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 Welcome to this second lecture on topology and condensed matter physics course. I will
sort of the last lecture was an introduction to topology in general physics and in which we
have given an example of the Dirac monopole which is you know seen as a singularity
and in the same spirit  we have talked about  RnBOM effect  where you know sort  of
winding or rather going around that singularity which is the cylinder that is a solenoid
that gives rise to the winding and this has to be in integer times 2π. We will carry on the
same discussion however we will now try to shift towards the condensed matter physics
and  how  various  things  that  are  borrowed  from this  topology  and  homotopy  theory
etcetera they are applied to branches of condensed matter physics, different studies of
materials and some of the experiments that are known to us to show topological invariant.

(Refer Slide Time: 1.38-4.15)

 

So,  we start  with  this  statement  that  it  is  topology  is  a  branch  of  mathematics  it  is
concerned with the special properties preserved under continuous deformation that is you
are not allowed to do any stretching or tearing or puncturing of the object  and these
properties which remain unchanged are called as a topological invariant.  For example
you see that there is a coffee mug that is continuously being deformed into the shape of a
doughnut and the handle of the coffee mug where you hold the cup is the one that is
forming the hole inside the doughnut and this is it is a particular you know example that
we are deforming an object and it is going into another object completely different but
they are topologically equivalent that is one is being continuously deformed into another
without puncturing or tearing or breaking that thing. Apparently this has got nothing to



do  with  condensed  matter  physics  but  however  we  show  that  this  has  very  deep
implications  on the condensed matter  physics that we study in modern times and the
whole thing was you know put into perspective these studies are put into perspective
since the discovery of the quantum Hall effect that is in 1980 and has been the focus
since then and especially with this 2016 Nobel Prize that we have said earlier to Holden
Costles and Thaulers this study has become much more prominent and its applications to
the condensed matter community has become in focus for quite some time now.

 So these topological invariants which is just a hole here called the genus as we will see
in the next slides there are these similar to this in condensed matter physics we will be
talking about topological invariants which will be measurable or rather can be computed
from the bulk properties of the material and these are called as a winding number the
churn number and the  z2 invariant and so on. There are a whole lot of classification of
this and that is what we are you know going to study. 

(Refer Slide Time: 4.17-6.07)

Okay so it's the same picture I'm showing once again that so that you see the snapshots of
various phases of this so if you look at the left picture which starts with a cup a white cup
and then it slowly gets you know deformed and then forms a doughnut pretty much what
you see on the right. So we'll have to deform a certain system and when we say a certain
system what we actually mean is that the Hamiltonian of the system will be deformed
that is with respect to change in certain parameter and if it can be smoothly deformed
then and gives rise to an invariant that is that remains unchanged through this process
then it's a topological system or the Hamiltonian denotes a topological system and if you
need to you know a puncture it or tear it then of course you're not getting back the same
system and in terms of the Hamiltonian this means that you know some of the energy
levels that are actually crossing the Fermi energy and which is equivalent to puncturing
or tearing of the object.

So you have to maintain the number of levels below the Fermi energy and of course
above the Fermi energy to be same and if by virtue of these variation of the parameter if
this number that is the number of energy levels below the Fermi energy remains same
and  then  the  system actually  is  topologically  and  there  is  a  gap  then  the  system is
topologically non-trivial. 



(Refer Slide Time: 6.10-7.28)

So just to give you an idea of winding number we'll talk about them more you know in a
detailed manner when we talk about this tight binding models but just to give you an idea
about you know sort of in a layman's term you see that this is going around and this
person there's a person at the middle who's looking at it  and this is going around the
person so if it goes around once it's called as a winding number one if it does twice with
respect  to the center  of this  the three vertical  pictures  that  you see then the winding
number is  two and similarly  if  it  does it  in the opposite  sense that's  the direction of
winding is also important and then the winding number is minus two and so on. So as
soon as the winding number is non-zero that is a particle winds a point or a singularity so
if it's a non-trivial system then it should be accompanied by a winding number which is a
finite or non-zero and if the winding number is zero which means that it doesn't enclose
the origin or the point or the person here okay or the singularity that we have and that's
why it will be called as a topologically trivial system. 

