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We have seen Haldane model or the churn in  the system which is characterized by a non-
zero  churn  number.  And  the  insulator  is  characterized  by  a  time  reversal  symmetry
broken there is no time reversal symmetry in the system which is induced by the second
neighbour complex hopping which we have mentioned and is this picture of Haldane.
And later on in about 2004-2005 Kane and Millie this is Charlie Kane and Eugene Millie
they have understood that it is possible to recover the time reversal invariance and this
would create another insulator which is called as a quantum spin hall insulator.  

In fact what they have realized was very profound that if we include the spin degrees of
freedom in the system actual spin degrees of freedom not the pseudo spinner that we have
been  talking  about  so  far  then  it  is  possible  to  regain  back  the  lost  time  reversal
symmetry. Of course the system would not have churn number or it is not will not be
called as churn insulator, but it will be another kind of insulator which is known as the
quantum spin hall insulator which is what we will see. So, Kane and Millie they proposed
this model which is known as the Kane Millie model and these are the papers that you see
that which were published in 2005 in the physical review letters by both Kane and Millie



the one of them is called as the quantum spin hall effect in graphene which they realized
that because along with the spin orbit coupling term there is the Hamiltonian respects all
symmetries of that of graphene.

So, it is quite likely that it will be there in graphene and then they wrote another paper in
the same year or rather this paper came earlier than the next one which says about a Z2
topological order and the quantum spin hall effect. So, Z2 index or the Z2 topological
invariant is the new topological invariant for this system which is distinct from the churn
number  because  in  this  system the  churn  number  is  0  because  the  system has  time
reversal invariance. 
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So,  this  is  what  we are  going  to  study which  goes  by  the  name quantum spin  hall
insulator. So, here of course as I said earlier that the time reversal invariance is not lost it
is in fact preserved in the systems and the system will show protected boundary modes
or edge modes very similar to the Haldane model or the churn insulator, but here it will
be spin resolved modes and they are called as a helical edge modes that are present in the
system and as I said that they will be characterized by a Z2 invariant.

So, let me write down these two points. So, helical edge states that are spin resolved and
characterized by Z2 invariant and we will see what the Z2 invariant is and we will of
course stick to a simpler situation in which the system has inversion symmetry and there
the calculation of the Z2 invariant is easier than of course without a translation or rather
the inversion symmetry in the problem. So, the main ingredient of this kind of quantum
spin hall insulator is what is known as the spin orbit coupling and in the most simple way
that one can understand is that the angular momentum and the spin are coupled and if the
scenario is like this  then we know that neither of L or S are good quantum numbers and
one actually talks about J which is a good quantum number in this case and one can find
out the eigenvalue of this L dot S operator in the eigen basis which is spanned by you
know J, J1, J2, M1, M2 and  so on so forth. So, the spin orbit coupling is as I said it is an



important ingredient in this problem and this special kind of spin orbit coupling is what
we shall be talking about it is called as a Rashba spin orbit coupling and it has a special
placein graphene because graphene is two-dimensional which has the inversion symmetry
about the Z axis is broken and Rashba is a very possible candidate in graphene. So, we
will be talking about that and so what kind of spin orbit coupling are we talking about
here we are talking about a spin orbit coupling let us write down a Hamiltonian which
looks like we may use a different notation but right now we are using a lambda SO which
is nothing but that second neighbor hopping T2 that we have talked about in the Holden
model and then there is a sigma Z and then there is a tau Z and then there is a SZ okay
and we will actually derive this term a part of it is already derived like this term is there
in the Holden model we just have gotten this SZ extra.

