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  We have been talking about spin hall  effect which arises because of the passage of
charge current. So, there is a charge current which causes the spins to segregate at the you
know the transverse edges of the sample which will constitute a spin current and this
happens not in the presence of an external magnetic field rather there is a requirement of
spin orbit coupling and we have discussed spin orbit coupling and in particular it in two
dimensional material or rather low dimensional material because of the lack of inversion
symmetry a kind of particular kind of spin orbit coupling is important which is called  as
a RASPA spin orbit coupling we have discussed that as well. So, let us discuss the spin
current which is at the heart of these spintronic devices and this if the spin current is large
at least that is what the attempt is in terms of experiments so that fabrication of devices
can be made.  So, the spin current  is  actually  different  than the charge current  it  has
different properties than the charge current and because it  is you know central  to the
study  of  spin  hall  effect  we  need  to  understand  what  these  properties  are  and  how
different they are from the charge  the usual current that we refer to which is the charge
current. 

 So,  just  to  remind  you that  the  charge  current  has  a  form well  known in  quantum
mechanics it is J let us write it with an electron because it is the charge degree of freedom



this is equal to the real part of psi r t dagger and e v where e is the electronic charge and v
is the velocity and this is psi r t where psi r t is the wave function if you  remember that it
has a form which is psi dagger I mean psi star del psi minus psi del psi star this can be
written  in  a  simplified  form like  this.  And this  current  the  charge  current  obeys  the
continuity equation which is given by d rho I am just putting this electron just to talk
about the charge and this plus a divergence of J electron this is equal to 0 and this is
called as a continuity equation.

And the continuity equation confirms that there is a conservation of charge or invariance
of charge. So, this is conservation of charge as opposed to that spins are not conserved
quantities ok. And this is an important statement and this happens because in most of
these materials that we are talking about at least now they have spin orbit coupling and in
presence of spin orbit coupling the components of s are no longer good quantum numbers
which is what we have seen. For example, if you have L dot s and this spins are not good
quantum  numbers  and  not  only  that  there  is  another  property  which  is  distinct  as
compared to the for the spin current which is different than the charge current is that the
charge current changes sign under time reversal that is as time is  reversed.

So, J goes to minus J as T goes to minus T and the reason is that because  J is equal to say
E into V velocity, velocity changes sign under the time reversal operation. So, this is for
the electron. However, J s does not change sign as a T tends to minus T ok. So, this is a
very important thing and this is related to the fact that this spin current they can actually
propagate without any dissipation. And if you want to understand  it in a simple language
that how a time reversal invariance breaking term gives rise to dissipation  then you can
understand it if you write down the Hamiltonian for say harmonic oscillators a p square
by 2m plus half k x square.



 So, this is the oscillator that we all know this  has a time reversal invariance as T changes
to minus T and none of these terms changesign. However, if say for example a dissipative
term which I write it as alpha into velocity  which is x dot and now this changes sign as T
tends to minus T ok. So, that tells you  that dissipative term or a term which changes sign
as  T  tends  to  minus  T  actually  is  dissipative.  So,  that  is  why  the  charge  current  is
dissipative  because  it  is  odd  under  time  reversal  whereas,  the  spin  current  is  non-
dissipative because of the time reversal invariance that it maintains ok. So, how do I write
the spin current.
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So, the spin current is written as I said that we  write it with a Js and this is written with a
real part a pretty similar fashion as earlier it is a RT and this is equal to a V dot s ok and
psi  of  RT.  In fact,  this  is  one of  the ways that  you can understand that  this  term is
invariant under time reversal because  both V and s would change their signs and so, the
product would not change signs and  that is how it is invariant under time reversal. So,
this is a form of the spin current and one can you know write it as components of this real
part can be written as the inside the real part we can write it as a psi dagger I am not
writing this RNT dependence which in general it would depend upon this RNT and this is
equal to a V alpha and s beta and psi this is equal to real part of psi dagger s alpha V beta
psi ok. So, you can write it as V alpha s beta which is same as s alpha that is alpha
components.  So,  alpha and beta are the components  x y and z ok.  So, these are just
components and so on.