(Refer Slide Time: 7.31-8.50)

So these are some shapes from school you know coloring books that have taken and of
course it's a circle which is you all know circles and triangles three sides square rectangle
rhombus all these other things pentagon hexagon etcetera octagon there's a rhombus here
trapezium and so on okay. Now of course they are geometrically different objects they
have  no relation  with  one  another  and the  child  would  be  easily  able  to  distinguish
between one shape to another and however topologically these all these are same because



we would view them as closed figures okay and because all of them are closed figures all
of them are topologically equivalent okay there's no distinction between any of them.

 Now that  tells  you that  even if  things  are  geometrically  different  that  is  shapes  are
geometrically different topologically they may not be different they are in fact identical
or same as is the case here so the even though the geometry and topology they are related
but of course they are not same okay and this is what I just wanted to emphasize from this
slide okay.

(Refer Slide Time: 8.55-13.48)

 So let us come to this topological invariance and this taken from Joel Moore's slides and
in which you see that there are three figures which are one of them is this one and there is
another one here and another one here which is so there's a cylinder and then there is a
you know sphere and then there's something which is looks like two cones which are
joined with you know sort  of a  surface area at  the point  of  joining there.  So what's
different between the two is that this has a curvature the radii of curvature or radius of
curvature  which  we  want  to  sort  of  you  know understand  that  they  are  different  at
different points so the radii of curvature with respect to that which is written here so with
respect to that this is negative this is 0 and this is positive okay. So it's important that we
understand this radii of curvature which is basically the curvature at the we are talking
about at the equator that is at the you know the middle point like here okay or here. So
this is what we are trying to say that this radii of curvatures are different here they of
course different geometric quantities but if you are asked to calculate the integral of this
radii  of curvature over the entire surface area that's usually a difficult  problem in the
sense that these are very regular objects but in fact you can just see that it is you know if
you if you try to calculate the radii of curvature and then for a sphere it sort of comes out
as 4π but if it's a complicated object you know with a lot of different curvature along its
surface then it's not such an easy task to do.

    



However this theorem called as the Gauss Bonnet theorem gives you an answer to this
where these chi is actually the radius of curvature and A is the surface area. So it tells you
that the radius of curvature when it's integrated over the entire surface area of the object
the object is say M it gives you a constant which is 2π chi which is this χ is called it has a
name called  as  a  Poincare  curvature  in any case this  is  equal  to  2π(2 -2g) and very
importantly we'll take this part of the equation which is very important for us and this g is
called as a genus which counts the number of holes and talking about the holes we have
already seen here that we are talking about really the hole that is there in the system.

(Refer Slide Time: 12.31-35)

 

So here it has a genus equal to 1. So both the mug and the doughnut have one genus equal
to 1 and you can clearly see that the hole in the doughnut that corresponds to the the
genus and where you actually hold a cup or a mug that place where you hold is the the
genus and this has one genus or other genus equal to 1 and this is exactly that genus. So it
can be very easily you know verified because for a sphere there is no genus the genus is 0
so if the second term is 0 the integral is equal to 4π and which is a known result which
you all know.

 So this theorem is really connected intimately to the studies of condensed matter physics
and we'll show you over a period of time or rather as a course you know proceeds that
how it is connected will give you a preliminary idea today but then it will be explored
throughout  the  course  this  particular  theorem  and  its  relevance  to  condensed  matter
physics okay. And so this is I mean whatever maybe the shape of this object that you
consider  and then  if  you take  the  radii  of  curvature  or  radius  of  curvature  and then
integrate over the entire surface area this gives you a constant and this constant contains a
quantity called as genus we just counts a number of holes. So it counts holes of the object
alright. So this is as I said that will be discussed along with the real condensed matter
systems okay. 

(Refer Slide Time: 14.10-14.28)



I give you examples that this has genus equal to 0 it's just an orange there's a saucer or a
plate and then you see that these are a genus equal to 1 so as I said that it just counts the
number of it's equal to the number of holes this is equal to 1 and so on and so the genus
of a particular object or a surface okay.

