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So, far we have seen how the features of topological  insulators that is they have the
conducting edge states and they have an insulating bulk and we have seen that a reverse
scenario that is all the bulk states  are localized whereas they are conducting or rather just
other way around that there are all the bulk states are conducting whereas the edge modes
are localized. So, these are the scenarios that we have seen in 1D topological insulators
which  are  Schur-Schrufer-Hieger  model  or  the  Kitaev  chain  that  we have  studied  in
presence of P wave superconducting correlations. Then we have  done a similar situation
studied a similar situation in 2D where we have looked at graphene and importantly we
have looked at the both the integer and fractional quantum Hall effect and  all these are
two-dimensional systems both of them that is showing either that this 2D electron gas
showing integer quantum Hall effect or fractional quantum Hall effect and we have also
looked at  crystalline  systems such as  graphene and so these  have certain  topological
properties which have been discussed. Now to wind up our studies on the topological
insulators we do 3D topological  insulators. 



So, in three dimension we will have surface states as it shown here in the right picture
whereas there are in the 2D material we have these edge states which go around the edges
of the sample and we are particularly interested in the time reversal symmetric systems.
So, we see that there are spin currents being present in the system and they are helical
edge modes  which appear in pairs that is there are these each mode will correspond to
one kind of spin and there are two spins or rather two modes per edge for both the spins
being present there and these are called as the helical modes we have looked at them and
so on and a similar scenario translated to three dimension will have these surface modes
being present whereas the bulk would still be gapped and non-conducting whereas the
surface will be conducting and each surface will have such these helical modes which are
for the two different spin varieties.

These are the new 3D topological insulators and we learn that how actually from a 2D
topological  insulator we can go to 3D insulators and so on and in particular as I said that
we will be talking about non-magnetic topological insulator which means that the time
reversal symmetry is intact  and there is no magnetic impurity or there is no magnetic
perturbation that is present which would  have broken the time reversal symmetry. 

So, in this 2D we have learned that there is an invariant called as a Z2 invariant and the
Z2 invariant can take values which are 0 and 1 and  Z2 invariant 0 is called as the trivial
insulator or band insulator or usual normal insulator that we are familiar with and it is
equal  to  1  that  corresponds  to  topological  insulators  and  they  are  also  called  as  Z2
topological insulators because the Z2 index being non-zero and these insulators are as I
said characterized by the helical edge modes present in the system. And these helical
edge modes are nothing but the Cramer's partners and we have discussed this in details
about the Cramer's degeneracy that is present in a time reversal symmetric system. So,
the Hamiltonian has time reversal symmetry then there will be Cramer's partners that is a
K corresponding to an up spin will be degenerate to a minus K corresponding to a down
spin and that is  called as a Cramer's partners and these states that you see on the left in
2D these are the Cramer's partners or the Cramer's doublets and so on.

And in particular  we can also assume that there are these inversion symmetry or the
parity  being  present  in  the  system and this  calculation  of  the  Z2  invariance  become
particularly simple when these inversion symmetry being present. And in that case we
will have a set of points which are called as a time reversal invariant points and these
presence of this time reversal invariant points make things much easier. 
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And when we go over to the 3D topological insulators will still consider that the time
reversal invariant points are present and just to remind you that what these time reversal
invariant points are. So, you have a K which is equal to so K is a momentum and this is
equal to a minus K plus a G where G is a reciprocal  lattice vector.  And in principle
reciprocal  lattice  vector  is  formed  of  these  unit  or  rather  these  basis  vectors  in  the
reciprocal space let us call it as B1 and B2. So, this equation that we have written so K
equal to so this K is not capital we just meant a small k. So, this means that this K is
equal to minus K mod of G  these statements are equivalent it says that and so it is when
you divide it by the reciprocal lattice vector. So, it just talks about the remainder of this
division. So, these K is equal to let us say that this is like half n1 B1 plus n2 B2 where
these n1 and n2 are numbers which are 0 and 1. So, in 2D system so we are trying to
calculate the trim points.

So, let me write down so this trim points mean that time reversal  invariant points. And so
in 2D there are 4 trim points corresponding to these n1 and n2 being 0 and 1. So, these
trim points would be like a 0 0 corresponding to  both n1 equal to n2 equal to 0 and it can
be equal to so it is like half of B1 this corresponds to  n1 equal to 1 n2 equal to 0 or it is
equal to half B2 and this is equal to n1 equal to 0 and n2 equal  to 1 or it is equal to half
of B1 plus B2 and so n1 equal to 1 and n2 equal to 1. So, these are the 4 trim points



present in 2D systems which has time reversal symmetry and so on. So, we just  coming
to 3D in just a while because that is what we want to discuss here.