So, this is the current density. So, this is the  spin current density is written as this and
one can write down the spin current which is equal to say da where a some area over
which this current is being considered and this is like so, some component and then Js Rt.



So, Js also function of R and T which we can write it as a da and then a psi dagger R T
and so, we can write as half of V dot s plus s dot V and this comes from the step above
where this is equal to this. So, we write the V dot s terms as half of V dot s plus s dot V
and then psi of R T. Now that brings in an anti commutator and this can be written as so,
this Js alpha beta can be written as this half of V dot s plus s dot V.

So, this is the current operator and if you use this s equal to h cross over 2 sigma where
sigma denotes the Pauli matrices in that case we can write this as the Js alpha beta is
equal to 1 over 4 I have taken h cross equal to 1 and this is a sigma alpha and a phi beta
come  anti  commutator.  So,  this  is  an  anti  commutator.  So,  you  know  what  an  anti
commutator is it is basically given by say you have a AB and anti commutator of that is
equal to AB plus BA a commutator will have a minus sign here. Alright so, this is the
form and where we have taken h cross equal to 1. So, this is the form of the spin current
and its components and so on.
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And let us take a particular example this is a example say for example where we take
alpha equal to Z and beta equal to Y is just some examples that we want to give in which
your VY which is obtained from the Hamilton's equation as del H del PY that is your VY
and if you consider a Hamiltonian which is equal to P square over 2 m minus lambda. So,
this is that Rashba we just put a R here just to make sure that it is a Rashba spin orbit
coupling. So, it is sigma dot Z cap cross P and where we have taken again h cross equal



to 1 without any loss of generality we can one can put it back. So, suppose this is the
Hamiltonian this is the kinetic energy just free electron kinetic energy and this is the
Rashba spin orbit coupling okay. And in that case I can calculate this del H del PY in
order to get  the VY the Y component of the velocity.

So, VY becomes equal to PY over m plus lambda R sigma X okay because this is equal
to sigma X PY minus sigma Y PX and the other term will give you 0 when you take a
derivative with respect to PY and that tells you that the spin current has this form which
is YZ that is equal to it is equal to 1 over 2 m and a sigma Z PY okay. This is quite an
important step in the sense that this is written the spin current is written in terms of the
Pauli matrix and the PY the Y component of the momentum. And suppose you want to
put it in the Kubo formula in order to calculate the Hall conductance or the longitudinal
conductance these are the quantities that are going to be you know used and they have to
be taken the expectation values of these terms have to be taken within the states of the
Hamiltonian and the Hamiltonian appears here okay.

 So, once you solve the Hamiltonian you get the eigenstates and these J's have to be the
expectation values of JX and JY etcetera etcetera will have to be taken between these
states and then one can calculate the Hall conductivity or the longitudinal conductivity
basically  the  conductance  formula  using  the  Kubo  formula.  So,  just  like  an  electric
current it produces a magnetic field a pure spin current also induces or an electric field
okay and this is quite an important thing.



So, a spin current  actually creates or produces an electric field and basically the spin
current actually experiences a force because of this electric field just like a magnetic field
or rather than electric current induces a magnetic field a spin current induces an electric
field okay.

(Refer Slide Time:14.40-22.02)

 So, this tells you that if there is a spin current in an electric field induced by itself it
experiences a force and the force is given by is Js cross E just like we know that the this
electric field experiences a force which is J cross B. So, this is because of the magnetic
field and these force even though it is small it produces observable effects in a system in
terms of course the renormalizing the spin current etcetera and also it produces a sort of
effect called at the zitter bugung zitter BWE which is called as the jittery motion of the
electrons okay.  