(Refer Slide Time: 14.33-16.16)

This  is  called  as  a  Mobius  strip  okay.  You can  easily  make  it  the  only  thing  that's
important about this Mobius strip is that it's joined in such a manner that if an ant starts
crawling from here it goes through the full ribbon it will find itself on the other side of
the ribbon okay and you can see this if you trace this path one can understand that you
come to the other surface of this ribbon and so it has to undergo two such revolutions or
two such trips it has to make in order to come back to the same surface okay and so this is
like that winding that we are talking about so this really corresponds to winding the strip
or rather moving you know in the on the surface of the strip twice in order to come back
to the same surface okay. This is exactly shown there so it is sort of a cartoon in which
there is a twist that is there and if you look at the red dot or the red ball then the red ball
after one complete revolution or rather one complete trip on the strip it lands up in the
other side okay and this called as a Mobius strip as I said there should be a noom laut that
is there alright. So why am I saying this is there a reason that I'm saying this or is there a
relationship this you can make it at your home in your leisure just with a paper scissors
and glue and the reason that we are saying this is the following okay. 

(Refer Slide Time: 16.31-20.21)



 So electrons have this property what do I mean by this okay I box this statement and let
me try to explain that why electrons do have this property.

 So what I mean is that the electronic wave function after a rotation of 2π which is a
complete circle doesn't come back to the same point what it means is that if you start
from the you know the trough of the wave function then after a 2π rotation you go to the
topmost point of the wave function and you go one more time around it and then you can
get it at the same you know position that's the trough the next trough okay. So these the
topmost point and the trough are not are they are you know a different in phase so this is
called as a 4π rotation as you see that the 2π rotation it doesn't bring back to the same
point  ideally  you  would  have  thought  every  point  or  every  function  which  has  an
exponential behavior like for example an exponential I theta this function comes back to
the same point if you take theta to theta plus 2π okay so these are same but it doesn't
happen for the for this electron and let us see how that happens. So let us see the angular
momentum of the electrons. So how do we write the angular momentum operator let me
write a jz for that I am taking the z component of the angular momentum and this is like a
minus  iћ δ/δφ okay precisely the  lz has this form so I am just using the total angular
momentum operator okay. So now if you if you operate this jz on a wave function it gives
you a  mћΨ okay and  Ψ actually  transforms as so if  you put  it  into the Schrodinger
equation that is if you are trying to sort of you know find that this is (δ/δφ)Ψ and this is
equal to you know mћΨ okay.

And the solution would tell you that this Ψ(φ) this is equal to eimφ Ψ(φ)  okay so this is
like  Ψ(φ) so this is like transforms in this particular fashion is what I mean to see say.
Now electrons by virtue of the fact that they are spin half objects or they have let us say
the total angular momentum m is equal to half okay if you are finding it difficult you can
write a lz only lz that will be in the sense that you have to when we talk about m then we
are talking about the spin of the electron or the you know the this quantum number m. 

(Refer Slide Time: 20.28-23.00)



So this tells you that it's a it transforms as eiφ/2Ψ okay so that means that when you take φ
to φ+2π then φ does not return back to the same point. Now what I when I say point I
actually mean that it the same configuration okay. So if Ψ will return back because of this
factor which is  eiφ/2 because is m is equal to half and so φ equal to 2π will make it you
know this is equal to for 2π this will be equal to iπ and exponential iπ is equal to minus 1
and this is really related to the anti-symmetric property of the wave function that is when
you swap two of them then so this is what happens you know so it picks up a -1 and the
wave function really picks up a -1 when you swap two particles. 

Now this is a little subtle this happens in three dimensions and if you want to do it in two
dimensions  which  many of  the  things  or  other  systems that  will  study in  condensed
matter  physics  is  two  dimensional  things  such  as  graphene  or  2d  electron  gas  this
exchange is a little tricky and there are braids that form which I do not want to go at this
point here. So  Ψ returns back to the same point after 2 into 2π which is 4π which is
nothing but 7200 rotation okay. And I sort of did that right after when we talk about the
Möbius strips it is equivalent to the ant which had to go through two trips on the surface
of the Möbius strip in order to come back to the same surface of the same point okay. So
this is analogous to that and we are trying to you know bring in these connections of
these topology and then to various systems in physics in quantum physics and then hence
of course we will go to condensed matter physics okay. 

(Refer Slide Time: 23.05-25.38)

So in order to understand how this connection to condensed matter physics comes very
large contribution has been made by Michael Berry in the late 80s of the last century you
know or you know something around the end of the towards the end of this  the last
century through various works and we come across a number of quantities which are
named after him and these quantities are very relevant for condensed matter systems and
particularly for understanding the relevance of topology and condensed matter physics.