So, now the presence of the inversion symmetry makes things a little easier. So, for a
block Hamiltonian an inversion symmetry means that it is P H P inverse is equal to minus
H k where H k is the block Hamiltonian  and this P denotes the parity operator and parity
operator means that it changes x to  minus x y to minus y and z to minus z. So, at the trim
points so, P H and let us call  this trim points as gamma i. 

So, i from 1 2 3 4. So, let us call one of them as gamma 1 the other is gamma 2 gamma 3
and  gamma  4.  So,  P  H at  these  trim  points  is  equal  to  H  at  these  trim  points  and
multiplied by P. This is the definition of these trim points that are this relationship is
valid where P is parity operator ok.  
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So, now let us take one trim point  which means that let us take a k equal to 1 of the 4
trim points and we consider the for the Kramer's pairs that lie below the Fermi energy ok.
So, then we define a quantity which is let us call it as a delta i which is equal to m equal
to 1 to n and then a P 2 m and gamma i here. So, we define this quantity and what is this
P 2 m or P m.

So, P m it  denotes the parity eigenvalues of the mth eigenstate at the trim point k equal to
gamma  i  ok.  So,  the  Cramer's  pairs  are  the  2  m  minus  1th  eigenstate  and  2  mth
eigenstates are the Cramer's pairs ok. So, what it means is that so, you have a P 2 m
minus 1 at the gamma i point this is equal to P 2 m at the gamma i point and so on. So,
and  then  what  do  we  do?  So,  we  get  this  delta  i  which  is  a  product  of  the  parity
eigenvalues and we use this to define the topological invariant so to say by this formula.
So, it is minus 1 to the power nu and it is a product of all these 4 trim points and the
parity eigenvalues of these things over of course, all the occupied states.

So, this is how the topological invariant is defined in 2D and it is very clear that if this
expression is so, let me write it here. If this expression that is let us call it as equation 1, if
the expression I mean basically the either of the sides. So, we  are particularly talking
about the right hand side expression in RHS this is equal to 1 plus 1 then of course, nu is
equal to 0 or even or even and if the expression is minus 1 then of course, the nu is equal
to 1 or it is odd, it is odd. So, you see if this  product if this product gives you a plus 1 it
because these delta i's are plus 1 and minus 1. So, over all the trim points when you
multiply the product can either give you  plus 1 or minus 1.

(Equation 1)

So, if it is plus 1 then of course, this nu is equal to 0 or it is some even value and if this
product is minus 1 then of course, nu is equal to 1 or it has some odd value. And why this



nu is called as the topological invariant is because this nu equal to 0 that corresponds to a
trivial insulator and nu equal to 1 corresponds to a topological insulator. 
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So, this is the story in 2D. So, we have a Z 2 invariant equal to 1 which we knew that it is
called as a topological insulator and the Z 2 invariant being 0 is a trivial insulator. Now
we are casting it in the form of this nu, but the meaning remains the same.

Now what happens in 3D is the question. So, in 3D we have these this wave vector is
written  as n 1 b 1 plus n 2 b 2 plus n 3 b 3 ok, where n 1 n 2 n 3 are 0 and 1 ok. So, you
can have  just b 1 when the other 2 are 0 b 2 when n 1 and n 3 are 0 or just b 3 when n 1
and  n 2 are 0 and so on and then you can have 2 of them to be 1 and the third one to be  0
or you can have 1 to be 1 all 3 to be 1 and so on. So, there are for all these choices there
are 8 trim points and corresponding these choices of n 1 n 2 n 3 being 0 and 1. So, as
opposed to 4 trim points in 2D in 3D there are 8 trim points ok.

And how do we then talk about this topological invariance and this topological invariance
let us try to understand let me draw a cube that is a just a Brillouin zone it is a simple
cubic Brillouin zone. So, let us call this as K x this as K y and this as K z and this is 0 to
pi 0 to pi and 0 to pi ok. So, the that is a 3D B z ok. So, there are 6 faces of this Brillouin
zone and each face can be used as a or it can be considered as as a quantum spin hall
insulator  ok.  Because  each  one  of  them  is  has  time  reversal  symmetry  and  I  mean
basically the Hamiltonian has time reversal symmetry.



