this is nothing but equal to sum over alpha epsilon 0 which takes into account  the delta
alpha beta and a minus T exponential i k a where a is equal to R alpha minus R  beta so
this is I'm writing it in one dimension so in 1D it becomes just a so a is the magnitude  of
this okay plus exponential minus i k a that comes from so this alpha R alpha minus  R
beta and if you leave this term which is just a diagonal term then this becomes equal  to
minus 2T cosine k a that's the tight binding dispersion for a 1D lattice. And very soon we
are going to use this so in 2D square lattice square lattice so these are 1D chain result and
so this is like epsilon k that is its dependence on this k, k is a  wave vector that you know
runs over the first Brillouin zone and this is equal to minus 2T and then you have a cosine



k x a plus a cosine k y a and so on okay in a 3D cubic  lattice this can be it's a simple
cubic lattice so epsilon k will be minus 2T cosine k x a  plus cosine k y a plus cosine k z a
okay and in all these cases the k x y z etcetera  they run from 0 to 2 pi okay they are sort
of in this interval or you can call it a minus  pi over minus pi to plus pi okay. 

So this is a simple tight binding model that  gives you the energy of the electrons in a
periodic potential the wave function of the  electrons they have already been given by the
Bloch's theorem okay so we are more or  less ready to treat a tight binding Hamiltonian
the main motive of us in this particular course  is not to look at the electronic dispersion
and talk about transport properties etcetera  but to look at the topological characters from
these dispersion and a priori without  doing any calculation yet we can say that you know
these  topological  properties  are   intimately  connected  to  the  band  dispersion  or  the
spectral dispersion that is these they  are embedded into this epsilon k. So if you change
the epsilon k somehow if  you do some band engineering or if you change the say you put
a say for example an alpha  here okay where alpha is varies from 0 to 1 so this alpha and
let me write it with a  different color I do not intend to put it but just in case that you have
an isotropic  dispersion for some reason then these alpha will go from say 0 to 1 so alpha
is 0 to 1  and you can clearly see that if alpha equal to 0 it becomes a one-dimensional
chain and  for alpha equal  to 1 it  becomes a  regular  2d square lattice  okay. So any
nonzero  value  of  alpha  that  is  between 0  and 1  it  will  correspond to  an anisotropic
dispersion in which bands will be deformed if you draw the bands between minus pi and
plus pi or 0 to 2 pi then the bands will be deformed okay. The standard way of doing this
is that you take a kx and ky so this kx and ky and you calculate these quantity which  is
minus 2t cosine kx a plus cosine ky a and then plot that in the you know the z direction
your epsilon k is in the z direction and then when you take the projection onto the kx ky
plane will  give you the contours or the energy dispersion and this  dispersion can be
represented  by colors which will show you know the color will code values that are
either higher or  lower depending on you know the variation of the dispersion.



So coming back to the point that if you change alpha or you somehow deform the band
structure  by some chemical pressure or some mechanical pressure or something on a
lattice  then  the  topological  properties  are  bound  to  change  and  these  topological
invariants that we have  talked about at length they also will change.  

(Refer Slide Time: 32.49/33.26-37.50)

Okay so let me show you one very simple paradigmatic model which is called as a Schur-
Schrieffer-Higer  model okay. This widely studied in the context of topology and it was
pretty long back more  than 40 years back it was proposed in a paper by Schur-Schrieffer
and Higer Schrieffer is  the same one who's in the BCS theory of superconductivity. So
this is in physical review letters on 18th  of June 1979 and it is about these they say that
these long chain polyenes which are polyacetylene  and they have this form C2H2N and
this is how a long chain polymer that is polyacetylene  molecule would look like this
C2H2. So you see there is a double bond here and  then there is a sort of single bond
there is a double bond and then there is single  bond and so on so forth okay and each of
the carbon is attached to a via single bond to  a hydrogen.