So these are Berry phase, Berry connection,  Berry curvature and finally a topological
invariant which goes in the name of Chern number or one can call it a TKNN invariant
we will talk about that okay. So we will talk about Berry phase with some details and just
how a quantum mechanical system picks up a Berry phase in fact you can read up the
parallel  transport  of  a  vector  it  picks  up an irreducible  phase and so on.  This  Berry
connection is analogous to what serve the vector potential in electrodynamics the Berry
curvature is analogous to the magnetic field as well as its analogous to the this or the radii
of curvature or the radius of curvature. So this is the radius of curvature so this radius of
curvature is will behave similar to the Berry curvature we will talk about that and this
Chern number again let us go back to that same expression and see this.

(Refer Slide Time: 25.16)

 This will act as a Chern number as you see that 2π is of course a constant and for a given
system if you do not sort of you know puncture it or tear it the genus will remain same is
what we have said so the whole thing is a constant and this constant is the topological
invariant of the system and which is analogous to the Chern number that we will see okay
and it has a very nice connection with the quantum Hall effect alright. So let me see that
how the connection comes about with all these armed with all these you know quantities
such as Berry phase Berry connection Berry curvature and Chern number okay.

(Refer Slide Time: 25.45-27.34)

 So I just repeat what has been said that the Gaussian curvature is analogous to the Berry
curvature in condensed matter physics the surface area this is something very important
that what is the surface area that you talk about here this surface area in condensed matter
physics is nothing but the Brillouin zone okay and you know that in solid-state physics or
condensed matter physics the first Brillouin zone is the most important thing if anything
is going or any vector wave vector is going beyond the first Brillouin zone it can always



be brought  back to  the first  Brillouin zone by adding or  subtracting  some reciprocal
lattice vector. So that is the area that we are talking about here we are talking about the
surface area in condensed matter  physics we will  be talking about the Brillouin zone
okay.  The  vector  potential  as  I  said  is  the  Berry  connection  analogous  to  the  Berry
connection the genus is the topological invariant which can be Chern number or some
other  invariant  according  to  the  classification  of  topological  insulators.  So  the  line
integral of the Berry connection is called as the Berry phase we will sort of write that in a
moment  and the surface integral  of  the Berry curvature  is  called  as a Chern number
which  is  analogous  to  the  Gauss-Bonnet  theorem  okay.  So  we  integrate  the  Berry
curvature over the Brillouin zone we get a topological invariant which is let us say it is a
Chern  number  for  a  time  reversal  symmetry  broken  system  and  for  the  Gaussian
curvature you get sort of you when you sum it over or the integrate it over the entire
surface  area  of  the  object  you  get  an  invariant  which  contains  a  genus  okay  or  the
Poincare curvature okay.

(Refer Slide Time: 27.42-35.19)

So now very interestingly this is a shown a priori but then of course we will talk about
this. So you see a donut here on the left and then there are specks and so on and on the
right what you see is the integer quantum Hall effect graph okay where you plot the row
xx which is shown in this not too sure whether you see it as this maroon red kind of thing
which are these ones. So these plots are the longitudinal resistivity so just to tell you in a
very brief a few words you have a magnetic field and you have a 2D electron gas okay
and what you do is that you send a current in this longitudinal direction okay because so
there is a voltage here and you send a current and there is a current that is moving which
means the electrons are in motion and they are subjected to a perpendicular magnetic
field so the Lorentz force will come into picture and this Lorentz force will make the
charges  the  positive  and  the  negative  charges  segregate  at  opposite  ends  of  these
transverse  ends  of  these  of  the  sample  I  am  not  that  careful  about  you  know  the
accumulation of charges I mean they could be the positive could be on the lower half and
the negative could be on the other upper half but what is important is that that you can
figure out from the direction of this E and and the B and the motion of the charges. So
what is important is that there is voltage that develops because of the accumulation of
these charges and so on will tell you in details about that so if you calculate the voltage in
the transverse direction so there is a volt meter you will register a voltage because the