So, if we take  a slice of that say in the K z equal to 0 plane or K x equal to 0 plane or K x
equal to pi plane and so on so forth. So, each of the 6 faces can be considered as a
topological is a 2D QSH insulator in 2D ok. So, there should be 6 this independent z 2
invariants corresponding to each of this. So, should be 6 z 2 in-variants present ok, but all
6 of them may not be independent. 
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And in fact, we can see that so, this delta K x equal to 0 into delta K x equal to pi is
identical to delta K y equal to 0 and delta K y equal to pi and is identical to delta K z
equal to 0 and delta K z equal to pi. And so, this is a constrained condition and this
constrained reduces  the number of  z  2 invariants  from 6 to  4 and this  particular  the
product of such of these these deltas they correspond to a topological invariant. They are
same a topological invariant which is called as a nu 0. So, this product the product above
ok. So, what we had was that we had a minus nu minus 1 whole to the power nu that was
over  these all these deltas and now there are 8 of them.

So, it is 1 to 8. So, now, because of this condition there are these nu 0 and nu 1 nu 2 and
nu 3 are 4 topological invariants that are present in the system ok. So, now, this nu 0 is
called  as  the  strong topological  invariant  and nu 1  nu  2  nu  3  are  called  as  a  weak
topological  invariant  ok.  So,  basically  this  nu 0 is  independent  of  the choice  of  this
reciprocal lattice vector. And, whereas this nu 1 nu 2 nu 3 they depend upon the choice of
the reciprocal lattice vector G which is equal to a nu 1 b 1 plus a nu 2 b 2 plus a nu 3 b 3



ok.  So,  that  is  the  difference  between  the  strong topological  invariant  and the  weak
topological invariants that are present in the system.

 So, in this language so, you have a delta  k x equal to pi delta k y equal to pi and delta k
z equal to pi. So, these correspond  to nu 1 nu 2 and nu 3 ok and the product correspond
to nu 0. So, these are nu 0s it is usually  written above. So, let me write it above. So, there
are 4 topological invariants which  are nu 0 and then nu 1 nu 2 and nu 3. So, that is the
story for a 3 dimensional topological invariant. 
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So, these are some of the pictures of these topological invariants. So, there are 2 trim
points here you see that these are 2 negative signs here. So, that is called as a 2 trim
points again 2 trim points here this taken from a Fu and Kane their paper in 2007 physical
review B. So, 2 trim points there are 2 trim points as well.

So, there are these 2 this negative  signs which means that these are the trim points. So,
there is a negative the 2 trim  points here and there is just 1 trim point here ok. So, there
are 2 trim here 2 trim here and there is just 1 trim here ok. So, these 2 trim points make it
weak topological insulator. So, this is exactly given in the same way as we have just said.
So, there is a nu 0 and with a colon. So, we should change our so, maybe this one and so,
these are the representations. So, a nu 0 which is a strong invariant and these are the weak
Ti  invariant  ok.  So,  in  this  particular  case  this  nomenclature  that  you  see  here  this
nomenclature this 0 corresponds to the nu 0 and then these inside the bracket that you see
there. So, 0 0 1 inside the bracket these are set of nu 1 nu 1 nu 2 and nu 3.



So, these are the weak topological invariants and so on. When you have even number of
trim points then this index that is the strong topological index is equal to 0 and it is only
when you have odd number of trim points which is the case the last case that is the fourth
one the topological  invariant  the  strong topological  invariant  is  1  whereas,  the  weak
topological invariants along the k x k y and k z directions are 111 here which is same as
111 here as well and there are 0 1 1 and so on. So, they again depend upon the various
this delta k x equal to pi delta k y equal to pi  and delta k z equal to pi. So, these the parity
eigenvalues. So, what happens is that so, there are these in this particular case there are
even number of Dirac points and there are even number of Dirac points here and there are
odd number of  Dirac points  even Dirac even number of  Dirac points  these are  even
number of Dirac points and there are odd number of Dirac points.

So, like for example, we have this the first topological insulator which is B i x  S b 1
minus x that is a Bismuth x and antimony 1 minus x, x is usually around 10 percent
basically around anything between 0 to 12 percent. So, this has it is a strong topological
insulator.  So,  it  is  like  a  1  1 1 and so on.  So,  this.  So,  this  is  and then the second
generation of topological insulators such as B i 2 te 3 and B i 2 Se 3 these are the  second
generation 3D topological insulators and they have again it is a 1 and 0 0 0.