Now the sigma Z just to remind you is the sub lattice degrees of freedom tau Z is a valid
degree of freedom and SZ is a real spin so spin degree of freedom so SZ equal to a  plus
or minus 1 for a spin half particle. So, why this term respects time reversal symmetry it
respects time reversal symmetry because under time reversal symmetry the tau Z changes
sign that is one is taken from the K Valley to the K prime Valley or K Dirac point to the
K prime Dirac point so that changes sign  so under time reversal this tau Z goes to minus
tau Z and we will see in a while that SZ also goes to minus SZ so an up spin goes to
down spin and sigma Z does not change sign because that is the sub lattice degree of
freedom and under time reversal it does not change sign. So, there is no net let me also
write that sigma Z does not change sign so there is no net sign change and this is the main
thing about this quantum spin Hall insulators and we now have taken into account the
real spin degrees of freedom. So, if you take this SZ equal to 1 and minus 1 separately so
plus 1 and SZ equal to minus 1 so this is a one copy of the Holden model and this belongs
to  another  copy  of  the  Holden  model  okay  such  that  the  churn  number  or  the  Hall
conductivity will be a plus e square by H and minus e square by H that is equal to 0.
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 But nevertheless one has a quantity called as the spin current which is defined as JS
which is equal to H over 2e J up minus J down so this will be nonzero and we will have a
sigma XY a spin Hall let us write it with  the S this is equal to a nonzero e over 2 pi. So it
is a it is a distinct topological insulator compared to Holden model and 2d electron gas
we have used this abbreviation several times in presence of an external magnetic field
okay.

So this is the new thing that is going to come and it is a new form of topological insulator
the second kind so to say after the ones that we have seen for either 2d electron gas in a
an external field or a Holden model where time reversal symmetry is broken by a second
neighbour complex hopping okay. So in order to understand this better let me talk about
the  time  reversal  symmetry  in  a  spinful  model  okay I  mean  spinful  model  means  a
Hamiltonian that includes spin real  spin or let me write it as in presence of spin.  

(Refer Slide Time:11.06-15.20)

Let me remind you that the time reversal symmetry operator without any spin present in
the problem  is the complex conjugation operator. So without spin we will write for this
time reversal symmetry or symmetric system as TRS so without spin TRS operator is
simply K which is the complex conjugation okay. 



So we can write it with a slightly tilted T which is nothing but equal to K but with spin
this is not sufficient and let me tell you that why it is not sufficient okay and the reason
that it is not sufficient is that because this complex conjugation operator will act on the
Sigma x let me write it with just K acting on Sigma x will give Sigma x will not change
its sign K acting on Sigma y will give you a minus Sigma y because Sigma y is complex
and K acting on Sigma z will give you a Sigma z without changing its sign but why do
we want it to change sign.

So let us go back to that the spin orbit coupling and which is written as L dot S now
under this time reversal L goes to minus L and S goes to minus S so that there is no
change in sign. Now you see that since we are talking about spin half particles we have
resorted to the Pauli matrices now you see that both Sigma x and Sigma z do not change
sign but we want  them to change sign. So there is some other operator that we need to
think about which will give us a change in sign for all of Sigma x Sigma y and Sigma z
and that can be done in the following sense I am drawing a coordinate axis but this is in
the spin space so this is say x this is y and this is z so this is actually s x s y and s z if you
like and then if I do a rotation by pi about the y axis then x become minus x and z
becomes minus z. So rotation by pi x becomes minus x and z becomes minus z and  y
remains as y because it is a rotation about the y axis. Now this is as I said that this in the
spin space which means that such a rotation will make Sigma x to minus Sigma x and
Sigma z to minus Sigma z and will not do anything to Sigma y but Sigma y by virtue of
being complex will change a sign under the these complex conjugation.
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So we are looking for an operator that does this rotation about the y axis by pi and if you
remember  the  quantum mechanics  angular  momentum of  quantum mechanics  such a
rotation is written as so this rotation operator is written as exponential say for example a
minus i pi s y by h cross okay and now the time reversal operator will be this into k okay
and since we are talking about this Pauli matrices or other spin half objects we can make
a simplification that s y is equal to h cross by 2 Sigma y and or rather all components
will follow this relation that is s x equal to h cross by 2 Sigma x and s z equal to h cross
by 2 Sigma z. 