charges  have  segregated  and  this  happens  in  equilibrium  and  so  this  was  originally
discovered by Edwin Hall in 1879 and which goes by the name Hall effect and that really
is this part of the plot where you see the Hall resistance which is linear here and of course
you can measure the this magneto resistance that's resistance in the same direction as a
flow of current which is almost like a constant but in those days the ability to actually
access very large magnetic field was not there so you do not in those days you did not
have very large electromagnets which can produce very large fields about hundred years
later  in 1879. So this  was by K Von Klitzing  who was studying the mobility  of the
MOSFETs in fact they were trying to improve the mobility of the MOSFETs you know
which are semiconductors with applications and so on and he found that when he goes to
very large values of fields these magnetic field being to 15 Tesla 15 Tesla by the way is a
very large field of course in those days it's extremely large and you need to have very
large magnetic field facility in order to access this he found that the the Hall which is
shown on the right hand side of this plot which are shown by these things these plateau
structures he noticed that the Hall resistivity is quantized in unit of h over e square okay
so this was like  h over e square this was h/2e2 this was  h/3e square and so on so forth
okay and h/4e square and so on.

So this quantization of the Hall resistance was not known earlier and then it was found
that these plateaus are extremely robust and they are accurate up to 10 to the power minus
8 or 10 to the power minus 9 and they do not go away with increasing the magnetic field
and the disorder in the system and these are just the 2d electron gas that is the electrons
are being confined in a two-dimension and the magnetic field is in the Z direction. So this
was a sort of discovery which you know went ahead to sort of this forms this this called
as the metrology where this h over e square is approximately 25.8 kilo ohms so that is the
benchmark of resistance which is fixed from an experiment macroscopic experiment on
really dirty systems dirty means there are a lot of disorder and defects in the system and it
still  was  able  to  give  you  these  value  of  this  resistance  in  terms  of  the  you  know
microscopic parameters h is a Planck's constant and E is the electronic charge so h over e
square is  what you see here.  So this  helped us to you know benchmark the value of
resistance and  h over e square you know is actually 25.8 kilo ohms so if you want to
know what's the value of 1 ohm which is  h over e square divided by 25. 8 kilo ohms
would be the value of 1 resistance I mean 1 ohm of resistance okay. 

So this was a big discovery and it was awarded this Cleatzing was awarded Nobel Prize
after  that  and this  was actually  the samples  were obtained from two engineers called
Dorda and Pepper  and if  you want  to  know that  why are these two figures  that  are
existing on the left hand side to this experiments on an electron gas in presence of a
magnetic field and then we'll say that this hole this one hole this is linked to this and
these have two holes that are linked to this h over 2 e square and so on. So if you find an
object with three holes so that will correspond to the third plateau and so on which means



that these are the topological invariants which are called as a churn number so this can be
written we'll  just  show in a while  that  this  can be written  as the conductivity  or the
resistivity can be written in terms of the churn number it's e square over h and so on okay
we're  talking  about  here  we  are  talking  about  resistivity  but  we  can  talk  about
conductivity because conductivity is what is calculated using theoretically using Kubo
formula okay. 

So let me sort of give you a brief overview of the Berry phase which is what we have said
and  will  it's  just  a  quantum  mechanical  description  it's  small  but  it  will  help  you
understand that in certain cases the wave function picks up phases which are irreducible
and they stay and they act like an invariant to the system and these invariants aid us in
understanding the topological properties of the system okay. 

(Refer Slide Time: 35.57-40.47)

 So it's a general introduction to Berry phase. Okay so we know that if you have this
particle  in  a  box  which  is  the  first  problem of  quantum mechanics  that  you  do  it's
between 0 to L or -L/2 to +L/2 so there is a particle there these are infinity so V is equal
to 0 here and V is equal to infinity at each of these things so the particle cannot escape
the particle is confined in the within a length 0 to L and say one dimensional problem and
you solve the one dimensional time independent Schrodinger equation it's equal to E Ψ
and you know that this is like the Ψ becomes equal to root 2 over L sin(nπx/L) so this is
solved by using the boundary condition that  Ψ at 0 is equal to  Ψ at L and this is good
enough to characterize the system or rather to entirely sort of you know set the boundary
conditions for the system and in such a system because of these confinement the k is
quantized as or the wave vector is quantized as nπ over L okay and let me write down Ψ
as Ψn and I'll write down the energy as well which is n square pi square h cross square by
2 m L square okay where m is the mass of the particle of mass m okay.