So, the strong topological invariant is 1 and the 3 weak topological invariants are  0. So,
these are the classifications of strong and weak topological insulator.  Just to remind you
that a strong topological insulator will have odd number of Dirac points at the surface and
it will have odd number of trim points here we have shown the odd number to be equal to
1. Whereas the when the strong topological invariant is 0 then there are even number of
the trim points and there are even number of Dirac points  present in the system. So, there
are 2 Dirac points present in these cases and so on. So, let us see how we can generate 3D
topological  insulator  from what we already know we know already the 2D Bernoulli
Hughes and Zhang model the BHZ model.  
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So, how to construct a 3D TI 2D BHZ model and please have a look at the BHZ model
discussion. We will have a discussion once more and so what we do is that BHZ model is
basically  it is a 2D model and say it is taken for kz equal to 0. So, the third dimension is
frozen  out because you have decided to take it at a particular value of kz and say kz
equal  to 0 and just to remind you that the basis in which the BHZ model was written.
Now this BHZ model just to remind you that it is the model for these strain structures
CDT,  HGT,  HGT that  is  mercury  telluride  and cadmium telluride.  So,  this  mercury
telluride has an unconventional band structure which has band inversion properties at the
gamma point and these CDT of course is a usual semiconductor and now for a certain
critical width or rather beyond a certain critical width larger than that these HGT  this
squeezed between sandwiched between two CDT slabs shows unconventional topological
properties which are called as a quantum spin hall phase and this band inversion that
occurs. So, we write down the Hamiltonian in the electron hole and the spin basis. So, it
is E up, E means electron and up is up spin.

So, it is E up H up and E down H down basis and this Hamiltonian in 2D. So, this is let
us call it a 2D and for kz equal to 0 is written as epsilon k and there is a unit vector and
plus. So, there is a m naught k which is called as a mass term and a k plus a is a constant
and a 0 0 a k minus minus m 0 k 0 0 and 0 0 m 0 k and a minus a k minus and a minus  a
k minus and a minus m 0 k ok. So, this is the 2D.

 So, let me remove this  and write it ok. So, that is the BHZ model and you see that there
is a nice block diagonal form that you have here. So, the up and down spins are not mixed
and it can be diagonalized easily and one can get the solution which is what we have



discussed earlier. So, what is our k plus minus? So, this is equal to kx plus minus i ky a is
a constant and this m 0 k is given by it is equal to m minus some constant B and kx
square plus a ky square and a B is a constant ok. So, that is the 2D BHZ model and so,
how it undergoes from topological to a trivial transition as these width of the HGT slab
that exceeds certain critical width which is let us call it DC which has some value 6 point
something nanometer.  So, this  model if it  has to capture the essential  physics of that
transition then it has to undergo a topological to trivial transition and in fact, across that
transition m 0 k  ok.

 So, what it means is that if your m minus B kx square plus ky square is greater than  0
then you have a certain kind of phase and when it is less than 0 then it undergoes a  phase
transition and that is the topological phase transition that we are familiar with  we have
seen  that  earlier  ok.  Now,  what  happens  if  we  want  to  generalize  it  to  3D can  we
generalize it to 3D and still hope to see similar transition happening there ok. 
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So, one of the usual way of doing it is so, can we add kz square term ok. So, that your m
naught of k that becomes equal to. So, there is a m minus B kx square plus ky square plus
kz square ok. Now, if this is going to solve the problem then of course, the system should
remain gapped everywhere and as this thing this m 0 k changes sign you should again see
a phase transition from a topological to a trivial happening there. In fact, when m is equal
to positive it is a trivial phase and when m naught is negative then it is a topological
phase and remember these kz square term this does not wireless time reversal symmetry.
But, this is not going to solve the problem  and why it is not going to solve the problem is
the following that if you take a particular value of kx and ky that is you freeze the kx and
ky then this m 0 k that takes a form which is equal to m minus B kz square and these this
term of course,it does not break the time reversal symmetry, but the Hamiltonian remains



gapless. I mean this is for a given kx ky. So, that we have frozen that value and have
absorbed that constant.