So if we do that then this complex conjugation operator will be like exponential minus i
pi by 2 Sigma y okay and then of course we will have to write down this. So let me deal
with this for the moment and this is easy to work out so this will we can write this as a
cosine of pi by 2 Sigma y and a minus i sine pi by 2 Sigma y.  So let me show how this
simplification is done, so cosine pi by 2 Sigma y is equal to so cosine of pi by 2 Sigma y
is equal to 1 and minus these pi by 2 Sigma y whole square there is a half factor here
which is 1 by 2 factorial and then there is a 1 by 4 factorial and pi by 2 Sigma y to the
power 4 and so on. So there is a plus minus plus minus now this can be written as if you
remember the properties of the Pauli matrix then this Sigma y squared equal to 1 and that
gives you that Sigma y cube is equal to Sigma y and so on so forth okay.



So each even power of Sigmay will give us 1 and each odd power will give us just simply
Sigma y okay.So that tells  you that this  becomes equal to 1 minus there is a 1 by 2
factorial and then there is a pi by 2 and so on so forth square plus 1 by  4. So it is a pi by
2 whole to the power 4 and so on and this is nothing but cosine of pi by 2 which is equal
to 0 okay and similarly but the sine of pi by 2 Sigma y will have these all the odd terms
which are there so this is equal to a pi by 2 Sigma y minus 1 by 2 factorial pi by 2 Sigma
y cube and a plus 1 by not this 3 factorial I am sorry this 5 factorial pi by 2 Sigma y
whole to the power 5 and so on okay. So this is nothing but equal to so because your
Sigma y cube is Sigma y and there are Sigma y so that Sigma y into a Sigma sine pi by 2
Sigma y which gives you so this operator is exponential  minus i pi by 2 Sigma y is
nothing but minus i the sine pi by 2 equal to 1 so it is minus i Sigma y and that tells you
that this time reversal operator for a spin full case which is what we wanted to derive is
nothing but a minus Sigma y and a k okay so that complex conjugation will be there. So
this is a quite a known so that is the operator there and so on.

Now what  do  we  do  with  this  in  the  sense  that  how is  it  useful  and  what  are  the
consequences  of  time  reversal  symmetry  in  a  spin  full  model  and  a  priori  the
consequences are quite  significant it gives you what is called as a Cramer's degeneracy
okay.  So let us see what Cramer's degeneracy is okay alright.
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So now we have of course written down that this is equal to a minus i Sigma y k if you
take a square of that then it is equal to minus i square and Sigma y square equal to 1 and
k square of course equal to 1 as well because you do twice complex conjugation it  comes



back so this is equal to minus 1. Now there is something very important that in a spinless
system where there is no spin tau square equal to 1 or these time reversal t square equal to
1 for spinless system. Now this minus 1 actually has a lot of interesting thing to go along
with and let me see that and how does it lead to the degeneracy.

What happens is that suppose if psi is an eigen function of a Hamiltonian with energy  E
well  this  Hamiltonian  is  TRS invariant  that  is  time reversal  symmetry  invariant  with
energy E then T psi is also another eigen function or rather T psi is actually perpendicular
to or orthogonal to this it is also another eigen function with the same energy and this
degeneracy is called as a Cramer's degeneracy. So how do we see that that this T psi is
and what is the nature of T psi? T psi is a perpendicular or orthogonal to this so you take
a inner product of psi and T psi so this is just the T is written with a slight bit of you
know curvature if I forget that you carry on with your notation. So this is equal to a T
square psi because so T psi okay T square psi because T you do  this time reversal twice
and should come back to the psi and so this is nothing but minus psi because T square is
equal to minus psi and T psi and this is equal to minus of psi and T psi and now this
cannot be possible unless psi and T psi is equal to 0 because if you take this the last term
on this side then it becomes twice of this and then so that means that I mean 2 cannot be 0
so this psi and T psi are orthogonal okay. So this is one of the important implication of
the time reversal symmetry in a spin full system that they are orthogonal to each other but
they have the same energy and this is called as Cramer's degeneracy so this is Cramer's
and the psi and T psi are called  as Cramer's doublets. Alright so let me come back to this
band theory that is block states so let us talk about the block states which has you know K
as a good quantum number of course the system has crystalline symmetries and so on.

