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 We have been talking about Graphene, the main thing is about the electronic structure of
Graphene which  is  under  consideration  for  this  course.  So we have  derived the  low
energy dispersion of Graphene, the energy as a function of K this gamma K M gamma
these are  points  in the Brillouin zone and the band structure  is  shown here this  is  a
density functional theory band structure DFT band structure it is called and you see the pi
and the pi star which are the 2 bands which are closest to the Fermi level and the Fermi
level is kind of boxed in red. In fact this is the Fermi energy at 0 and if you look at it
carefully this pi and pi star bands they cross linearly at these points these the gamma and
the M points and this is what gives rise to the low energy linear dispersion which is why
they are called as massless Dirac Fermions.

  However they are not massless they have electronic mass and they are also the density
of state  is also linear in energy and so on even though they look like pseudo relativistic
dispersion  the velocity is still C by 300 which is you know the 300 times smaller than the
velocity  of light so and that corresponds to the Fermi velocity of electrons in most metals
so this falls in that category and you know look at the 6 Dirac points whose coordinates
have  been  found  and  these  are  the  6  Dirac  points  that  you  see  here  what  we  have



discussed is that they are not all independent they depend on each other by the addition or
subtraction of the reciprocal lattice vectors and only two of them being independent and
the rest four can be generated by adding or subtracting the reciprocal lattice vectors and
these points which are independent are called as the K and the K prime points and these
are known as the Dirac points and the name came because the dispersion is Dirac like
which is that of in this case it is a massless Dirac form and linear dispersion. So this is
something  that  is  slightly  non-trivial  in  the  context  of  condensed  matter  physics  in
condensed matter physics these relativistic dispersions are not common and in fact the K
square dispersions are more common but in this particular case they are the low energy
dispersion is linear and they correspond to massless Dirac fermions. 

(Refer Slide Time:3.47-4.40)

 So these are things that we have discussed now this is the experimental confirmation of
the Dirac points these are the photo emission studies will not discuss where one actually
calculates the binding energy and as a function of the planar wave vector so it is basically
a  photon is  made  to  shine  on  the  surface  and  these  electrons  are  emitted  and  these
electrons  are  captured which would tell  us this  binding energy and so on and this  is
plotted as a function of the planar wave vector the KXKYwave vector and these are given
as  K parallel and you see this Dirac like dispersion which are very apparent here linear
dispersion at or near the Fermi level and this is taken from this paper there are many
other confirmations  of the Dirac spectrum.

(Refer Slide Time:4.44-8.40)



So we come back to the Hamiltonian for graphene and the Hamiltonian looks like this I
have  taken h cross equal to 1 and Vf is you can write it a V capital F that corresponds to
the Fermi velocity QX and QY are small wave vectors where the K vectors which are I
mean we usually represent the K vectors the wave vectors by the K so this K is so Q is
equal to K minus K or K minus K prime. So you expand the wave vectors in the vicinity
of the Dirac  points which are K and K prime points and write the small wave vector as Q
and this is what is written in terms of QX and QY so this Q is nothing but QX QY and Vf
is the Fermi velocity sigma X and sigma Y they are Pauli matrices however they do not
represent the spin degrees of freedom sigma actually stands for the sub lattice degree of
freedom and you see a gamma Z here which is so this is the the valley degree of freedom
and here gamma Z is exactly same as the Z component of the Pauli matrix but they it's a 2
by 2 matrix where plus 1 denotes the K valley that is the K Dirac point and minus 1 that
corresponds to the K prime value.

 Okay so that so essentially what happens is that you have a H of Q which is equal to a Vf
and there is a QX sigma X plus a QY sigma Y this is the Hamiltonian at the K point one
of the Dirac points and for the other one you have a minus sign here QX sigma X minus
QX sigma X QY sigma Y so this is at K prime. So in a compact notation we can write
down at both the Dirac points we can write down the Hamiltonian like this one has to
keep in mind that there is no spin in the problem however the Pauli spin matrices they
denote the sub lattice degree of freedom and in addition to that the gamma denotes the
valley degree of freedom.