 And now of  course if  you try to  solve  any wave equation  just  like  a  normal  wave
equation this is different than that this you get quantization okay and this is not unknown
even in case of an organ pipe the frequencies  are  quantized  in  terms  of  nu over  the
fundamental frequency by 2 L or 4 L depending on we have an open organ pipe or a
closed organ pipe. 

So the quantization is not very specific to quantum mechanics but what is important to
understand for us is that the quantization brings in a scale of h as you see a ћ here this h
which has a value h cross has a value some one point something not too sure about what
comes after decimal but that you can check it's  a one point something into 10 to the
power minus 34 joules second it has the dimension of the angular momentum and and
this is clear from Bohr's postulate that he said that all these atoms and they exist because
the electrons actually  revolve around the nucleus in certain orbits stationary orbits he
called them where the angular momentum is in terms of is quantized in terms of nh or nћ
whatever okay so that is important in the sense that  ћ is the scale of quantities that we
find out  here of course he is  in  terms of  ћ square and so on okay now we want  to
understand that if adiabatically that is you know slowly we change L in time that is we
make L as a function of time and slowly change it and in addition assume that the particle
is in the ground state so if this change is slow that is if the width of the box or you know
the length of the box is being increased was statically or it's such that the equilibrium is
established at all times then the particle should be in the ground state even at time T okay.
So so what  I  mean to  say  is  that  for  this  box wave function  the  ground state  wave
function has nodes at both the ends is like this in when you know in this box also you will
have the wave function which will have nodes okay so this is 0 to L and 0 to L at a time T
so this is a L at 0 okay. So it is expected that this is what will happen.

(Refer Slide Time: 40.48-45.47)



Now assume that h is some function of λ some parameter lambda we are not specifying
what parameter that is but these  λs are explicit  functions of time so  h is implicitly  h
depends on time through this λ and this λ is a parameter that changes slowly okay. So the
understanding is from the problem that we have stated before is that if a system is in the
nth eigen state of H(λ(0)) it will continue to be in the nth eigen state particular eigen state
what I mean by nth eigen state is a particular eigen state in H(λ(t)) okay if this parameter
changes very slowly which means that the system is never out of equilibrium and stays in
equilibrium okay so the more important question that arises here is that what happens to
the  wave  function  okay  and  the  wave  function  can  be  written  as  this  is  from  our
experience that it picks up a phase of course with Ψ at 0 we'll write that in terms of the
basis functions this is 

 where of course the phi ends are the basis sets so you have h of t and phi n of t this is
equal to epsilon n, we are saying that the dependence is through lambda so this is e n of t
phi n of t okay so this problem is known that is h acting on the basis sets will give rise to
the energies of course. And this of course is true if h does not depend upon time which
we know that the phase actually comes out as  eiet by h cross or -it/ћ so independent of
time means it doesn't vary with time okay but of course for time dependent problems it
cannot be done that is we cannot say this we'll see how so in that case you have we need a
little  adjustment  and  the  adjustment  is  done  through  a  coefficient  which  depends
explicitly on time and then exponential (-it/ћ sum 0 to t) say for example and €n t′ dt′ and
a φn (t) okay.

So I mean as I said that this equation let's say this equan tiothis ansatz would definitely be
correct if h is not a function of time that is h doesn't evolve with time but suppose it does
which is the case that is going to be you know considered by us here we need a little
adjustment in that we add these coefficient which depends on time. So we have written
down the same thing excepting multiplying this by this quantity so the coefficient okay
and of course if you see that if you write this as 3 I mean the 3 and 1 would agree if c of t
is equal to 1 alright.

(Refer Slide Time: 45.48-50.20)



 

So now what we do is that we put this into the Schrodinger equation and the Schrodinger
equation is we write down the time dependent Schrodinger equation here because we
need to we have time dependence in H and this is iћ(δ/δt) -H I am just writing both of
them together psi of t has to be equal to 0 that's the equation and the solution of this I am
just directly writing down the solution but you can put the Ψ of t what I have written in
equation 3 and then do a little bit of simplification and you would get this the equation of
motion this will be or rather this is the equation according to which there is nothing but
the Schrodinger equation written again in terms of the coefficient.