So if you consider a block state which means that we are talking about a psi K with a spin
Sigma this is equal to an exponential i K dot r and u K Sigma where Sigma is a spin and
Sigma  can  be  up  or  down this  is  according  to  blocks  theorem  so  this  contains  the
periodicity of the potential and there is a free wave or there is a plane wave term there.
Now if I operate this psi K Sigma then what happens is that so I will have to operate it by
i Sigma y K on this i exponential i K dot r u K Sigma and so this K will act on this and
will make this exponential minus i K r the plane wave part and we can write this as so
exponential minus i K dot r and then we have of course a minus i Sigma y u K Sigma and
now you see that this can be written as exponential of i minus K dot r and then the job of
this i Sigma y will be to invert the spin. So if there is a Sigma spin then there will be a



Sigma bar spin where Sigma if Sigma is up then the Sigma bar will be down okay and
because this looks like a minus K so this becomes equal to a minus K and a Sigma bar
and the bar so Sigma equal to up Sigma bar equal to down or vice versa. So this is equal
to exponential minus i K dot r and a u minus K Sigma bar okay so that's what happens
when you apply psi Sigma on this so which implies that there is of course a degeneracy
such that E K up is equal to E minus K down and this is called as a Cramer's degeneracy
okay. So there's a degeneracy of these up and down states for one given value of K but if
it is plus K for the up spin then it's minus K for the down spin or vice versa and this of
course has we know that  this  has  a lot  of implications  on the topological  insulators.

  So what it means is the following that let me show this just a picture so we'll sort  of see
it like this there is so I'm just drawing parabolic bands for up and down spins they could
be I mean you can interchange them doesn't matter so this is E as a function of K and you
see that at K equal to 0 they sort of touch each other but the degeneracy is here so there is
these two points  let  me use a color  to  mark them so this  point  and these points are
degenerate but they correspond to two diametrically opposite points in the Brillouin zone
and that's where the degeneracy comes. So for up spin it's at a K well we have done it just
the other way around let me change  the spin indices that way so this is down and this is
up so this is that K so E at a K is degenerate with E at a minus K E at K for an up spin is
degenerate with E at a minus K for the down spin and this gives the rigidity of the edge
modes in this particular spin full system or the Ken Willey model that we are going to
discuss in just a while. Okay so the back scattering from state a K upstate to a minus K
downstate are forbidden and that's why these edge states are these these are robust states. 
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 So let me come to this model the model is a very intuitive model and which has been
introduced by Ken and Millie and that's the name that appears in the model and so on this
is the usual tight binding term that we all are familiar with and we have been seeing  this
in the context of graphene several times it's just a CI Sigma CI dagger CJ we haven't
written any spin index here because it doesn't matter it's a spin polarized term which is
just the tight binding kinetic energy of graphene. Now this is what we have done just one



small change that has occurred is that there is a Sigma Sigma prime term where Sigma
Sigma prime can be up or down and this lambda SO was nothing but T2 in the Holden
model.

So Holden model there is exactly the Holden term but rather two copies of the Holden
term corresponding to spin up with a flux which is given by pi by 2 and the down spin
corresponds to a flux which has exactly equal and opposite magnitude which is equal to
minus pi by 2. And this is of course the term that we are familiar with that's the inversion
symmetry breaking term and the term that was there in graphene because if we had sort
of different chemical potentials at the two carbon atom sites which are say which are
analogous to the hexagonal boron nitride. So that's the term which is inversion symmetry
breaking term this term without the Sigma Sigma prime there it would have been just the
normal Holden model but now you see that this part is taken into account that's spin Sz is
taken into account and they are taking sort of components of that and this of course the
chirality okay. So that tells you that if the second neighbor hopping is clockwise then it
has a positive sign or if it's anti-clockwise it has a negative sign and this we have taken
the flux to be exactly equal to pi by 2 and that's what is done excepting when we wanted
to generate the phase diagram which is flux versus the these this term.  This term means
the with alambda V term which is the mass term that opens up a gap inversion  symmetry
breaking term.