Okay now what is intended hereis that to understand what are the symmetries of graphene
and what do the symmetries do what will happen when we break these symmetries and
one of the main things that happens is that these Dirac points are robust that is there is no
gap that opens up in any of the six points the Dirac points that we had shown and out of



that we will only talk about the K and K prime so these are the symmetries of graphene
actually protect these Dirac points. So this is what we have to understand and in that
context we have to understand the symmetries of graphene. 

(Refer Slide Time:8.46-12.40)

So the question is what are the symmetries of graphene just quick look at the unit cell
okay and each of them are occupied by the carbon atoms okay and carbon atoms in this 1
is to 2 is to 2 p to configuration and so per carbon atom there are two electrons  however
one electrons forms a sigma bond which gives the stability of the structure and the pi
electrons are only available for conduction as we have shown in the band structure.  

Now the two symmetries that are quite important in this context is that we will talk about
the inversion symmetry or this is also called as the sub lattice symmetry and this quite
common or  rather  it  is  quite  trivial  to  understand that  if  you draw an axis  which is
perpendicular to the bond connecting the two carbon atoms so this corresponds to A sub
lattice and this corresponds to the B sub lattice then a changing A to B and B to A will
not change the structure or will not do anything to the Hamiltonian and that  is why this is
the  Hamiltonian  that  we  have  written  in  the  last  slide  this  is  invarian  under  this
transformation or these it has inversion and sub lattice symmetry okay. And the next
thing that we will do we will show in details is a time reversal symmetry and in this
particular case as we have seen earlier that there is no spin here so because there is no
spin the time reversal operation is simply the complex conjugation or in some literature
you will actually see that it is written with a unitary operator multiplied  by the complex
conjugation but they mean the same thing.

There is a third symmetry which is a crystalline symmetry and this is called as a C3
symmetry what it means is that it is a C3 rotational symmetry so if you take a point in the
at the center of the hexagon and then you give a 2 pi by 3 rotation to the entire system
then you know this carbon atom here will go here and this will go here and so on okay.
So they will just move and the honeycomb or the hexagon will remain unchanged and
this  is the crystalline symmetry that we have. Now this we are not going to discuss one is
that this of course forms the Dirac points but this has no role in preserving the Dirac
points or making the Dirac points to be invariant or it does not sort of give anything or



rather impart anything to the topological considerations for graphene. So we will not talk
about it  in details  but then one should know that this symmetry crystalline symmetry
exists. So let me look at the inversion symmetry.

(Refer Slide Time:12.49-15.30)

So  this  inversion
symmetry can be tested by a sigma z operator and this sigma z h of q  sigma z that has to
be tested and this should come out to be minus h of q okay.  So this denotes that graphene
has inversion symmetry so it  is not difficult  to see that because you have this h of q
simply has apart from that Vf it has a qx sigma x plus a qy sigma y and then we will have
terms such as so sigma z sigma x sigma z that will give rise to minus sigma x and a sigma
z sigma y sigma z will again give rise to a minus sigma y. So your sigma z h of q sigma z
is equal to h cross Vf well we can drop h cross but or you can keep h cross it does not
matter. 

This is equal to minus qx sigma x gamma z which you know connects or rather denotes
both k and k prime Hamiltonians and then there is a qy sigma y okay and this can be
easily taken out the minus sign and then we have a qx sigma x gamma z plus a qy sigma
y which is nothing but equal to minus h of q okay. So graphene has inversion symmetry
and as I said that you can  also call it a sub lattice symmetry okay. So this is one of the
important  things  about  graphene  that  it  is  the  Dirac  points  are  protected  by  these



symmetries  of  course  we  will  have  to  consider  one  more  which  is  a  time  reversal
symmetry. 

(Refer Slide Time:15.35-20.50)

 So this 2 okay and what we mean by time reversal symmetry is we just define k to be
this complex  conjugation operator. In fact if the real spin is included which may be done
when the spin orbit coupling is  there then alone these complex conjugation operator will
not be sufficient we will have to also include the sigma y part okay. So this h of q this
dagger this is equal to h cross vf now I will write it at only  at the k point so this is so I
just take only one Hamiltonian this q. So I only write it at k point which is qx sigma x
plus qy sigma y so this is at k point.

