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Second quantization

 Welcome back.  We have been trying  to  establish  connection  between topology and
condensed matter  systems and in general we have done that  for quantum mechanical
systems such as electrons or the Aranob-Bohm phase that is you know in the vicinity of
solenoid. It is an additional phase that an electron can pick up. We are now more into
these the connection to condensed matter physics and let me start with a topic which is
quite important for understanding the later parts of this and it is been used heavily in the
study of condensed matter and it  is called as a second quantization.  We will  have to
understand these the way the Hamiltonian are deformed etc. and why we bring in the
topic of topology.
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 So first we have to learn how to write down the Hamiltonian and these techniques of
second quantization will aid us in doing so. So we will start with second quantization that
is a formalism and this is a very important formalism in the study of either you talk about
condensed matter physics or quantum field theory. It is very similar notations are used
quantization. So we this would be also interesting because we would like to write down
the Hamiltonian in the tight binding form.

Most of those Hamiltonian that we write later on would be having a tight binding form
and then we will see that how a system is topological the parameter regimes in which it
becomes topological and the properties that come along with. So why is this formalism
important  in general?  So we are talking about  many particle  systems which means it



consists of many particles and these are identical particles. This is the main assumption
of quantum mechanics that the particles that we deal with cannot be distinguished one
from the other. So they all  are absolutely identical and this identical nature creates a
problem and in the following sense that when you swap two particles that is exchanged
two particles  the resulting wave function picks  up a  sign or  may not  pick up a  sign
depending on whether they are fermions or bosons respectively. So if you have more than
two particles that is three particles so you have to keep a track of two such swaps or
exchanges and three such or rather one swap is swapping say A and B and the other swap
is a swapping A and C or B and C and so on. So let us just talk about two swaps in a four
particle system there will be three swaps and so on. Each time you make a swap and you
are dealing with fermions then you have to change the sign in the following sense we will
just show that.

 So this becomes a big problem to deal with a large number of particles and we often
have to  deal with large number of particles  because the formalism of statistical  field
theory demands that we are actually talking about macroscopic number of particles so
that the statistical mechanics that we are familiar with can be applied. So in that context
we  need  to  evolve  a  mechanism  where  such  swaps  between  particles  and  the
corresponding changes sign of the wave function can be incorporated. So let us just talk
about  one  you  know  a  particle  to  begin  with  let  us  say  the  state  of  the  system  is
determined by these alpha 1 okay and if you are talking about n particles so this for one
particle and say for n particles will have alpha 1, alpha 2 and then alpha 3 and so on and
say so we are dealing with n particles and alpha n okay and this will form a state okay a
complete set of states and so on.

 So this will form the Hilbert space. Now can we simply multiply it to write down the
resultant ket that is whether this one is a possibility the inner product states and so on
okay. So this is incorrect because of the reason that this does not give rise to the these
permutation of particles or exchange of particles so we will see how. So let us talk about
just two particles to make matters simple. So the either for fermions or bosons we can
write down the resultant state as say psi is equal to we do the normalization as well and
we can write it down as say alpha 1, alpha 2 and plus minus alpha 2, alpha 1 okay.

This can also be written as 1 by root 2 alpha 1, alpha 2 plus minus alpha 2, alpha 1 and
where the plus sign refers to bosons and the minus sign refers to fermions okay and 1 by
root 2 is the normalization factor.



 Now for two particles we start with the single particle states which are alpha 1 and alpha
2 and form the complete set of states for these system of two particles which are coming
as you know plus or minus of when they are the order is reversed so alpha 1, alpha 2 and
alpha 2, alpha 1 and so on so forth okay and you can do it for three particles it is going to
be a complicated and you will have probably six terms and so on and you will have a 1
by 2 factorial here there you will have a 1 by 3 factorial which is 1 over 6 and so on so
forth okay. So for n particle it is quite difficult to write down the state psi and because all
these combinations that come because of these various swaps that you do that is very
difficult to keep a track and write down sort of wave function in this particular fashion.
So what I said is that you cannot simply write it down as alpha 1, alpha 2 etc as a ket and
pretend that that is many particle wave function that you have to deal with, you have to
deal with something much more complicated than that okay. And as I said that the plus
sign which means that the bosonic wave functions are symmetric under the exchange of
particles whereas the fermionic wave functions are anti-symmetric which means that they
pick up a sign as you change these two particles and you make one more change then it
returns back to the same state. What I mean is that if you have three particles and you
take 1 to 2 and 2 to 3 then it does not pick up any sign because there are two minus signs
that  are  being  picked  up  okay.  So  this  problem  is  actually  arising  because  of  the
indistinguishability of the particles.
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 So this wave function that you see here because of the indistinguishably you have to take
combinations  but  that  is  indistinguishably  also gives  you or  rather  it  provides  you a
solution as well okay and that solution is provided by going into a Fock space and this is
discovered by V.A. Fock was Russian mathematician.