So, it has observable effects and so on okay and over the last decade or decade and a half
there are have been studies on these finding out the spin current and its magnitude and
how to actually enhance this in order to have or rather realize devices which are called  as
a  spintronic  devices  and the  advantage  of  this  spintronic  devices  are  that  they  have
infinite lifetime that is the spin currents have infinite lifetime they do not dissipate and
which we have already talked about they do not dissipate  and then it  can be used or
rather the spin current can be used for you know propagation of information which will
not have any dissipation in terms of the joule heating or in terms of you know scattering
from  the  impurities  or  disorder.  So,  this  will  be  a  very  robust  and  dissipation  less
transport  which  would  be  very  important  and is  definitely  an  improvement  over  the
conventional electronic devices okay.

 And as we have said that this dissipation less transport is fundamentally because of  the
fact that the spin current is invariant under time reversal okay alright. So, this is about the
spin current  now we have to talk about  another  important  topic  which is  called  as a
quantum spin hall effect and of course we have talked about spin hall effect but what is a
quantum spin hall effect and we will show you some cartoons on that but this was around
2005-6 if they were you know first proposed as a model which would give rise to this
spin hall effect and will not have any charge hall effect which means that the system is



not subjected to an external magnetic field but it has spin orbit coupling. So, the usual
charge hall effect vanishes and the churn number of the system is 0 but  however another
invariant stays which or rather another invariant comes up which is nonzero  and that will
give rise to the quantum spin hall effect. In fact after these 80-81 when this quantum hall
insulators  are  discovered  25 years  nearly  2  and a  half  decades  later  another  type  of
topological insulator which was discovered are these the quantum spin hall materials of
quantum spin hall devices.  

So, initially it came as a theoreticians you know proposal that this can be done in fact
one of the things that we do not discuss here is called as a Koehn-Miele model where
Koehn and Miele Charlie Koehn and F Miele they had realized that if you take 2 copies
of the Holden model where these Holden model is actually the second neighbour hopping
complex second neighbour hopping in in a honeycomb lattice or in graphene if you take 2
copies of that one having flux to be say pi by 2 and another having a flux to be another
spin I mean one spin has a flux of pi by 2 and another spin has a flux of minus pi by 2
and if you superpose them then you actually regain back the time reversal symmetry
that's broken  in this Holden model and that's called as a Koehn-Miele model.

 And in this system if you put in a Raspin-Orbit coupling you will see that the bands
actually split band dispersion or the electronic dispersion the band split and there are edge
modes that  propagate across the Fermi level from the valence to the conduction band and
instead of one pair of edge modes that propagate one finds actually two pairs of edge
mode one pair for each spin. So, one pair for up spin edge mode and one pair for the
down spin edge mode and these are called as a quantum spin hall insulators and they very
importantly denote another type of or another class of topological insulators one of them
being the quantum hall insulators which we have been talking about. So, in addition to
this  application  oriented  side  of  it  or  face  of  it  these  fundamentally  they  are  also
important  because  this  is  one  additional  class  of  topological  insulator  that  could  be
realized. And soon after this proposal there the people led by Molenkamp etcetera they
actually realize this in physical systems which is what we are going to discuss. And they
realize  it  in  quantum well  super  lattice  structures  formed  by  the  CDT the  cadmium
telluride and the mercury telluride systems okay.

 So,  it  is  basically  a  mercury  telluride  which  is  sandwiched  between  the  cadmium
tellurides and beyond a certain width of this  structure quantum well  structure for the
mercury  telluride  one has  a  quantum spin hall  phase.  We will   do not  very detailed
calculation one can look at these the papers by Bernabe, Hughes and Zhang and also
Molenkamp et al in order to get more insights into it particularly the experimental aspects
I will not go into details that much but we will talk about the material.
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 So, let me show you a cartoon of this quantum spin hall insulator. So, you see that this
shaded region is  a sample  and so this  formed by as it  says  some quantum well  and
conductance channel for the down spin charge carriers is shown by the red. You see that
the red denotes down spin and the blue denotes an up spin.