For us it's not important the hydrogen is not important for us what's important  is this
carbon-carbon-carbon bonds. So if we forget the hydrogen for the moment and  only look
at these carbon-carbon chain and carbon is in the it has carbon has 1s2, 2s2,  2p2 that's a
6 electrons and then these one of the p electrons that are available for  conduction and the
other p electron they sort of give rise to the sigma bonds which  is to the stability of this
long chain polymer okay. So it is you can you can take it as  a 1 electron per atom and 1
electron per atom should be a metal because the electron is  allowed to you know move
from one  carbon  atom to  the  next  and  to  the  next  and  so  on  will   give  rise  to  its
conducting behavior. However what happens is that these bonds are being  probed by
NMR spectroscopy and when they are probed they show that they have different  length
this 1.36 angstrom and 1.44 angstrom okay. 

So they have these double bonds have  different length as compared to the single bonds
and these lengths being different as a physics you know a person trying to find out the
properties of this model one can actually say that this corresponds to a hopping T1 and
this corresponds to a hopping T2 just  to remind you that this is the same T that we are



talking about the T here which is the hopping amplitude or the amplitude of the kinetic
energy for the electron to you know go from one ionic site to the next ionic site. So this is
the same thing here we are talking  about so there is a T1 and a T2 so this model consists
of two atoms per unit cell two carbon  atoms per unit cell and T1 is intracell hopping and
T2 is inter cell hopping okay. 

Now as it is there is no surprise in this model or the properties do not seem to be anything
very different or would yield any topological feature that we are interested in but it does
it you know when you tune T1 with respect to T2 or T2 with respect to T1 you see that
the system makes a transition from a topological state to a trivial state and once again I
want to remind you that the topological state is like the like the doughnut and the trivial
state is like the orange and the difference between them come from the fact that one has
a hole that is a genus which the doughnut has and the orange has no such hole and that  it
denotes a trivial state of matter. So whether T1 greater than T2 or T1 less than  T2 will
give rise to such topological state or trivial state it cannot be a priori you  know figured
out. So that's why this model is interesting it's a model in 1D tight binding  chain and
that's the simplest one can think of and then we'll see that depending on a  topological
invariant called as a winding number this model shows different properties.  

(Refer Slide Time: 37.59-42.25)

So the discussion is like this  that we'll  write down the Hamiltonian in the real space
which we have written it down and then of course we'll Fourier transform it and take  it
into  momentum  space  calculate  the  energy  plot  the  energy  find  out  the  topological
invariant  which is a winding number here plot the winding number and see that the
system  winds  the  you   know  here  it's  called  as  an  exceptional  point  but  we  have
introduced this as a singularity.  So that point of singularity whether your system is it
encloses or not that will decide  if it does then it is a topological state and if it doesn't it
denotes a trivial state.  So I write down so this is the intra cell hopping so these carbon
atoms that you saw  there they correspond to A and B sub lattices this is a C and a C a
carbon atoms but since  it's a two atoms per unit cell that's why we have labeled them as
two different sub  lattices so A and B are sub lattice degree of freedom. 



 So this is the intra cell term that is inside a cell from A to B sub lattice so N is the  the
unit cell index is the unit cell index and this is within the cell hopping of the  electron
from one carbon atom to another and this one is the inter cell hopping which comes  with
a T2 this one comes with a T1 so which means that this hopping is T2 and this hopping
is  T1  and  this  precisely  we have  said  about  that  polyacetylene  molecule  long  chain
molecule  and this is there the Hermitian conjugate this is the Hermitian conjugate is
always  used in such tight binding models and if  you do not use the plus Hermitian
conjugate then  the Hamiltonian will come out to be or rather the energies will come out
to be complex.