So we will discuss very quickly what Fock space is and if you need to understand what
Fock space is let us just talk about bosonic system just to begin with so that because the
fermionic system the number of particles is 0 and 1. So I already gave you the answer
that will not really worry about that which state to put a particle in. So we will just worry
about  how many particles  are  there  in  a  state.  So  we will  go  from these  you know
representation  of  putting  a  particle  in  a  given state  to  count  the  number  of  particles



corresponding to a given state and this is called as a Fock space okay. So it's also it's
called as an occupation number basis and so on.

So let us say that we have a quantum state suppose a quantum state is 1 1 1 2 2 2 3 3 4 5
6 and so on okay. So which means that the you know there are these particles is there is
three quantum states containing one particle three quantum state containing two particles
and two quantum states  containing  three  particles  one  quantum state  containing  four
particles one five and one six and so on so forth okay. So and this is like a sort of huge
you know redundancy in its in its representation it will be much better if we just number
these states in the occupation number basis and write the state in terms of how many
particles in a in a given state. So we will just count the number of particles n 1 n 2 n 3
and n n. So this n particle so there are these subject to of course these things that n i so i
equal to 1 to n has to be equal to n okay.

So this is the total number of particles. So the Fock space has n 1 particles in state 1 n 2
particles in state 2 and so on just like you know there are three particles that are there
three quantum state correspond to one particle and so on okay. So this is a this is called as
a Fock basis and this will help us in writing down a second quantized Hamiltonian let us
see how okay. So n i can be anything for bosons okay so this is an important point and n i
is equal to 0 and 1 for fermions okay.

 So either a given quantum state can have 0 particles that is no particle and or it can have
at the most one particle okay.

(Refer Slide Time: 13.36-22.45)

We are not talking about spin at this moment but that can also be incorporated. So this is
basically provides you of course a simplification in writing an n particle state and but
then we still are not sure that how this representation is doing justice to this exchange of



particles or the swap of the particles and let us see how that is being done. So that is done
by  using  creation  and  annihilation  operators  okay.  So  these  are  represented  by  the
creation operators are represented by C dagger it can be A dagger or B dagger depending
on sort of notations that are used by various authors and the annihilation which is also
called as a destruction operator this is represented by C okay. And so how what does this
do this really does this so it is C i it acts on these Fock space which contains n 1, n 2, n i
and n n so this is nothing but equal to 1 minus n i and minus 1 whole to the power epsilon
i I just tell you what epsilon i is and n 1, n 2, n i plus 1 and n n okay.

So what it does is that it increases the number of particles in the ith level by 1 okay so
this is what it does and in the process it picks up this factor and this factor we will just tell
you in a moment what this factors are and you have a C i that is this is for the creation
and this is for the annihilation. So C i n 1, n 2, n i and n this is equal to n i into minus 1
whole to the power epsilon i n 1, n 2, n i minus 1, n n okay. So what is epsilon I ? Epsilon
i is a quantity that considers this swap so it is a sum over all the n j's prior to that i so this
j runs from 1 to i minus 1, 