 If you want to write it at the other Dirac point that is at the other valley these are called
valleys these Dirac points are called valleys. The time reversal symmetry actually what it
does is that it changes the Hamiltonian from one valley to another and so this is at k at the
one of the Dirac points if you apply this time reversal operator then it gives you this
which can be written as minus h cross vf and I hope you understand why there is a minus
sign  the  minus  sign  arises  because  sigma  y  is  a  complex  matrix  even  though  it  is
Hermitian it is like this okay. So that is why it changes sign when you do a complex
conjugation it changes sign so this is equal to a minus sigma x qx plus sigma y qy and
that is nothing but the Hamiltonian at the k prime point okay. 



 So that tells you that we get this k h of q k inverse this is equal to a h star of minus k
okay and you can just do h star of minus k or k or rather this is I should write it as q
because q is a small wave vector this is q this is equal to h cross vf minus sigma x qx plus
sigma y qy and so on okay because we take a h star and then we also change so this term
does not change sign because sigma y changes sign upon this doing a star of that which
means taking a complex conjugate and qy is also changed sign because there is a minus q
there I should write it with a vector here but the first term that is sigma x qx sigma x does
not change sign but qx changes sign and that is why you get a minus sign and this is
nothing but you know the Hamiltonian that corresponds to the k prime point. If you take
the k point Hamiltonian to be the plus sign then this is a minus k or you could take it
alternatively the k prime Hamiltonian to have a plus sign and then the kwill have  a minus
sign so there is no nothing that's puts a restriction on which one you can take k or k prime
one of them is k the other is k prime okay. So what it tells  you is that the graphene
Hamiltonian remains invariant under both inversion  and time reversal. 

(Refer Slide Time:20.57-25.00)

So this is one and this is another and it remains invariant under both and the product of
them so combined both these symmetries sigma z k this and then h star of minus k and
sigma z k dagger this is equal to minus h of well you can write it as k or q depending
upon we will write as q okay. So this is called as the particle hole symmetry it is just a the
some literature calls it  as particle hole symmetry because it is a product of these two
symmetries that are one of them is the inversion the other is a time reversal symmetry
okay.

So we go back to our earlier discussion that these symmetries are essential for giving  rise
to a topological invariant or giving rise to something that remains you know invariant
and in this particular case of course the even if you sort of they as you sweep k or  the q
momentum vector the number of energy levels below the Fermi energy and number of
energy levels above the Fermi energy they do not change and so the system remains



invariant under these symmetries and then what is the you know in other than that what
remains invariant the Dirac points remain invariant in the sense that Dirac points can
move in the Brillouin zone if you do something to the band structure but if you do not do
any additional gap closing  then the Dirac points will remain where they are or rather they
will have zero band gap  at the Dirac points okay. They may move in the Brillouin zone if
you change the bands or rather you know deform the bands but the gap will not open
okay.

  One of the main things that is important in this particular case is that whether we can
make graphene topological okay. Let me box this and why we are asking this question?
We are asking this question based on a few hunches that we have or suspicion that we
have and I  will  tell  you what those suspicions are  but can we make graphene like a
quantum hall sample which had chiral edge states and so on that is the edge is behave
completely differently than the bulk that is the bulk remains insulating and the edges
conduct can we make graphene to have those kind of properties can it  behave like a
quantum hall sample which  has sort of topological invariant as a churn number and so
on. So that question or rather this kind of hunches arise from the fact that the Berry phase
in graphene is non-zero. So we have discussed Berry phase we know what Berry phase is
just to remind you that okay. 

(Refer Slide Time:25.03-30.01)

Just to remind you that if H the Hamiltonian of a system depends on some parameter
lambda and this lambda depends on time and lambda is a slow function of time say for
example and then you change lambda and you ask the question that after one complete
oscillation in t that is t comes back to the same point after you know sort of full rotation
whether the Hamiltonian comes back to the original configuration or rather it represents
exactly the same system or there is a phase that it picks up and this phase is irreducible
and this irreducibility actually is not the same as the dynamical phase that we are mostly
familiar with that is exponential i e t by h cross it is not that kind of a phase because that
kind of a phase will not appear in observables because you will take a mod square and



exponential i e t by h cross and an exponential minus i e t by h cross will go away and
will not have any phase information left and the time will also go away.