So there is a T1 and there is a T1 star for the Hamiltonian which means that H equal to  H
dagger your T1 equal to T1 star and T2 equal to T2 star which means their Hermitian
these  things  conjugates  are  same.   Alright  so you have  no term along the  diagonal
because you see no term that connects there  is no potential at the on-site potential and
these are between the same unit cell this  is the hopping between A and B sub lattices and
this is the hopping that is between this  and this is the hopping which is T2 and T2 star
and so on so forth. So this is written in this the first line indicates the Hamiltonian written
on the site  basis and in the second term we wanted to make sure that you know how to
write it in  the basis which are formed by these site operators.  So C1 dagger, C2 dagger,
C3 dagger, Cm dagger are the creation operators for electrons at  the sites 1, 2, 3, 4 till m
and similarly C1, C2 here they correspond to operators annihilation  operators at the site
C1 to Cm.  There is you have to be careful if you keep m to be an even number then you
use you know  the Tm minus 1 is equal to T1 and if you take m to be an odd number then
the last one that  is or the one that is you know one before the last but one hopping are
will change accordingly  because you want to end it at the with the right kind of hopping.
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Alright  so  because  this  system  has  transnational  invariance  one  can  do  a  Fourier
transform  this is the operator for the Fourier transform where so this n here and then
there is an  alpha here there is n, n is the site index if this is n alpha is sub lattice index
and  it yields a when you do that apply to this Hamiltonian equation number 1 let us call
it equation number 2 then you get a Hamiltonian which is like this.  

So if you apply 3 on equation 3 on equation 1 then you get this you get a nice and
compact  form for the Ck alpha H alpha beta K Ck beta where H alpha beta has a nice
form which is  like this of diagonal form that is it does not have any diagonal term 0, 0
are the diagonal  elements and the off diagonal elements has a real term and an imaginary
term and these  off diagonal element is actually the complex conjugate of that.

  So in the sense that if you change so H alpha beta K is equal to H beta alpha you know
this  and so on okay I mean I can write this as H alpha beta star and transpose okay so
this  tells you that it is a Hermitian matrix and so I write f of K is equal to t1 plus t2 e  to
the power minus ik. K is it runs from minus pi to pi it is a one-dimensional Brillouin
zone you can connect it you know using periodic boundary conditions but this is a very
simple  model which we are almost at the last stage of calculating the energy but as we
know that  calculating only the energy is not sufficient we have to also talk about the
topological  properties at least first calculate the energy.

(Refer Slide Time: 45.13-49.10)



 And very interestingly this Hamiltonian that we have written here let us call it equation
4 so the 4 and 5 combined you can see that we can write down the Hamiltonian in terms
of this called as a massless Dirac equation and why it is called a massless Dirac equation
is that usually the Dirac equation is written in terms of so your H is equal to alpha sigma
dot p plus beta m naught c square that is a form of the Dirac Hamiltonian.

 And in this particular case the Hamiltonian is this term does not arise here and it is  only
this term p is nothing but h cross K if you take h cross equal to 1 its sigma dot  K or K dot
sigma and there is  a  this  alpha which is  usually  it  is  a  matrix  in  the case  of  Dirac
equation but here that is equal to 1. So it is a d dot sigma so where these p  is replaced by
d and these d is a function of K so that is a vector there is a vector  and the sigma x sigma
y and sigma z are nothing but the Pauli  matrices.   So in the first course of quantum
mechanics  you might  have seen them and have  read  a  lot   about  their  commutation
relations and their properties and so on okay many things and  the problems concerning
this Pauli matrices must have been taught okay. So what is this  d vector? d vector has got
of course three components because we are writing it as d  dot sigma but fortunately for
us the one component is equal to 0 that means that sigma z is not  there okay and this is a
very important thing in this study of topology that if you have  the d vector to only have
two components like here x and y component but it may have y and  z component or x
and z component in that case it is easy to find the winding number.  If it is not the case
that is if you are include a term say let us call it as some  m sigma z and in that case you
will have a plus there is a m here and this m will make  the definition of the winding
number to be ill-defined in the sense that you will not  be able to show the winding unless
you do something to the problem that is do a unit  rate transformation to you know take
away one of the components it is very difficult  to visualize the winding number.

In this particular case we will take this  d vector and vary k over the Brillouin zone which
means that we change k from minus pi  to plus pi and see that the 0 0 point see the 0 0
point when you have k equal to 0 that  is I mean 0 it means that k equal to 0. So, k equal
to 0 is it becomes t 1 plus t 2 and  0 0. So, the d vector becomes you know just a one
component thing which is just like a  point. So, this 0 point that is the k equal to 0 which
is a center of the Brillouin zone  is called as an exceptional point and this we want to see
whether the d vector encloses  the exceptional point. So, this is the idea and then we
diagonalize  the 2 by 2 matrix which is very easy for us to do.