 So, at each of the transverse ages of the sample that is these two ages which are say
respectively right and left there are instead of one edge mode there are two edge modes at
each edge and one corresponds to up spin and the other corresponds to the down spin and
so on okay. And so these are shown by this  red dots and the blue dots and the spin
directions are also shown and these are called as a helical edge modes. So, it's in the
quantum hall samples we have seen that there are only one edge modes which are chiral
that is they're propagating in different direction. Here at each edge we have two modes
corresponding to two spins which are pointing in the different I mean they're opposite
directions. So, it's like you know a sort of a set of two highways where the red are say the
cars moving in one direction and blue the cars moving in the other direction and similarly
the other lane of the highway has exactly the same things.

  Now of course this blue moves in the opposite direction. So, if the blue moves in this
direction  that is up spin move in this direction on the left edge of the sample then this
would  move in this direction in the right direction on the other edge of the sample and
similarly  this would move the down spin would move say in this right and they would
move in the left. So, it's a strange kind of arrangement and they are called as a helical
edge modes as opposed to chiral edge modes of quantum hall systems okay.  This is just a
cartoon showing a quantum spin hall phase okay. 
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So, let me show another cartoon of these are of course you see that only one pair because
I mean it is not exactly it is just a cartoon picture, but if you calculate the band dispersion
for the ken milli model without a Rajbhatam they look similar and you see the conduction
band and  the valence band these green lines that traverse these are the edge modes one of
them a corresponds to the down spin and the other corresponds to the up spin.

  So, these will give rise to these edge states or edge modes that are present in the system.
So,  this  energy versus  momentum and the  conduction  band is  shown in red and the
valence band is shown in blue and this is a function of the momentum you could ask this
question that this momentum is actually a vector suppose in two dimension it should be a
two component quantity that is a two component vector, but of course these calculations
are done on a nano ribbon which is what I have shown you earlier and in the nano ribbon
there is just one k that is a good quantum number the other k is not a good quantum
number because there  is no transnational periodicity or there is transnational invariance
in the other direction. So, this corresponds to the momentum which has a periodicity or
which has you know a periodic boundary conditions and they can be defined as a good
quantum number. So, that momentum is being talked about not the other. So, if you have
a ribbon along the x direction that this is actually kx the x component is missing here, but
it means that x component of the momentum ok.
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So, let me talk about the experiment and before I come to the band structure let me show
you  So, these are you know sort of super lattice structure where there is a HGTE inside
CDTE cadmium telluride  here.  So,  this  is  the  structure  and  there  is  something  very
interesting about HGTE which is what will be talked about. However CDTE is a well
behaved semiconductor. Now this kind of structure when this thing D crosses some DC
that is of the HGTE well this quantum well has a width which is greater than some DC
where DC is equal to 6.3 nanometer  ok. And when it crosses then HGTE that is mercury
telluride band structure becomes important and this mercury telluride has got a strange



band structure and this is what makes it interesting and the system undergoes a band
inversion and this band inversion is responsible for the quantum spin Hall phase. So, let
me show the first non-interesting one that is the CDTE cadmium telluride it is a direct
band gap semiconductor with delta equal to 1.6 electron volt which is fairly large. So, let
me show you this. So, this one is less than that so when D is less than DC it is a trivial or
band or trivial insulator for D greater than DC, DC is some critical width which has a
value in this particular case as 6.3 nanometer and when D is greater than DC then one has
a quantum spin Hall we will write it as QSH insulator ok. So, to carry on with the band
structure of CDT one can see that  so there are  these blue band which is  denoted by
gamma x here and so this actually is the conduction band. So, this is conduction band and
this gamma 6 band for the CDT has a J equal to half and it corresponds to L equal to 0
ok.  So, L equal to 0 and S equal to half that makes it this has a property which is like  a S
is like a S band or S orbital ok. Now gamma 8 corresponds to so this is a valence band
and this is for J equal to 3 half now this is L equal to 1 and S equal to half ok.