 So this c dot t this is equal to minus c of t and you have a phi n of t and you have a d dt I
am writing it a full derivative as you know in equation 4 we have written a δ/δt but it's
same here it's a d dt of this and so this will be the solution of this equation and or rather
this is the Schrodinger equation so 4 and 5 so putting 3 in 4 we get 5 okay and so this is
the  equation  of  motion  for  c  the  solution  is  obtained  as  so  c  of  t  equal  to  c  of  0
exponential minus I minus this is exponential 0 to t φn t prime d dt prime I am just using a
dummy variable so that I can write down the limits from 0 to t phi n of t prime and dt
prime okay. So that's the equation or rather that's the solution let's write it as 6 let's call
this as let's call this as I gamma in the sense that we will write it as c 0 exponential I
gamma where gamma is equal to I I am absorbing the I in gamma so this is equal to 0 to t
and a phi n t prime the simple algebra I am doing so d dt prime and a phi n t prime okay.

So this is c of t and this is the solution of this equation in in case of a time varying
Hamiltonian so this is let's call this as 7 okay and the gamma is this and we can call this
as 8 and we can call this as 7 okay. This extra phase that comes so gamma is called as a
Berry  phase  and this  Berry  phase  is  irreducible  it's  an  irreducible  and it's  unlike the
dynamical phase okay. The dynamical phase does not appear dynamical phase what I
mean to say is that exponential I omega t or IET by h cross and so on or minus IET by h
cross the wave function having that kind of time dependence is not concerning for the
reason that whenever we are trying to calculate the expectation values of observables or
operators or we talk about physical observables or we talk about probability density these
sort of do not appear because they cancel out the phases cancel out. 
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However this phase will not cancel out and we will see how so we ask this question that
can we in the definition of these eigenstates can we absorb the phase and this is what is
done so we can probably absorb this phase also but it will still give rise to measurable
consequences say we explore whether basis kets can absorb this phase okay and if it can
be done so let me redefine the basis kets as phi prime and this is equal to I take this chi of
t which is what which I have defined as a Berry phase and equal to phi n of t okay so I
redefined it so that I it can be absorbed okay. So if you do that then I phi n prime t d dt
prime which is there inside the phase which is in the definition of gamma that can be so
let us numbers so 8 and let us call this as 9 so phi n prime t this is equal to I mean I phi n
of t d dt and a phi n of t till this point it is fine this looked like the same but there is a
minus d chi dt because chi now depends upon time this is new and was not there so let us
call this as equation 10 okay.

So this is the even if you do this try to modify or renormalize your basis then also you
you are left with a d chi dt term which cannot be ignored because chi is a function of time
and in order to understand that what is d chi dt or how this gives rise to measurable
consequences  let  us  have  a  Hamiltonian  which  is  like  this.  So  consider  the  time
dependence of the Hamiltonian as H of t equal to t this is same as the Hamiltonian at H
equal to t equal to 0 okay.

 So the Hamiltonian is periodic in with a period capital T okay. So this is a particular case
but it will sort of can be done for any arbitrary dependence so we get this from equation
so let us call this as 11 and so from 10 what we get is the following, we get I and so this
is over the entire cycle so we sort of you know take this phi n prime t d dt of phi n prime t
this is equal to I this and a phi n of t d dt of phi n of t and you have there is a dt of course
there is a dt which I forgot here and then there is a term which is a minus chi at t equal to
t minus a chi at t equal to 0 okay. So as I said this is let us define equation 12 and this is
irreducible and this is the Berry phase.



So even if the Hamiltonian is exactly same the phase that it picks up over a full cycle
from 0 to t they are not same and they do not cancel out and this contribution stays and
we will see that this is exactly you know we will write down this in terms of the Berry
connection and can be the Berry connection can be related to the Berry curvature and
integrating the Berry curvature over the Brillouin zone will give rise to the churn number.
We will stop here and carry on from here in the next lecture and this is just to give you an
idea of the Berry phase that in a slowly varying time dependent Hamiltonian gives rise to
observable consequences, it picks up an additional phase and the phase cannot be reduced
and this phase bears the testimony if it is a finite that is if you take say an electron over a
closed path and take it you know a 2 pi rotation if this does not give rise to a 0 you know
observable effect on its wave function or on the observable properties or consequences
that are important you know on its physical properties then we say that it has non trivial
properties  okay.  The  electron  or  the  system  has  non  trivial  properties  and  this  non
triviality is related to the topological properties as we shall see okay. Thanks for your
attention. Thank you.
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