so you count all of them their occupancies we are particularly you know writing in terms
of you know fermions such that  so these are  for fermions.  We are not talking  about
bosons but they can also equivalently be done provided you do a symmetrization of the
wave function this is very specific to the nature of fermions and bosons the fermions
obey an  anti-symmetric  property  whereas  the  bosons  obey symmetric  property  wave
function is symmetric under the exchange of particles okay and this is one of the reasons
that the fermionic wave functions are written as later determinants because you know the
properties of determinants are that if you exchange a row and or a column that is you
exchange say third row with seventh row and so on or you exchange fifth column to
fourteenth column for a given determinant it picks up a sign a negative sign you do two
such swaps it picks up another negative sign which means the next sign will be positive
and very importantly if you make two of the rows or two of the columns identical then
the determinant is equal to 0 which is related to the exclusion principle Pauli's exclusion
principle which says that no two particles will be allowed to occupy the same quantum
state okay with all their quantum numbers to be identical okay we are at this moment we
are not talking about spins but if they have different spins then they can occupy okay so
epsilon i which is there in the exponent of this minus 1 whole to the power epsilon i I
mean minus 1 so it's in the exponent of this minus 1 that takes care of these swapping of



the particles okay and these 1 minus ni in this expression for the creation operator that
you see it ensures that if the particle already has an occupancy that is if an electron is
already sitting in these state then no more addition can be done or it's allowed and so this
is that 1 minus ni and this ni that you see I'm sorry if I were to put an equality sign and
this ni that you see is it makes sure that the occupancy can never be negative okay so it is
either  0  or  1.  Now  these  things  obey  anti-commutation  relation  what  are  anti-
commutation relations they are just like commutation relation that you are familiar with
just to remind you that x p commutator is equal to i h cross that's a commutation relation
which means x p minus p x is equal to i h cross,

 these are operators okay so you can if you want you write it with a cap there so all these
applies to the operators and so on so these are not just not quantities that we are talking
about and similarly there are like all these commutation relations that we are familiar
with for the angular momentum which is i h cross l so this is like it encodes a number of
commutation relation for the components of the angular momentum okay.

So all these quantities that are fermions, bosons and spin etcetera they have their own
commutation relations like fermions have this anti-commutation relation which I just said
the  bosons  obey  commutation  relations  and  the  spins  have  their  own  commutation
relations okay they are they do not match with the ones for the fermions and the bosons.
So what I mean is the following so this is how it is written now there are you know
different notations that you might find but mostly it's done written with a curly bracket
instead of a square bracket but sometimes a square bracket is followed by a plus sign this
also means anti-commutation okay because there are you know opinion about relations
that people follow. So this is equal to Ci dagger Cj dagger plus Cj dagger Ci dagger this
is equal to 0 and similarly you have a Ci Cj anti-commutation. 

So anti-commutation very importantly you see that this plus sign is the main thing let me
write it with color so that you are sensitized about this the main thing about the anti-
commutation relation. So it's Ci Cj plus a Cj Ci and again this is equal to 0 and a Ci
dagger Cj this is equal to a Ci dagger Cj plus Cj Ci dagger and this is not equal to 0 but
this is equal to a delta function a Kronecker delta with delta ij what it means is that if i
equal to j then this is equal to 1 that is if you have Ci dagger Ci plus Ci dagger Ci then of
course this is equal to 1 and so on okay.
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And there are you know various properties that we can talk about the number operator
and so on which you will see okay. So these anti-commutations that you see are they
ensure that there is a this plus sign actually or the anti-commutation relation ensures that
there is a minus 1 whole to the power epsilon i and that will take care of all the swaps that
are affected in writing down the many particle wave function. 

So we will write down the ket as n1 nn this is equal to a C1 dagger C1 dagger and a Cn
dagger whole to the power n1 nn and multiplying by or rather operating not multiplying it
is operating on a 0 and this is actually a many body vacuum which means that it does not
have any particles but that particles means in the many particle sector it is a vacuum. So
this is how it is written and how these are so useful and why put this we have to learn this
is the following when we try to write down 1 and 2 body operators which are all what are
there in the Hamiltonian. You see sort of in general these scattering problems are all one
body and two body problem a one body problem is that expresses the kinetic energy of
the particle the body it is just one body how it moves and so on and when you talk about
two body problem then we talk about the interaction between two particles.