(Equation 1)

(Equation 2)

So is it like that or is there anything special about the Berry phase in graphene and it turns
out that there is something that is interesting and which gives rise to the fact that we do
have a reason to believe that graphene can become topological. So let us calculate the
Berry phase in graphene. So let me take this Hamiltonian the low energy Hamiltonian to
be h of Q which is let us call it a Q dot sigma I have taken sort of omitted the V f also it
does not matter you can put it back if you are writing the full Hamiltonian with h cross V
f and so on so forth. Because of this two dimensionality we can write Q in the polar
coordinates so you can write this as a Q and then a cos phi and a sin phi. It is like Q x and
Q y where Q x is equal to Q cos phi and Q sin phi and this is actually the magnitude of Q
is let us just write it as simply as Q.

 So this is the Q vector in this Hamiltonian that we have written let us call it equation
number 1 and let us call it equation number 2 and phi is the polar  angle that we consider
in two dimension. So h of Q which is what we have written here is nothing but so now I
will just add this Pauli matrices reminding you once again that they do not really express
the spin degrees of freedom but rather they are the sub lattice degrees of freedom and this
is like a cosine phi minus I sin phi coming from this one is coming from sigma x the first
term and the second term is coming from sigma y. So cos phi plus I sin phi and a 0 and so
this is the Hamiltonian it is a 2 by 2 Hamiltonian very easy to solve you can just solve it
by putting the determinant equal to 0 and find out the eigenvalues and the eigenfunctions.



You can make further simplification in which you can write it as a Q 0 exponential I phi
minus I phi exponential I phi and 0 and you can diagonalize it by just simply you know
minus lambda exponential minus I phi exponential I phi and a minus lambda this will
give you  a Q and a minus lambda etc. I mean so then you take the determinant equal to 0
and when you take the determinant equal to 0 this gives you the eigenvalues are plus
minus Q. So let  us call  it  a  EQ plus minus is  equal  to plus minus Q. So this  is  the
eigenvalues of this 2 by 2 matrix how about the eigenvectors the eigenvectors can also be
found they are  pretty simple I just write down the results but I am sure that you can do
this.

(Refer Slide Time:30.06-34.00)

 So the  two eigenvectors corresponding to the plus and minus remember that there is
there plus and minus signs. So let us call it a 3 so correspond to the plus sign and the
minus sign the wave functions are written as like 1 by root 2 these are normalized and
minus exponential minus I phi and 1 and psi minus is equal to 1 by root 2 exponential I
phi and 1 sorry this plus. So this corresponds to psi minus and psi plus they correspond
to the wave function corresponding to the minus and the plus signs of the eigenvalues.

 Let us now calculate the Berry connection and how is Berry connection defined we have
defined this let us write it like this this is equal to I and a psi minus and there is a Q and
then there  is  a  psi  minus and why minus  because just  to  remind you that  the Berry
connection is calculated by taking the contribution only from the filled band. Let me
write this alright so the filled band is the negative sign and which corresponds to the
valence band so filled means the valence band ok. So the band which is lower here we
are talking about the ones that are below the Fermi energy ok. So that is a filled band  and



we are just talking about the filled band ok. So we can calculate the Berry connection
now one has to remember that this has to be taken as a gradient with respect to the  Q it is
we are taken as cylindrical coordinate so it is a Q phi kind of space.

So this is  denoted by del del Q of Q cap plus 1 by Q del del phi of phi cap ok. Remember
that in  that sense this is actually a vector quantity and we should write it with a vector so
del Q is also a vector operator. Now you see that these psi minus or psi plus we are
essentially interested in psi minus it does not depend upon Q it only depends upon phi
thus this term will not be there the only term that will be present is 1 by Q del del phi of
phi cap. So then this is equal to it is a i over 2, 2 coming from the normalization this 1
over root 2 here that will give rise to a factor of 2 here and then a minus exponential i phi
I am taking the conjugate wave vector that is the bra of psi minus and i and 1 by Q del del
phi of exponential minus i phi and 1. So now I will have to take this so del del phi of
exponential i phi you will get a minus  i out and this the next one will be 0 so this is equal
to i square divided by 2 so thereis a exponential minus i phi 1 and this will be exponential
i phi and 0 and this will give rise to I think I missed out a minus sign here and this will
give rise to a 1 by 2 Q  phi cap.