 So, this is a P orbital ok and this gamma 7 that you see is separated from this is basically
this  is  the  spin  orbit  splitting.  So,it  actually  has  the  same symmetry  but  this  is  this
correspond to  J  equal  to  3  half  and this  correspond to  J  equal  to  half  and it  is  not
important  for  the  discussion  the  only  things  that  are  important  in  this  quantum well
structure are these gamma 6 band and the gamma 8 band and so on ok. So, this is a sort of
well behaved semiconducting system its conduction band is above the Fermi level and
the valence band is below the Fermi level and so on ok. 
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This is the most important thing you see that this is like a 0 band gap semiconductor
because the gamma 8 level is almost I mean it is touching the Fermi level. So, it is a 0
band gap semiconductor  and not only that  there are interesting consequences here so
these are valence band ok.

 And again it is S orbital so it is a S type and so on and this is again that J equal to 3 half.
So, this is J equal to 3 half and it is a P orbital ok. Now what happens is that these are the
spin orbit coupled or rather split bands ok and the part of the conduction band so this is
the conduction band. So, the part of the conduction band is below the valence band and
so this is called as a inverted structure and this inverted structure actually is important



and so gamma 7 and gamma 8 are SO split band and the whole dispersion is shown near
this point which is called as the gamma point.

  So, this is the center of the BZ ok. So, this one again this corresponds to so S type which
means this is equal to J equal to half and so on. So, this of course is J equal to half
because these are spin orbit coupled band and this has an inverted structure and this AGT
when it becomes important a dominant player in this quantum well it happens when the
thickness  or  width  of  the  quantum well  exceeds  certain  value  then  the  AGT or  the
mercury telluride band dispersion becomes more prominent or  more important and that's
when it becomes a quantum spin hall insulator ok. So and these are really these super
lattices is formed by a molecular beam epitaxy or even  probably by a sputtering methods
and so on. 
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So this had given idea to people called as a Bernawig Hughes and Zhang and to write
down a Hamiltonian and solve it and that's why it's called as a BHZ model  ok. So, they
wrote down a Hamiltonian and they sort of solved it in order to get the band structure and
so on. So, what they did is that they wrote down a 4 by 4 Hamiltonian comprising of so
this gamma 6 J equal to so these MJ values which are plus minus half and gamma 8
bands plus minus half. So, we talk about this by gamma 6 and gamma 8 we talk about the
symmetries of the band  this is a S orbital so it's even and this is a P orbital so even means
L equal to 0  and this is P so this is odd because it's equal to L equal to 1 just to remind
you that even an odd is said in terms of so what happens to a particular orbital when it is
inverted which means that when you change theta to theta plus pi and phi to phi minus pi.
So the YLM function the spherical harmonics it picks up a minus 1 whole to the power L.

So when L equal to 0 it doesn't pick up a sign and when L equal to 1 it picks up a sign
that will define that they are whether they're even or odd and that's how they are written
and these half etcetera I mean this is the MJ the magnetic quantum number of the full  the
total  J  quantum number  because  they're  spin  orbit  coupling.  So  we  can't  talk  about
individually about L and S so one talks about J and J is a good  quantum number even



though the near the this gamma point K parallel equal to 0 the parallel component of the
momentum equal to 0. So these BHZ wrote down a 4 by 4 Hamiltonian we have seen
such 4 by 4 Hamiltonians earlier and in this basis so the basis is a gamma 6 up and a
gamma 8 up gamma 8 up and gamma 6 down and a gamma 8 down and so this is the
basis for that 4 by 4 and so there is  a gamma 6 up and gamma 8 up well I'm not writing
anything one should actually write like this on and gamma 6 down and gamma 8 down
and so on. 