Three body onwards it is almost unsolvable in most of the cases because of the phase
space that you have for which are defined by the momentum and energy conservation
laws  they  are  not  enough to  find  out  you know deal  with  the  three  body scattering
process. There are some specialized techniques which one does but anything more than
that of course will be treated as a many body problem where you would talk about them
statistically. So what is this one body operator so one body and two body operators. So let
me write down a kinetic energy which is equal to sum of the all the kinetic energies so i
equal to 1 to n k is the kinetic energy and this can be written as using the complete set of



states we can write this down as alpha alpha. So this will give you I will tell you that and
this is that k and a beta beta and so on ok.

So alpha and beta are single particle states and these alpha alpha this is called as an outer
product and these a complete less relation would give this and similarly for the betas they
would give this as well ok. So this is why the you know this I should write it with i and so
on ok. So these are the so this is an i and so on ok. So I just introduced this complete set
of states and then we can write this down as alpha and beta and i and so on and then we
can write this as alpha and then k k i and then beta and then we can sort of take alpha and
beta and so on ok. So that we use this and it is also alpha alpha equal to 1 and beta beta
equal to 1.

So we left multiply by a vector which is alpha so it is a ket of alpha so that this becomes
equal to 1 and we use a beta here which becomes equal to 1 and that is because we can
multiply a 1 here and so these are written in terms of the matrix elements. So these are
alpha beta and i and this is like alpha k i beta and c alpha dagger 0 so alpha is written in
terms of c alpha and a vacuum and the beta is written as 0 and c beta and this will also
become equal to 1 because 0 is as much of an element of that Hilbert space as any other.
So this is so finally what you get is alpha beta i is like alpha k i beta and c alpha dagger c
beta and this is a form of the one body operator ok. So this is a number which is the
expectation value of these k i say for example in a continuum sense this is like minus h
cross square by 2 m and d 2 dx 2 and then you write down alpha and beta and then this is
the operator that comes out so it is a c alpha dagger c beta. So if alpha and beta are say
for example states that are they denote say position or something ok then this will be like
a c i dagger c j and so on so forth ok.

And similarly we can also write down this I will not go in but you can see this we can
write this down as for the potential energy so this V is equal to alpha beta alpha prime



beta prime so this will be like alpha beta and V alpha prime beta prime and this will be
like c alpha dagger c beta dagger c beta prime c alpha prime and so on ok. So this is
nothing but the matrix elements of this operator which can be for a coulomb term this is
like minus e square over R and so this is like a alpha beta alpha prime beta prime. So the
matrix element is this and the operator is here ok so the matrix element is given by this V
alpha beta alpha prime beta prime and so on ok. So this is quite helpful and it will help us
to  write  down  these  tight  binding  Hamiltonians  that  will  be  extensively  you  know
discussing throughout this course ok. Then it will be made clear or rather it will be more
clear that why we have introduced these notations and as I said that they take care of this
humongously large number of swaps or the exchanges of the particles  or these signs
arising from these exchanges and they are taken care of very sort of in a very smart way.

 So first we write down the Fock states and then we introduce the these C and C dagger
operators  and  their  anti-commutation  relations  we  are  talking  about  fermions  so  but
similar way one can talk about bosons as well the formalism leaves is exactly the same
excepting  that  we  would  be  talking  about  commutation  relations  instead  of  anti-
commutation relations alright. So these are Hamiltonians now we are slowly you know
moving towards condensed matter physics which deals with Hamiltonians for a given
system its energy levels and so on and these energy levels are called as the you know the
band structure E as a function of K usually we you know plot it as a function of K.

(Refer Slide Time: 31.30-43.00)

 So  these  Hamiltonian  and  let  us  talk  about  the  Hamiltonian  and  relationship  with
topology okay. So I just just a freehand drawing of bands and say one band is like this
another band is say like this this is the conduction band and this is a valence band and so
on okay. So this is E versus K for a given system I am just arbitrarily drawing some two
bands and it can actually have many bands but something that is too far away from the



Fermi  level  is  not  interesting  at  all  because  it  does  not  contribute  to  the  physical
properties of the system the ones that are closest to the Fermi level are only important for
us to consider and I mean what is meant by near the Fermi level so this is the Fermi level
so this is called as a Fermi level and this is usually the zero of energy.