(Refer Slide Time:34.50-40.10)

 So this is the Berry connection for graphene and we are eventually interested in the
Berry phase which is obtained from the Berry connection by taking a line integral of this
Berry connection in the vicinity of the k point that is so suppose you have this as the one



of the k points say there is a k point and now so this is the Fermi energy ok. So now in
this so this is like a 2D plane I am just drawing a plane and so the electron encircles this k
point and whether it picks up a phase that is unusual or there is a finite Berry phase and
that is what we want to find out and so the Berry phase that is gamma this is equal to dQ
because we are in the Q space we are in the low energy limit of the Hamiltonian. Now
make sure that this calculation that we have done for the low energy Hamiltonian also
holds for the full tight binding Hamiltonian which we have derived. 

So  we  have  initially  derived  the  tight  binding  Hamiltonian  and  from there  we have
expanded  the  wave  vectors  in  the  vicinity  of  the  Dirac  points  to  get  a  low  energy
Hamiltonian but all these symmetry considerations or even calculation of the Berry phase
or other things they all hold  for the entire tight binding model. You might wonder that so
the linearity is only in the  vicinity of the Dirac point and but you know as we move away
from the Dirac point the linearity sort of goes away this because of this cosine terms and
so on and cosine and sine terms so it is not there. Now the analytic calculations are very
easy in the low for the low energy Hamiltonian and that is why we are doing it for the
low energy Hamiltonian nevertheless as I said that it also holds if you want to show the
time reversal symmetry or the sub lattice symmetry inversion symmetry that is you can
still show it with the full tight binding Hamiltonian. 

 So we calculate the Berry phase here by taking a closed curve in the Q space in near the
K point if you have noticed it we have taken this Hamiltonian in the vicinity of the K
point so this is like because there is a sign that we have ignored here because there would
have been a sign with the sigma x term that we have ignored and so this is at K point. If
you do it at the K prime point you would get results which is slightly different with some
minus signs etcetera and that will also be discussed just in a moment. 

 So we calculate the Berry phase by taking the line integral of the Berry connection over
a closed contour in the you know the Fermi plane about the Dirac point. So we are right
now talking about the K Dirac point and this one is nothing but it is 0 to 2 pi and d phi
and q a so just  to  remind you that  dq is  nothing but q d phi  that  is  the polar  angle
converting into the polar angle so that the angle angular variables get integrated over 0 to
2 pi and so this is equal to 0 to 2 pi and d phi and q and a is nothing but 1 over 2 q from
the last so this 1 over 2 q in the phi cap direction and so this will  sort of go away and you
get a 2 pi over 2 this is equal to pi.

So the Berry phase of electrons in graphene is pi but then if you would have done the
same calculation at the K prime point you would have got a minus pi. So this is really a
plus and minus pi and this is another reason for suspecting that one can actually make
graphene topological and that would have to be seen. So what we mean by topological is
that we will have to open up a gap at the Dirac points but nevertheless there will be chiral
edge modes so there will  be modes energy modes or  energy states  that  will  traverse



across the Fermi surface and will  give rise to conductivity.  So if  you take a strip of
graphene it will look different in the bulk of the sample that  is it will look insulating or
rather it will have insulating properties but it will have only conducting properties at the
edges. So the gap will open up so the bulk will have a gap but there will be conduction
that is electronic states will be able to conduct  through the edge modes and this is exactly
the picture that we have presented earlier in the context of quantum Hall samples.

(Refer Slide Time:40.41-48.50)

 So this is the Berry phase comes out as you know sort of plus minus pi because of this
of course the Berry curvature which is usually defined by something like  this is equal to
curl of A which is equal to 0 because A is like 1 over 2q phi cap  direction so if you take
this curl in the polar coordinates you will see that this is  equal to 0 and the churn number
automatically vanishes for graphene and because churn number is actually this F into the
D2k over the surface and this is equal to 0 because the Berry curvature vanishes. Now
churn number is equal to 0 is not a surprising result because you need to have broken
time reversal symmetry in order to have a finite churn number however we have shown
that of course that is not the case we have time reversal symmetry for graphene and that
is why the churn number becomes equal to 0.