 So one gets a Hamiltonian so it's  actually  a block Hamiltonian with no components
mixing  the spins so this is equal to H of K and so 0 and 0 H star of minus K and that
gives  you an effective Hamiltonian written in this basis. So we are just simply modeling
the HGT, CDT the quantum well  super lattice structure and taken the bands that are
closest  to  the  Fermi  level  and  their  respective  symmetries  and  the  spins.  Spins  are
important  now this  are  not  pseudo  spinners  these  are  real  spins  in  graphene  if  you
remember that we have talked about Pauli matrices but they do not really denote  the spin
degrees of freedom but here they do. 
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So we can write down this as so I will not go into details but let me write down the
Hamiltonian and the Hamiltonian is like a epsilon K and I, I is basically a 2 by 2 matrix
so  this  is  that  and  then  a  Dirac  Hamiltonian  form  which  we  have  seen  earlier  for
graphene.

  So these sigma they denote the Pauli matrices so sigma X, sigma Y and sigma Z and this
D vectors can be written as DX plus IDY equal to some constant A into KX plus I KY.
So this is just a low energy Hamiltonian near the gamma point where this Hamiltonian is
linearized. So you see that at the K equal to 0 that is a gamma point in the vicinity of the
Fermi energy it is approximated by a linear dispersion okay. So that is why it is a KX
plus I KY I will take care of the from it will come from the sigma Y and so this D dot
sigma is called as a Dirac Hamiltonian so it has a Dirac form plus this 2 by 2 and the DZ
where D is of course a function of K where K actually varies from a minus pi to plus pi
for both KX and KY these are the it is basically a 2 dimensional momentum and this is



equal to KX square plus KY square okay.Where all these things will just say in a moment
that all these things are constants C minus D KX square plus KY square.

(Equation 1)

So if you put in everything into this equation 1 so let us call this as equation 2 so if you
put 1 in 2 it will have a form which is a 4 by 4 and that can be solved even if you have
difficulty in solving it by hand it can always be solved in a using a software such as you
know either you use python or MATLAB, Mathematica etcetera. K is nothing but a 2
dimensional momentum KX and KY and A M B C D are material dependent constants
okay alright. So they can remain as constants if you see it you know DZ that goes with
sigma Z and sigma Z has a diagonal structure which is 1 0 0 minus 1 and so M and B
both appear with sigma Z and because of this dot product DZ sigma Z. So these are called
mass  terms  the  ones  that  appear  at  the  diagonal  are  called  mass  terms.  So B is  the
classical mass because that goes with the K squared dispersion and M is actually a Dirac
mass okay.

(Equation 2)

 So in the absence of B it will give rise to 2 copies of the Dirac Hamiltonian in 2 plus  1
D. If B equal to 0 the Hamiltonian so the the squared term vanishes and the second term
of equation 1 is truly like a Dirac equation. So Hamiltonian denotes a Dirac Hamiltonian
in 2 plus 1 dimension okay. And in fact will be fine if we only consider the edge of the
sample so one can deal with the edge Hamiltonian and which will give the edge states
which are of importance to us because this edge states will quantify or tell us about the
quantum spin hall phase. 
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And if you do that subject to certain conditions and these conditions are simple in the
sense that there are further conditions that can be imposed such as epsilon of KX equal to
0 where which tells you that a C minus D KX square equal to 0 in this condition let us
write  down the  Schrodinger  equation  which  is  H psi  equal  to  E  psi  with  H as  this
Hamiltonian  this Hamiltonian that you see or H effective so to say this is that effective
Hamiltonian  all right.

(Equation 3)

  So, where psi is of course a 2 component spinner which is psi up and psi down and both
you know psi up and psi down have 2 by 2 structure I mean it is a 2 component spinner
each one of them okay. So, this psi up is equal to some chi into 0 and psi down this up
and this down this is equal to a 0 chi okay. 