So this line let me then draw it with another color okay. So this is the Fermi level and
something that's far away from the Fermi level are not interesting the ones that are close
to the Fermi level maybe within electron volt or so are important by the way this one
electron  volt  even  if  it  sounds  a  very  small  energy  especially  the  students  who  are
familiar with high energy physics and so on we for condensed matter people this one
electron volt is a very large energy in fact this  is roughly the energy that the typical
semiconductors like germanium or silicon they have or is aluminum gallium arsenide etc.
maybe having a one point something electron volt  one electron volt  is  11600 Kelvin
okay. You understand the enormity of these energy what I mean is that one electron volt
when you write it or equate it to kT, k is the Boltzmann constant to put the value of the
Boltzmann constant and do all these homogenizing the units etc and then T comes out to
be close to 12,000 Kelvin 11,600 and that's a very large temperature because you know
the outside of Sun is about 6000 Kelvin or a little more than that so anything in the world
would you know melt at 12,000 Kelvin okay. So even though looks like the one electron
volt  is  a  small  energy  you  cannot  really  you  know think  of  such  a  large  energy  in
condensed matter system okay.

Alright so what I am trying to get at is that suppose this Hamiltonian is a function of
some lambda we have used this notation earlier where lambda is some parameter of the
system and then lambda can be tuned say for example lambda can be the electric field or
the gate voltage for a system for which you are writing down the Hamiltonian and then
you  are  slowly  tuning  the  gate  voltage  and  the  Hamiltonian  changes  and  see  the
Hamiltonian changes in this manner that as a function of lambda it sort of there are only
two levels that I wrote down and then you know it sort of it these two energy levels in the
both in the conduction and the valence band they get slightly they change slightly as it's
shown here but they do not cross the Fermi energy again the Fermi energy is at  the
middle okay. So now I am not plotting it as a function of K, I say I am at a given K and
then I am plotting it as a function of lambda okay do not mind is just an example that I
am giving they the plots look same versus K, K is the wave vector by the way. So let me
write that K is the wave vector and lambda is some parameter okay some parameter such
as you know gate voltage or say spin orbit coupling and which can be tuned by using
some external means etc. So it can be anything and I am just showing that this a situation
in which it is changing with lambda but let me show another situation where again I will
show the Fermi energy with red and so it happens like this and so on okay again as a
function of lambda so this is E versus lambda and so on. Now see there's a big difference
between this picture let's call this as 1 and let's call this as 2 okay.



And 1 and 2 the difference is that the number of levels the number of energy levels or the
number of bands energy levels below the Fermi energy changes in 2 remain same in 1
okay. So 1 means this 1 and when I say 2 what I mean is this rho 1 2 the figure I am
referring to okay. Now let me sort of changes in 2 and remains same in 1 we underline
and this  will  decide that  whether  the system is  topologically  equivalent  as lambda is
being you know is tuned this parameter lambda is tuned in case 1 the system is in the
same topological state then topological invariants are same what I mean to say is that if
you refer to the lecture in the last one that we have now delivered there the mug changing
into  doughnut.  So  this  will  be  so  mug  changing  into  doughnut  the  systems  are
topologically equivalent I said a number of times that a smooth deformation of the system
from the mug to the doughnut leaves the system topologically same that's their identical
because there is just one hole it just counts the number of genus present in the system. So
where you hold the cup is the hole that it transforms into the doughnut and that's only
thing that happens okay the system remains topologically same okay.

So these are the 2 inferences that comes out okay these 2 inferences emerge from this
particular plot this just a you know just a schematic plot do not worry too much about this
I just shown 2 energy levels 2 below the Fermi energy 2 above the Fermi energy and so
on. However here these systems are topologically distinct. Okay because the Hamiltonian
for which energy is the eigenvalue of the Hamiltonian it does not remain invariant rather
the number of levels below the Fermi energy as a function of lambda till this point there
are 2 levels above and 2 levels below but this point onwards whatever that point is let's
call that as lambda C that point onwards there are 3 levels below and which is not the
same as 2 levels. So the system undergoes a topological phase transition which means
that there is a gap closing scenario that occurs which means that you are puncturing or
you are tearing something in order to create a different either a differently topological
system that it has different topological invariant that is you are making a mug into by
somehow you know piercing it or breaking it or drilling some hole into it you are creating
another genus that is it sort of is equivalent to now a spectacles the pair of spectacles that
people  were.  So  they  are  topologically  distinct  and  this  topological  distinction  is
accompanied by a gap closing scenario.