So it's basically two copies of the Holden model okay. So this is you know hold model
with flux pi by 2 for the spin up and for spin down it's  minus pi by 2. So this Ken Milley
term so this is called as a Ken Milley term okay. This Ken Milley term is actually up up
Holden Hamiltonian for phi equal to pi by 2 phi is the flux which is due to the you know
so this flux is exponential i phi I mean it's called as a Holden flux but this is that term that
you know comes with the t2 term so that if  phi equal to pi by 2 then it becomes equal to
it2 and so on it2 or minus it2. So in the absence of any Rajpah kind of spin orbit coupling
term the Ken Milley Hamiltonian  looks like the H up and H down and so on.

 So it obeys time reversal symmetry how that's not difficult to understand we have done
that  here. So this was the term so lambda SO Sigma Z and tau Z and SZ so this was there
in the Holden model. So this was Holden term which was time reversal symmetry broken
term and this SZ has returned or recovered the time reversal symmetry.
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 So now what can happen is that one can also add a term which is called as a Rajpah term
we will sort of detail about this later the Rajpah term is written as i lambda r and then
there is a Ci dagger and then there is a Sigma cross d vector. So this d vector is basically
some vector it just looks like a vector kind of coupling but then you see that we have
taken a Z component and of course that there is a lambda V term  etcetera.

What one can get is that now with this term there one actually gets the spin filtered  edge
states in the problem okay. So which means that at each edge you will have a up and
down the spin states or edge modes corresponding to up and down. So at each edge there
are two spins up spin and down spin and so on. So these are called as a helical edge states
okay. So a quantum spin Hall effect can be observed in the system and the system will
show a quantum spin Hall conductance of E over 2 pi but will have zero charge Hall
conductance for the  reason that we have already said before having a Hall conductivity
you need to have the time  reversal symmetry broken for the charge Hall the usual Hall
effect that we talked about.
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So this is the full tight binding K-Mealy Hamiltonian in the momentum space these are
the diagonal term which are something like second neighbor hopping or on-site potential
and these are the kinetic energy nearest neighbor kinetic energy terms and so on. So each
one of the terms are written carefully here there is a full tight binding model. So this tight
binding  model  has  term  you  know  I  mean  this  one  in  the  low  energy  limit  this
Hamiltonian looks like other than so there is only the K-Mealy term that looks  like this
lambda SO Sigma Z tau Z and SZ okay and this is what we have discussed. 



If you do all these expansion then this is of course the kinetic energy term or rather than
near tight binding nearest neighbor tight binding term and so on and these are the term
which is coming from the K-Mealy term so this  is  the K-Mealy term and this  is the
Rachper  term okay and this  Rachper  term does not  do anything to  the time reversal
symmetry heuristic  argument has been already put forward there that is when you have a
L dot S kind of coupling both L and S change their signs and one does not have any net
sign  emerging  out  of  that.  So  this  is  a  time  reversal  invariant  Hamiltonian  and  this
Hamiltonian now had to be we sort of discuss about a little more about the Hamiltonian
but before that let me show you the calculation of the Z2 invariant.
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So given that it is a 4 by 4 Hamiltonian in the K space it can easily be diagonalized  in
order to calculate the eigenvalues and eigenvectors and once when we get the eigenvalues
and eigenvectors we know that we can calculate the topological invariant and let us just
think that you know let us take two occupied band corresponding to two spins which are
psi i and psi j these are the occupied band wave functions and the overlap of the time
reverse block states are calculated using this formula okay. So what is important is that
one has to calculate this thing which is nothing but minus i sigma yk which is what we
have shown and they have to be calculated between the two occupied band wave function
and what turns out that there is some epsilon function and then the Fafian of which is a
function of K now this Fafian I will just come in a moment what is a Fafian but this
Fafian is 0 at k and k prime points and while at the four symmetry points that is these k
and the k prime points  this  Fafian is  equal  to 0 once one calculates  this  this  matrix
element this matrix element will come in the form of you know I mean this will have
numbers and so on and these numbers for a 2 by 2 will give me a Fafian there and so this
is a 0 at the k and the k prime points in fact if you calculate it over this entire you know
rhombus which is that red triangle plus the black triangle then the Fafian would come out
to 0 and the topological invariant will not be there okay. But if you calculate it only over
half the triangle which is denoted by red which are the C1 C2 C3 then it has a value equal