(Equation 4)

And let us make an ansatz to solve this ansatz says that so chi is equal to some psi 0
which is some amplitude and exponential lambda X. So, you put that into this equation
Schrodinger equation let us call it as equation 3 and  let us call this as 4. So, putting 4 in 3
and along with this condition which we have said this condition this is simplifies things
and so this becomes equal to M plus B lambda square sigma Z minus I this is I A lambda
sigma X and psi 0 e to the power lambda X is equal to 0 of course a psi e 0 exponential
lambda X is not equal to 0.

(Equation 5)

(Equation 6)



So, this has to vanish so this is equal to 0 in order to have a non trivial solution of the
problem and so that can be done. So, this can be solved if you multiply it by sigma X
because of the reason that I told you this earlier that so a sigma Z sigma X will be equal
to so the anti commutation relation and the commutation relations if you combine then
this is equal to some sigma Y so that is why you multiply it by sigma Y. 
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So, let me just write down just to help  you in getting the steps we have written this
earlier that sigma I sigma J so sigma Z sigma X so this is equal to 2I sigma Y that is the
commutation relation and what is the anti commutation relation the anti  commutation
relation says that sigma Z sigma X is equal to 0 okay so that is the anti commutation
relations. So sigma Z sigma X is minus sigma X sigma Z equal to 2I sigma Y and sigma
Z sigma X  plus sigma X sigma Z equal to 0 so if we add both of them we have a 2 sigma
Z sigma X equal to 2I sigma Y so this 2 will cancel so sigma Z sigma X becomes I sigma
Y and that is why we multiply these let us call it as 5 by sigma X so that I get a sigma Y
and sigma X square is equal to 1 so this will be independent of that Pauli matrix and this
one the first term will have a sigma Y. So multiplying by sigma Y one gets M plus B
lambda square sigma Y and a psi 0 and minus A lambda psi 0 equal to 0 now you see this
becomes simple because this now psi 0 is an eigenfunction of sigma Y which is known
okay sigma Y can be solved sigma Y as eigenvalues  plus minus 1.



 So if you solve for lambda, lambda comes out as 1 over 2 B A plus minus root over A
square minus 4 B M and so if we you know plot it as a function of K near K equal to 0
etcetera and so on and then this should give rise to the similar band dispersion as we have
seen for the HGT, CDT and the quantum well structures and will of course the nature of
the edge modes will depend upon the specifics of the boundary condition. So one can
actually solve it numerically in order to get the different you know the dispersion of the
BHZ model for various choices of A, B, M etcetera and it can be plotted in the Brillouin
zone to get  this dispersion and this for you know choices of the parameters there will be
the edge modes will occur in the system and for other choices of parameters there will be
no edge modes. So the edge modes the ones the corresponding the parameters that have
edge  modes  will  be  called  as  a  topological  system or  a  quantum spin  hall  insulator
whereas the ones which do not have edge modes and simply there is a gap there is an
energy gap in the bulk of the spectrum that represents a band insulator. So this is another
study that we have done in the family of hall effects other than the hall effect that we
have done quite rigorously and this hall effect is called as spin hall effect and we have
talked several times that  it has significant applications in the spintronic devices. 

So if  a  material  has  strong spin  orbit  coupling  then  one can  actually  get  these band
inversion  properties  and this  band inversion  is  key to  getting  this  quantum spin hall
insulators of this quantum spin hall phases and here it turns out for a thickness of the
mercury telluride slab to be larger than certain thickness which is 6.3 nanometer one has
a dominance of the mercury telluride in the in the overall band structure which is when
the band inversion occurs and hence that gives rise to a quantum spin hall insulator. And
Bernawieck,  Hughes  and  Zhang  have  written  down  Hamiltonian  considering  all  the
symmetries and the low energy properties they wrote down a Hamiltonian which can be
solved and nature of the eigenvalues and the eigen functions can be discussed.  

(Refer Slide Time:50.04)

We shall come back to the BHZ model after we look at a theoretical model proposed by
Ken and Millie in 2005 which also describes a quantum spin hall  insulator. We shall
further  establish a connection between the Ken Millie model and the BHZ model that we
have looked  at.  Thank you.
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