 So these are the 2 important features of these 2 things that or these 2 plots that I have
drawn. So I hope that if you read more of course you will agree with me more but I hope
I have been able to give you this analogy between topology and condensed matter physics
that this is how you slowly deform a system and if the system remains invariant that is a
sort  of becoming a donut then they are topologically  equivalent  which is farther  you
know corroborated or supported by this Gauss Bonnet theorem whereas this system you
have to make some drastic changes to the system and in language of condensed matter
physics it means that there is a gap closing occurs. You see the gap it was earlier gapped
it was here gapped but that gap closes with the Fermi energy at this point lambda c this



point is lambda c this is what I mean as lambda c and these gap closing occurs and so on.
So then the system does not remain topologically equivalent that is a mug donut sort of
you know in that sense the equality or the similarity does not remain and one actually
gets a different system okay. So one the Hamiltonian representing the two systems before
lambda  c  and  after  lambda  c  are  not  topologically  equivalent  okay  the  topological
invariant changes.
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Okay so now this  topology  etc.  and its  relation  to  condensed matter  physics  can  be
understood even better by looking at the symmetries of the Hamiltonian. So let us see
what we mean by symmetries of the Hamiltonian. So every day we come across a lot of
symmetric objects say for example a circle is a very symmetric object if you sort of turn
it make a rotation by some angle theta it you will be not be able to distinguish whether it
is a earlier circle or the new circle which is rotated by theta or say a sphere or there are
many  symmetric  objects  there  are  like  many  things  in  nature  which  are  symmetric
suppose these leaves that you see which have got a you know symmetry there are these
alphabets many of the alphabets have got you know symmetries along various lines like
for example o has a symmetry about any of the axis or m has a symmetry about the
vertical axis and so on okay. So these Hamiltonians also have certain symmetries and
these  symmetries  dictate  whether  as  a  function  of  lambda  whether  the  system  will
undergo a topological phase transition or will remain equivalent to the original system as
you know as you change lambda okay. So these symmetries are really distinct from the
crystal symmetries this crystal symmetries come in say all these group theory that you
might have studied in which people talk about symmetries such as C4V symmetry C6
symmetry and so on so forth.

So these are distinct than that and there are few symmetries which are really important
and we will study them and one of them is called as a time reversal symmetry in short we
will call a TRS then we will talk about symmetry which is it is called inversion symmetry
or it is also called as a parity okay. So this if you invert the coordinates or you know so
how does the system or the Hamiltonian behaves with inversion of this that is R going to
minus R how does the Hamiltonian behave. So that is called inversion or it is also called



parity then there are these symmetry called as the you know the particle hole symmetry it
is called PHS it is short name for that and this is particularly important in the context of
superconductors and then we have chiral symmetry and so on okay. And now this particle
hole symmetry is also called as a charge conjugation symmetry okay and so on. So let us
you know start  with the time reversal  symmetry and you might  wonder  that  what  is
reversing time I mean is there anything called time goes in the other way that is not true
what we still do is that we want to understand whether the system moving on the towards
the right with the velocity V whether that scenario remains unchanged as the particle
moves in the other direction with minus V okay.

So if the direction of motion of a certain particle which is expressing you know being
expressed by the Hamiltonian if that changes or that changes sign then what happens to
the Hamiltonian does the Hamiltonian remain same and so on. And we will see that this
has very significant you know effects on the condensed matter physics because there is
something called Cramer's degeneracy that will emerge just talk about it you know. So let
us talk about time reversal symmetry okay. 

(Refer Slide Time: 48.38-55.30)

So I will not go into details how the form of the symmetry operator comes but I will just
tell that this is the symmetry operator and try to you know justify the behavior of the
Hamiltonian on that okay. So under time reversal operator it is usually written with a
curly T but it is easier for me to write this straight T under this it is written as T going to
minus T okay.