to plus 1 so it is actually defined as the Z2 is defined as 1 by 2 pi i and these closed
contour integral over this red curve C that is C1 plus C2 plus C3 and it is a dk dot these
the gradient of the log of this quantity this is just taken for convergence by Ken and
Millie but one can actually put that equal to 0 it still works so it is a log of the Fafian that
is important. 
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Now what is Fafian? So if you take a 2 by 2 Hamiltonian Fafian is just the that off
diagonal element okay so this is the off diagonal element and for a 3 by 3 Hamiltonian  if
you have such a matrix structure then the Fafian is 0 and for a 4 by 4 matrix with the
diagonal elements to be equal to 0 so this is actually a purely off diagonal matrix all  the
made the diagonal elements are strictly equal to 0. So this is equal to A into F minus B
into E plus C into B and so on so but of course we are interested in only these Fafian
which is of a 2 by 2 matrix.

                       

So we need to do this  integral this integral and this integral needs to be so this is a C1 fx
kx ky dkx and fy dkx ky dky and so on and then over this C2 so this C1 and then C2 and
then C3 so this along C1 and then C2 and along C3 the same kind of integrals that will be
there.  Now I am just  showing you integral  1that is I1 and for I1 you cannot  do this
integral simply because there is a kx and ky dependency and these integrand of course is
a function of kx and ky so along C1 and C2 it is slightly you know non-trivial because of
this kx and ky dependencies but along C3 of course your kx is constant and it is only ky
that changes.



 So if you take C1 and equation of this line that goes through this point gamma through
m1 it is nothing but ky equal to kx by root 3. So in this integrand that is I1 integrand we
have fx which is a function of kx and ky so this is actually kx and kx by root 3 and the
integral has to be done this has been found out carefully that this is that gamma point is 0
0 and the x coordinate of this point here that is let us call it as OAB and  so on. So it is a
OABO  integral  so  this  integral  is  that  you  see  here  is  over  this  OABO.

 So that is the thing that needs to be substituted here and then this integral is from 0 to 6
pi by 3 root 3 this has been found as 6 pi by 3 root 3 and so on and if we substitute  kx
equal to root 3 ky that is what the equation tells you then this becomes equal to root  3 ky
and ky over dky and dky goes from 0 to 2 pi over 3 and so on. 
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So these are the double  integral is calculated in two steps so this step number one in
which first you do the kx integral and then you do the ky integral okay and similarly one
has to do the C2 over I2 and for I3 only dky is nonzero because kx is constant so kx is
fixed at a value 0  so we need to only calculate this. So now you calculate over this C1
contour and this is that C2 contour and this is that C3 contour and then you add integral
over C1 plus C2 plus C3 and that should give you  a topological invariant okay and this is
exactly the plot that one gets from this you see that  there is a dark blue line which is like
a contour of this enclosed region and this blue line the dark blue line that represents a gap