 So, the Hamiltonian is gapless whereas, you want gapped values. So, the Hamiltonian is
gapless at at these given values at these values of kx ky right because if you put kz equal
to 0 the gap goes to 0, but you want you want the Hamiltonian to gap to be gapped at
every point in the Brillouin zone. So, we need in the Brillouin zone ok. So, this is a
requirement that we have, but clearly this choice that we have taken that is a B kz square
adding that to this problem does not help because at kz goes to 0 the gap will go to 0 ok.
So, but you want the Hamiltonian to be gapped. 
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So, is there a different way of doing it? There is indeed another way of doing it and you
have to keep two things in mind. So, choose a term that is linear in kz ok, but this has two
problems. One is that again at  kz equal to 0 the Hamiltonian or the energy spectrum
becomes gapless and that is what you do not want and the other problem is that under
time reversal symmetry the kz will go to minus kz. So, this kz will be odd in the time
reversal  symmetry.  So,  you are  breaking  time  reversal  symmetry  ok  and  that  is  not
allowed in this particular case ok, but there is a solution to this problem that is if you can
couple  the  two  spin  degrees  of  freedom  via  this  linear  term  in  kz  then  it  will  the



Hamiltonian will be gapped everywhere and you would be able to access a topological to
trivial transition by in the mass changes ok.

So, along with couple the spin degrees of freedom ok. So, these two together solves the
problem. So, the problem is that that we are able to go from 2D to 3D and retain all the
features that we have seen there that is a time reversal symmetry being intact and as well
as the Hamiltonian is gapped everywhere in the Brillouin zone ok. So, the Hamiltonian
takes a form which is  equal to epsilon k this  is  the that  is  the band structure of the
problem. So, this is mk ak plus then we have a 0 and then we have a a tilde kz and we
have ak minus and you have a minus mk and a tilde kz and 0 and 0 a tilde kz and mk and
this is a minus ak plus. So, and then we have a tilde kz and 0 here and a minus ak plus
and a minus mk ok.

So, this is the Hamiltonian and this is known as the 3D BHZ model and this denotes a 3D
topological  insulator  ok.  So,  that  is  your  Hamiltonian  that  we get  now there  is  very
important thing that one should take a note here that is the Hamiltonian is no longer block
diagonal. So, earlier here this is for the up spin and this is for the down spin ok. So, the
spins were not mixed, but here the spins are mixed ok because of this off diagonal terms
coming  in, but and this off diagonal terms have a linear in kz. So, that would break the
time reversal symmetry, but then also remember that the spins would also change under
time reversal symmetry.

So,  an up spin  goes  to  a  down spin under  time reversal  symmetry  because  the time
reversal symmetry operator is exponential i sigma y and k ok or it is simply i sigma y k
and so on. And so, this is the time reversal symmetry operation and because a k changes
sign under time reversal and spin changes sign under time reversal. So, the whole thing
would be again time reversal invariant ok. So, just some plot to show.
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 So, this is a topological insulator. So, we have taken some  result that is published in the
net. So, it is a energy spectrum of a thin slice of  BHZ model. So, you see that we have
taken m to be negative. So, which means that it is a topological phase and this is the band
structure corresponding to this Hamiltonian ok. So, this is a 3D TI Hamiltonian and this
is  how the  and for  the time reversal  symmetric  insulator  topological  insulator  and it
shows transition as these m changes sign from being positive to negative ok.

So, at the end let me talk about some experimental realization ok. And so, as I said that
the  first 3D TI was this B i x S b 1 minus x and so, this  is x around 0.92 this was people
have done the spin R-PES study I am not going into detailed  this called as a angular
resolve photo emission spectroscopy and there is this angular resolve  photo emission
spectroscopy. So, the subsequent ones are Bi2 Se3 Bi2 Te3 Sb2 Te3 and all these are
strong topological insulators and in addition to that these are stoichiometric compounds
and so, that they can be prepared  with high purity and that is why these are very good
quality samples ok. And so, these have also large band gap semiconductors I mean what
is this about 0.3 electron volt  and it is called large because it is about 3600 Kelvin is the
band gap and they have Dirac cone surface spectrum. So, there are at the surface there are
single  Dirac cone or odd number of Dirac cones and these Bi2 Te3 is known to have
applications in thermo electricity, thermo electric applications at room temperature and in
addition to that there are these Cu X Bi 2 Se 3 which are non stoichiometric compounds.
So, there is a X Cu X added where X can be from 0 percent to 12 percent and particularly
at  12  percent  it  shows  superconductivity  at  X  equal  to  12  percent  it  shows
superconductivity with about 4 Kelvin.

So, Tc is about 3.8 Kelvin ok. In fact, there are very good reviews on 3D topological
insulators by Zahid Hasan and Joel Moore. So, it is Hasan and Moore in it is there in
various journals I mean one of them is the reviews of modern physics and plus there are
annual reviews in condensed matter physics ok. So, I will not elaborate more on this, but
there are a number of experimental realization of these materials and so on. Thank you.
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