 So under  time  reversal  we are  talking  about  a  system without  spin.  So one  system
without  spin degree  of  freedom and you might  wonder  that  if  you are  talking  about
electronic systems or even bosonic systems they have spins okay. So how can you ignore
spins and we can ignore spins in a variety of cases suppose the system is spin polarized
which means that it has only spins pointing in the say talking about spin half pointing in
the positive Z direction in which case you have only that kind of systems and or they are
pointing in the opposite direction okay. So now the system does not distinguish between



the particles pointing in the opposite the spins pointing in the positive Z direction or
negative Z direction. If it does not do that there is no term that mixes the spin one kind of
spin to another then you can just talk about one kind of spin and then extend that analysis
to the other kind of spin as well and then the spin really does not arise into the discussion
that we carry on later on and you just put if you need to sum over both the spins you to a
factor  of  put  a  factor  of  2  but  otherwise  the  spin  does  not  you know enter  into  the
discussion.

 So under TRS this T small t goes to minus t  and the Hamiltonian commutes with the
time reversal operator okay.

 So a time reversal operator simply changes t to minus t and the Hamiltonian commutes
with that.  Now if  you want  to  know that  my Hamiltonian  may not only contain  t  it
contains x and p and so on so forth it I will show you the all these properties. So a if it is
txt inverse this is how it is the operation is talked about or discussed it is txt inverse is
equal to x then you have tp t inverse is equal to minus p. So the x that is the position
variable does not change sign but p which is equal to V over t or dv dt or dp dt I mean
this is like it involves p is equal to mv.

 So it is it has a V, V has a x by t since t changes sign so p has to change sign. So this is
another one and the important thing is that if it gets i anywhere which is i equal to root
over minus 1 then it changes it over to minus i okay. So and if you like you know TL t
inverse that is L is the angular momentum that also picks up a negative sign okay. So if
you want a little more on that it is not required but then x and p is ih cross we know so
this is equal to t ih cross t inverse and by the third property or C property ti t inverse will
become equal to minus 1. So this becomes equal to minus ih cross which is equal to a
minus xp commutator okay.



 So xp commutator does not remain invariant. So let us go to this f so that tells you that if
you have a real space second quantized operator T C J for example T inverse so this
remains same however T C J dagger T inverse that also of course remains same but if you
write it in the k space that is a wave vector space so T C k T inverse this is equal to C of
minus k okay and similarly for the k. So this is f, g, h and so on. So I am talking about
this C in the k space we have not specified earlier what alpha and beta are they could be
you know valid momentum states written in the momentum eigen basis or in the position
eigen basis so this is what it does. 

So in this thing what it what turns out is that the form of T is equal to the complex
conjugation okay so k is complex conjugation and T square that is square of that is equal
to 1 or you can write it as a matrix 1 because T is usually an operator. So T square gives
you 1 that is if you do twice so T acting on i will give you a minus i which is in C and
then when I do it on this other side that is T acting on minus i T inverse that gives you i
so T square becomes equal to 1 you know so this is like if I right multiply by T or left
multiplied by T then that T square becomes equal to 1.
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 So this is where k is the complex conjugation this is slightly different when system with
explicit spin degrees of freedom is there okay and we are talking about spin half okay. So
again I mean  H and T should commute  if a system has this means that TRS is a valid
symmetry operation that means the system has time reversal symmetry okay. 

So it is written as the operator is now no longer just k or the complex conjugation and we
also have you know T acting on the wave function will give me say psi T and the psi T
and psi are distinct and so psi and psi T this is equal to 0 both psi has eigenvalues that is
E as the eigenvalue and psi T also has E as the eigenvalue what means is that H acting on
psi will give you E psi and H acting on psi T gives you E psi T I am telling you all the
results a priori and this is nothing but what is called as a Cramer's degeneracy. This along



with this condition okay so for a given system if the system has time reversal symmetry
in that  case the wave function psi  corresponds to an energy E there is  also the time
reversed state which is psi T here where you apply psi on the I mean the time reversal
operator on the psi and becomes a psi T then the inner product of psi and psi T are is 0
that says that these are orthogonal states psi and psi T and each of them have energy E
that is H acting on psi will give you E psi and H acting on psi T also give you E psi T
okay. 