closing scenario for this Ken Milley model which means that there is everywhere on that
plot or on that line contour the gap is equal to 0 at the Dirac points okay.
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 And the gap is nonzero only inside in the sky blue regime okay this sky blue place or
these inside this is the Z2 invariant calculated using the formula that we had given above
so this is equal to 1 and it vanishes outside so Z2 is equal to 0 here and Z2 equal to 1 here
and there is a blue line that separates so that topological phase transition occurs from the
invariant being one inside or in the enclosed region and it is 0 outside in the outside
region okay. So how do we know that it is a topological or it has edge states it is not a
normal insulator and we do the same thing that we have done earlier we take a zigzag
edge ribbon or ribbon with a zigzag edge and well one can do also an armchair which is a
little different and I believe that one had to or one has to take a larger system but now you
write  down the Hamiltonian  according to the hopping all  the hoppings that  we have
between red to blue  and red to red and blue to blue and so on so forth okay. And if you
want more details on this there is a very recent paper 2023 who have calculated there is
an explicit derivation of the helical edge modes for the Kenmele model and so there  is
elaborate paper that one can actually look at.
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 We have calculated the same things now you see that we see the spin filtered edge
modes  so  the  spin  filtered  edge  modes  of  the  Kenmele  insulator  are  shown for  two



different values of lambda v lambda v equal to some value and lambda v equal to some
other value which are taken as 0. 1 t and 0.4 t remember  that 0.1 in unit of t means the
unit of the nearest neighbor hopping and that is a little larger value and just to wanted to
make sure that one corresponds to the topological phase this is the topological and this is
the trivial.  Because you see there are edge modes coming out from the conduction to the
valence band and they are cutting the Fermi energy at these green dots the points that you
see there which  are named as PQRS so all these PQRS are here so at one edge we have P
and S the other edge we have Q and R and of course there is no edge modes here so there
is a bulk gap so this acts like a band insulator the figure on your right is a band insulator
and the figure on your left is a topological insulator. So this thing this is chosen because
we have chosen plot that is here that is inside this sky blue region so inside the sky blue
region we make sure that it is a topological insulator with spin filtered edge modes and
the topological  invariant is equal to 1 while on the right figure which corresponds to
lambda v equal to 0.4 t which we have taken this thing equal  to 0.

So the lambda v equal to 0.4 is somewhere here somewhere here and so on and of course
your lambda R values such that it is z2 equal to 0. So in the z2 equal to 0 case we do not
have any spin filtered edge modes and just to remind you that in this situation we have
taken the kx to be a good quantum number and ky is not  a good quantum number so the
Hamiltonian is written in the y direction is written in the real space so the size of the
Hamiltonian depends on how many unit cells  we take in the y direction and in the x
direction of course it is an infinite so this called as a semi-infinite nano ribbon which is
what we have talked about earlier. And we see these edge modes and these edge modes
are cartoon of that is has been shown earlier here that you see that these are the edge
modes these red and the light green theycorrespond to down spin and up spin respectively
at each of the edges and that is exactly similar to what we get here you see. So these
correspond to the P correspond to the down so P corresponds to up S corresponds to
down Q corresponds to down and R corresponds to up okay. So this is exactly the picture
that we have shown it's been reproduced using numerical  simulations by us.

So this to summarize you know this represents a completely new kind of topological
insulator  which  is  marked  by  a  new or  a  different  topological  invariant  it  has  time
reversal  symmetry the  states have you know Cramer's  degeneracy so these Cramer's
degeneracy is what we are talking  about we have talked about that there are up and down
states which are degenerate so  these up and down states at the K values you see that that
there  are  these  P  and  S  are  degenerate  states  at  you  know but  they  are  differ  by  a
momenta which is on diametrically  opposite parts of the Brillouin zone I mean they
differ by the momentum there and so on  and then you also have these other set of things
are which differ by these momenta across  the Brillouin zone okay. So this is a different
kind of scenario where spin orbit coupling plays an important role we have talked about
two kinds of spin orbit coupling one is a Holden term with spin term added to it or rather



you know it is a spinful Holden term which is also sometimes called as intrinsic spin orbit
coupling and the Rajpa spin orbit coupling has been added both respect time reversal
symmetry system has time reversal symmetry and there are instead of chiral modes  there
are spin filtered edge modes which are there present in the system. So we have been able
to show another topological insulator or topological insulating state which is different
than the ones that we have seen earlier  either  in the context  of 2D electron gas in a
magnetic field or the Holden model. I will stop here. Thank you.
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