 Now the question is the if you look at this Hamiltonian let us look at this Hamiltonian
you see these the diagonal terms that are 0 and this is one of the reasons that there is 0
gap at the band gap at the Dirac points if you put a term there that is if you put a non-zero
term there that is if there is a sigma z as well then the gap will open up. So the question is
that is there only one way of opening up that gap we have two symmetries remember that
which protect the Dirac points which we have said one of them is the inversion of the sub
lattice symmetry and another one is the time reversal symmetry. So we can actually put a
little bit of so let us go back to that picture that we have drawn here and both are carbon
atoms but say for some reason we give a small bit of potential here and give a slightly
different potential at this sides in which case these carbon atoms are not equivalent and
one of the examples that we have is called as the hexagonal boron nitride.



Let me put a title here so how do we open up a gap in graphene. So let us talk about  the
hexagonal boron nitride  and it is written with a symbol HbN in which case it has exactly
the same structure excepting that these are not carbon atoms but one of them is boron
nitrogen boron nitrogen boron nitrogen and so on it is a hexagonal structure nevertheless
and now this sub lattice symmetry is gone which means that there are different potentials
so onsite energies are different and if we want to write down a Hamiltonian will have
terms such as say for example some potential corresponding to the boron site and let us
call it as A sub lattice so it  is like so I will write this boron with a small b because A and
B will otherwise will  have difficulty in understanding so it is a Ca dagger Ca and VN CB
dagger CB.  

So this is the boron energy onsite energy and this is the nitrogen energy. What we really
mean is that we can introduce a M sigma Z in the Hamiltonian what is M sigma Z the M
sigma Z is in addition to your term which is like h cross VF qx sigma x plus a qy sigma  y
you can put a gamma Z here just to make sure that we write down the Hamiltonian in the
most compact form for both K and K prime. So now we add a M sigma Z where M is a
mass  okay  I  mean  which  comes  from  the  onsite  potential  and  it  has  just  for  our
convenience that it  has a positive sign at A sub lattice and a negative sign at the B sub
lattice.

  Now if we solve this Hamiltonian it is again a 2 by 2 Hamiltonian there is no problem in
solving it now you will have a form which is h cross VF and then you have a term which
is like a M and now we have a qx and so this is equal to a qx minus i qy and a qx plus  i
qy and a minus M and that Hamiltonian if you wish to solve of course this h cross VF let
us put that equal to 1 at this moment because otherwise you know you will have to write
h cross VF here that is also okay and h cross VF here so let us write that h cross VF and
then there are M and minus M. If you solve this Hamiltonian you get eigenvalues that are
given by plus minus h cross square VF square q square plus a M square okay. Now at q
equal to 0 where the Dirac points exist now there is a gap that opens up and gap opening
up really does not mean anything in the sense that as M increases the magnitude of the
gap goes up at q equal to 0 that is at the Dirac points both at k and k prime you will have
a gap that opens up. 

Now opening up of this gap can be shown that it does not correspond to any topological
insulator in fact it  has a name called as a Semenov insulator. So for non-zero M gap



opens up and this is called a Semenov insulator okay which means that this insulator does
not have any topological property and it acts like a band insulator.

Band insulator means just a normal insulator which is gapped and there is there are no
counter propagating edge modes or there are no modes that are at the edges which behave
differently than the bulk and this is a Semenov insulator. Now we have one more card in
our hand we have tried breaking the sub lattice symmetry and we fail to get a topological
insulator but then we also have a time reversal symmetry. If we break that can the system
become a topological insulator okay. 

(Refer Slide Time:48.51-53.50)

So let us ask this question how about breaking the time reversal symmetry? Well there
are probably other ways of breaking the time reversal symmetry such as using a magnetic
field  which  we  have  seen  the  magnetic  field  automatically  breaks  the  time  reversal
symmetry. However Duncan Holden in a paper in 1988 it is a physical review letters
paper in which  he talked about a complex second neighbour hopping.