(Refer Slide Time: 49.06-50.30)



So, this is the matrix that you diagonalize  equation number 5 f k and f star k and then we
find out that this e k is the energy dispersion  for these problem where it is and square
root of t 1 plus t 2 cos k plus t 2 square sine  square k and there are 2 bands coming from
the plus and the minus sign.  If we open the bracket inside we can write it in a little more
convenient fashion which  is you know convenient for our discussion it is a plus minus
root over of t 1 minus  t 2 square plus 4 t 1 t 2 cos square k by 2 and say this is equation
5. So, this is  equation 6 say this is equation 7 and let us call this as equation 8 and this is
equation  9 ok. So, k is as I said is contained in the in the first Brillouin zone. So, it is
minus  pi less than equal to k less than equal to plus pi.

So, this is the form of the these Schur Schrieffer-Hegel model the energy dispersion of
particles in  the Schur Schrieffer-Hegel model it contains as expected the 2 hopping t 1
and t 2 and  the k dependence is here that how it varies with k ok and so on ok.  

(Refer Slide Time: 50.38-51.00)

So, you can solve the matrix and find out the eigenvectors as well we have calculated  the
eigenvalues and here are the eigenvectors. So, these are corresponded this plus and minus
sign that you see here correspond to the plus and minus eigenvalues of this Hamiltonian
or these energies that you see here and so, this is a equation 10 and this phi k is nothing,
but the tan inverse of this t 2 sin k. So, this is nothing, but a tan inverse of d y  by d x ok



that is the d y means you know this is like y component of the d vector divided  by the x
component of the d vector ok it is not derivative or anything. So, this is  the complete
solution of the problem, but we are far from the topology that is embedded  here.

(Refer Slide Time: 51.40-53.50)

Now, in order to see the topology let us examine few different cases one of them  is let us
call it as a t 2 equal to 0 that is these model does not have any t 2 which  means that these
inter cell hopping is equal to 0.  So, if you have inter cell hopping equal to 0 it looks like
this. So, there is nothing  here ok. So, this is absent and this is absent and so on and in
this case it is called as  a extreme dimerized limit. So, these are dimers are formed and
you have a perfect dimer  and there are no free agents.

So, t 2 equal to 0. Now, you see if you take the other extreme  dimerized limit which
means that t 1 equal to 0 that is this hopping is equal to 0 if  that is not there then you get
a  form  which  is  like  this  ok.  Again  there  are  dimers,  but  there  are  two  important
digrations here which are not there  in the earlier plot or earlier picture ok. So, there are
free ages present and why I  am showing them as free ages is that now adding them to the
system will not alter the energy or you take them away from the system it will not alter
the energy and that is why these are called as 0 these will give rise to 0 modes 0 modes
means with 0 energy ok. They correspond to 0 energy for the reason that if you take them
away or put them back really it does not make any difference in a finite size chain the
edges or the edge atoms whether they are there or whether they are not there it hardly
makes a difference to the energy of the system which means that they have 0 energy ok.  

(Refer Slide Time: 53.53-55.17)



And this is what is important that they have 0 energy and there are other cases which are
like this  t  1 greater  than t  2 that  is  the intracell  hopping is  greater  than the intercell
hopping ok and when they are same and when the other thing happens that is the intracell
hopping is smaller than the intercell hopping ok.

Now a priori without going into the results this case is not interesting topologically  not
interesting and it denotes a trivial state that is like an orange which does not have  a genus
ok. This is the critical state where the system undergoes from a trivial to topological  by a
gap  closing  scenario.  If  you  remember  that  we  have  talked  about  the  Hamiltonian
undergoes you know a gap closing scenario this gap has to close and open again for the
topology to be visible to us or it is to be perceptible we can perceive it.  So, t 1 less than t
2 is the topological state and let us see how we understand them. If  we understand them
in a simple way that is the triumph of this model.