So the time reversal operator in this particular case has a form which is exponential I S Y
this S Y is the we talk about spin half I told you that so this is has to be it is a spin half
operator  Y  component  of  the  spin  half  operator  and  this  K  which  is  a  complex
conjugation and if you write down you know S is equal to H cross by 2 sigma in order to
convert that into Pauli matrices then this becomes equal to e to the power minus I pi by 2
H cross by 2 yeah sorry I forgot this H cross.

                                                           

 So it is H cross and then a sigma Y and a K okay. So this is the form of the operator for a
system  with  spin  degrees  of  freedom.  So  if  you  take  a  T  square  now  what  is  this
exponential minus I pi by 2 H cross sigma Y how to calculate this if you remember that it
is a exponential I theta sigma dot n this is how the exponentiation of the Pauli matrices
are done sigma is the Pauli matrix which has components sigma X sigma Y and sigma Z
and n cap is  just  a  direction  this  is  equal  to by using this  De Moivre's  theorem and
properties of these Pauli matrices it is equal to this and I sigma dot n cap sine theta. Now
here you see theta is equal to pi by 2 and n cap is equal to Y cap okay. So the first term
goes to 0 and the second term gives you so this is a minus so there is a minus there is a I
mean plus minus there is a plus minus. So exponential minus I pi by 2 H cross sigma Y
you can take H cross equal to 1 if you like.



 So this is equal to let me take H cross equal to 1 that will be better and this is equal to I
sigma Y and that is all I mean plus at theta equal to pi by 2 the first term is 0 and the
second term gives you sine theta by 2 equal to 1 so it is simply I sigma Y so T is equal to
I sigma Y k okay.

 So if you want to calculate T square so this is equal to I sigma Y k into I sigma Y k this
is equal to I square and then sigma Y square which is equal to 1 and then k so this
becomes equal to a minus I mean this becomes equal to minus sigma Y square and this is
equal to a minus 1 okay. So that tells you that the system with without spin degrees of
freedom T square is equal to 1 and with spin degrees of freedom T square is equal to
minus 1. So the square of the time reversal operator changes as you you know talk about
spinner particles that is spin half particles or spinless particles okay.
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So once again I will show you the Cj up dagger T inverse and this is equal to minus Cj
down and T Cj down T inverse this is equal to Cj up. So it tells you that if you have a J
spin I mean a particle with at a side J with spin up it makes it the spin becomes lowered
the it is rendered lower and there is a minus sign and for the lower it becomes up and
with no sign there. So now T H of k suppose you have a tight binding Hamiltonian where
the Hamiltonian is written in the k space this is equal to so T inverse is equal to H of
minus k okay alright. So this is about the time reversal symmetry and on the next lecture I
will be talking about the inversion symmetry and particle hole symmetry and the chiral
symmetry and so on okay. 

So  what  we  have  given  so  far  is  the  first  two  classes  they  were  concerned  with
establishing what topology is and the various you know properties etc or through various
visual graphic and demonstration we have said that a system remains invariant if it has



the  same  number  of  genus  as  you  deform  the  system.  Now  what  is  its  relation  to
condensed  matter  physics  that  needs  to  be  understood  and  when  we  say  that  these
deformation is nothing but you know driving the system which is a function of certain
parameter and then whether the entire property of the system changes that is the number
of energy levels  below the Fermi energy does that get altered if  it  does not then the
system remains you know it is as a function of lambda it goes into or rather it remains
topologically identical so a mug becomes a doughnut.

But however if the number of energy levels are altered then you have done something
violent to the system and there the system undergoes a topological phase transition from.
So it will be a different topological invariant including a 0 okay so which means that
system goes from topological to trivial that is non-topological when the this genus or this
thing is topologically invariant is 0. We will continue with this symmetry for just a while
and then we will go on to materials which shows this topological properties these are
called  topological  insulators  most  of  the  course  we will  be talking  about  topological
insulators. Thank you for your attention.
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