What is a complex second neighbour hopping? So he considered this graphene unit cell
once again and so these are the carbon atoms and by the way this paper was written
month before graphene was discovered. So it was honeycomb lattice which was taken as
a model for breaking  the time reversal symmetry and he wanted to say that if you break
the time reversal symmetry there will be Hall effect quantized Hall effect not the one that
you get in presence of a magnetic field. So this is called as the anomalous quantum Hall
effect okay. So let me sort of show what kind of second neighbour hopping. There comes
special kind of hopping so these ones that I am it is a second neighbour it is not a first
neighbour the first neighbours are belonging to the other sub lattice.

 So this is a neighbour which is a distant neighbour and it corresponds to hopping from A
sub  lattice  to  A  sub  lattice.Now  you  understand  that  when  we  write  down  the
Hamiltonian in the sub lattice basis this will be in the diagonal term. So even though
breaking the sub lattice symmetry or the inversion symmetry by putting a m term in the
diagonal elements it did not do anything significant but these ones also will sit on the



diagonal element of the 2 by 2 Dirac Hamiltonian and let us see what it does it is not a
priori clear what will happen but so this is okay. So these are 3 next nearest neighbour
hopping I will draw the other 3 by another colour and there is a particular reason that I
am doing it.

So this is 1 this is 1 and this is 1. So there are 6 next nearest neighbour hopping which
have 2 characteristics one of them is that they have magnitude complex magnitude let us
call this as i t 2, 2 for second neighbour and the i  is a complex number root over minus 1
okay and B the red ones red one red hopping which are say anti-clockwise red hopping
are have hopings have negative magnitude that is minus i t 2 and green, green hopings
have positive magnitude or vice versa it does not matter but this is we can follow these
convention and what happens is that this breaks the time reversal symmetry okay. 

(Refer Slide Time:53.52-)

Let me just  show very briefly why it  does and how it  does so if  you remember that
current is written as current is of course a vector which is written as minus i e h cross by
2 m or you can write it e h cross by 2 m i is the electronic charge and it is a psi star del
psi minus psi del psi star okay that is the definition of current in quantum mechanical
current and we have seen this in the context of equation of continuity where you know
the  divergence of j and this the time evolution of the probability density are related and
they are related by the Schrodinger equation.



And now this is like taking a gradient as you see that these are taking the gradient and
gradient means that we talk about in a 1D sense these gradients can be replaced by these
derivatives which can be written as  you know a del f del x so say f is a function of x is
like f m plus 1 I am writing it in  discrete on a lattice so this is equal to f m minus 1
divided by 2 a where a is the  lattice spacing this is like a derivative which is written in a
discrete notation so if you are making a particle hop from one to another then say m
denote the site indices and so the particle will have to hop from m plus 1 to m minus 1
and then the derivative is actually divided by 2 a there is of course a limit this comes
from this del f del or  d f d x equal to f of x plus h minus f of x divided by h limit h tends
to 0 okay.  

So, these are we discretize derivatives and I am just written instead of this formula  I have
written a 2 point formula that is hopping from m plus 1 to m minus 1 and so on. So,  if
you apply that then the current operator in on a lattice is written as i t 2 and a  c i plus let
us call it as eta dagger c i minus c i dagger c i plus eta and so on okay. So, because of this
negative  sign there the time reversal  symmetry  is  broken and so deliberately  Holden
assumed that there is a chiral hopping to the next neighbors chiral means that there is a
direction dependent hopping the green ones and the red ones have different signs which
means  that  the  clockwise  hopping  have  one  sign  and  the  anti-clockwise  hopping  of
another sign at that breaks the time reversal symmetry of the Hamiltonian and these eta
are nothing, but the next nearest neighbors.

So, let me stop here for now and we will show that how these time reversals symmetry
breaking second neighbor complex second neighbor chiral hoppings give rise to a new
topological  state in graphene and that is known as the Holden model okay and one will
have the hall  effect because the time reversal symmetry is broken and the churn number
will be non-zero however, there will be no Landau levels. In fact, the paper of Holden in
1988 it clearly says that there will be it is I mean hall effect without Landau levels okay
and we will call it as a anomalous quantum Hall effect stop here and we carry on with the
discussion  of Holden model.  Thank you.
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