(Refer Slide Time: 55.22-59.00)

So, the energy  dispersion this is a real space for certain you know L that is we have
chosen certain L some value which is say 100 or 200. So, there are these say for example,
100 or 200  whatever we have say 100 and then we have solved it with t 2 with t 1 equal
to 1 ok.  So, t 1 equal to 1 you see that there is a 0 mode that is visible let me use a color
there is a 0 mode that is visible here. So, that is beyond 1 that is t 2 greater than  1 you
see there is a 0 mode and there is no 0 mode prior to that and the this is the bulk  of the
system.

Bulk means all the states that are in between. So, this is say this  is equal to 100 ok. So,
this is the last one. So, from t 2 equal to 1 and above so, that  is t 2 greater than 1 these 2
becomes like this case like this case where there are these  free edges and there are 0
modes present in the system. So, there are 0 modes bulk has  a gap in both the cases that
is the bulk states that is these states these are bulk  and this is edge the left edge and this
is a right edge ok.  So, these are the bulk states which are here and here.



So, the system is topological here.  Ok, because the 0 modes exist because you can add 2
edge modes which are so, it does  not matter to the system whether you have added them
or you have deleted them they are  the modes with 0 energy. Now, you see that before
these t 2 equal to  1 or larger we just talk about because t 2 equal to 1 is a critical state
that is the  gap closing thing which you see here. So, we will talk about t 2 greater than 1.
So,  t 2 less than 1 you see that there is a gap here at all values the gap is of course,
reducing,  but there is a gap, but there is no 0 mode.

 So, there is the trivial region. This region  acts like an orange which has no genus ok and
the 0 modes come from t 2 greater than  t 1 that is t 2 greater than t 1 because t 1 we have
taken to be equal to 1 if we take  t 1 equal to 2 it will happen at t 1 greater than 2.  So,
why is it topological because now there is a difference between the edge and the bulk
and this is the precisely the distinction of topological insulator. So, in the bulk  of the
system it looks different than what it looks at the edges ok and that is what  is apparent
from here it will be more apparent if we calculate the topological invariant.  

(Refer Slide Time: 59.04-1.00.10)

We calculate the psi i squared here as a function of the site index site indices and you see
that only at the edges we just plot the edges in this left hand side. So, this is the edge
probability and this is the bulk. So, the bulk is extended it like a metallic bulk or  they are
extended states and so on and these are seem to be sort of there are high weights  here
whereas, the bulk states have almost same weight everywhere ok.  So, it is there is a 10 to
the power minus 3 which means that it  is a very small  weight for all  the bulk states
whereas, at the edges it is almost equal to 1 which means that bulk and edge they behave
differently and this is called as a bulk edge correspondence. So, we will calculate the
topological  property from the bulk properties,  but it will  show signatures of the edge
modes  being  present  and that  is  called  as  a  bulk  edge  correspondence   or  the  bulk
boundary correspondence ok. 
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Anyway so, we calculate this winding number  it looks a little complicated will sort of
simplify this discussion. So, mathematically  the winding number which is a topological
invariant ok. So, this is the topological invariant and it is some d cap cross d dk of this
thing.  So, this d dk of this d and then you take the z component and then d unit vector d
is  the vector d we have talked about and then magnitude of d ok. So, this is a more useful
form and that can be used easily you remember that we have defined f of k f of k was
defined  here yes this is f of k. 

You take f of k and take this you take the  log of that take a d dk of that and then integrate
over the Brillouin zone which is from minus  pi to plus pi ok. This everywhere we have
taken a to be equal to 1 where a is the nearest  neighbour carbon-carbon distance or the
lattice spacing. So, this is if you take this and  then log of f k you write it as this and do a
little bit of algebra this will give you  the winding number to be 1 or 0 depending upon
the exceptional point or the singular  point is being wound or not ok whether the system
winds this thing ok. 

(Refer Slide Time: 1.01.50-1.03.10)



 So, we show all these 5 situations that we have talked about here like the ones that  are
talked about. So, these 2 dimerize limit one being trivial, topological and again  this is
trivial critical and topological and so on. So, we calculate this winding number  that we
have just defined by this and calculate it for each one of these things. Of course,  this is
the dimerize  limit  where we do not  expect  any topological  properties  which  is   this
extreme  dimerize  limit  the  top  one  that  we  see  here  this  one  that  we  see  here  that
corresponds to this winding. So, we plot both the energy and the winding  number. So,
energy is on the left panel and the winding number is on the right panel for  the same
values of these things. So, this d 1 equal to 1, d 2 equal to 0 you see 2 flat  bands at 1 and
plus 1 and minus 1 and you see that there is no winding of the d in the  dy dx plane as
you change k from minus pi to plus pi ok. 
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 As you see the second scenario that is you have t1 still greater than t2 which means  it is
a trivial phase and the bands of course, show some dispersion not like this flat ones that
you see here it shows some dispersion, but you see the winding this dx dy plane  encloses
a red circle which does not include the origin which is here. So, this is of course,  a trivial
phase and by this blue arrows what we show is that the d vector the unit vector  d at
various points in the dx dy plane as you change k ok that is shown by this blue  arrow
here ok. So, the winding is actually 0 winding is a  point there is no winding here this is
the d vector that is being shown ok and here also  it is a trivial this is the critical ok and I
said  that  the  critical  will  show a gap closing   scenario  you see  at  the  corner  of  the
Brillouin zone which are minus pi and plus pi you see  that the gaps close ok. Gaps close
the dx dy circle just touches the touches the singular  point or the exceptional point which
is k equal to 0.  So, this is the k equal to 0 point and it does not enclose it ok and again
these dx  dy directions are shown like this. This will correspond to topological phase.
Now, if you  look at the band structure between this and this that is t1 equal to 1 t2 equal
to 0.5  t 1 greater than t 2 the band structure is absolutely identical ok.



So, the conduction  band which is shown by red and the valence band which is shown by
blue this correspond  to the plus and minus signs of the e versus k they are different, but
of course, you see  the dx dy curve which is a closed curve in the dx dy plane as you
change k from  pi to plus pi encloses the origin ok. And that is why the winding is equal
to plus 1  or its finite ok and it is not 0 that is what is shown here that you see that the
winding  is  1  or  0.  So,  1 corresponds to  topological  like your donut  or  your  mug 0
corresponds   to  trivial  like  an  orange  with  no  genus  ok.  So,  even  though  the  band
structure does not  say anything that is e versus k we have done it with k a just to take it
dimensionless.
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 So, that it becomes a number, but the winding of this gives you that it winds the origin
and this is the other dimerized limit where there are you know t 2 is greater than t 1  or
rather this is like t 2 is equal to 1 and t 1 equal to 0 that is the case which we have  shown
graphically by this plot this one here ok that is shown by this ok.  Now you see it  is again
topological for the reason that your d x d y plane the curve the closed curve actually
encloses the origin ok. And so, this of course, shows a topological phase transition as the
system you know goes from this dimerization. So, we call a dimerization to be a ratio
which  is like t 2 by t 1. So, if t 2 by t 1 if t 2 is greater than t 1 or this dimerization is
greater  than 1.
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 So, dimerization is greater than 1 then topological or let us not call it dimerization  let us
call it as you know basically this is t 2 by t 1 ok. And let us not I mean it is a dimerized
model  of course.  So,  let  us not  talk about  this  as dimerization,  but you can call  it  a
hopping  anisotropy anisotropy parameter or something ok. So, this anisotropy so, this
will be topological  and this to be trivial critical and to be trivial ok. So, SSH model thus
encodes a very  important property which is very important for our discussion it is a very
simple model.  However, it shows the topological characters that we have talked about it
shows a topological phase  transition as these hopping amplitudes the ratio of the hopping
amplitudes are varied across the  value 1 ok. So, we will come back with another model
slightly more difficult, but nevertheless  an important model which also shows topology
ok. We will stop here. Thank you.  .
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