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  We  shall talk about Kubo formula basically the formalism to calculate conductivity and
this  particularly we keep in mind about the Hall conductivity. So let us see how the Kubo
formula is derived and this is derived within linear response  theory okay. So this is an
example of calculating conductivity within a linear response theory. So the assumption is
such  that  one  has  many  body  system  so  it  is  not  just  one  particle  which  we  have
considered while we consider Schrodinger equation and solved for a single electron say
in presence of a magnetic field. So there is a presence of many particles and so we talk
about a many particle Hamiltonian. So this is that many particle Hamiltonian. Now why I
write it with a 0 is that this does not contain the perturbation term that we  are going to
talk  about.  However  this  can contain  inter  particle  interactions  present  in  the system
okay. So that is not an embargo here so H0 may contain inter particle interaction and now
we are going to talk about the perturbation that is introduced because of an external field.

Now in this particular case that we have talked about it is the electromagnetic field rather
there is an electric field in the longitudinal direction and there is a perpendicular magnetic
field being present. However it is enough for us to talk about only one kind of field and
that could be say just an electric field but then it can be generalized into both electric and
magnetic fields. 



So let me write down a general Hamiltonian in presence of an electromagnetic field. We
can  do  a  particular  case  for  an  electric  field  later.  So  we  have  said  this  that  the
Hamiltonian actually comprises of p minus q a whole square over 2m where this a is the
vector potential that comes in because of an external field and one can actually talk about
the gauge freedom because these a the vector potential can be uncertain by an amount
which is delta lambda where lambda is a scalar function and  this is perfectly acceptable
because even if you add or subtract a gradient of a scalar function b equal to curly is still
satisfied. So if we expand this Hamiltonian and if you want to write it specifically for the
electron then you introduce this q equal to minus e.

So this is my Hamiltonian.

(Equation 1)

  Now what I am going to do is that I am going to expand this. So this is a p square over
2m and then there is a 1 over 2m and then I have a term I can write it as e over 2m and
then there is aterm which is like p dot a and a dot p. Now in general they do not commute
that is why we have to write it separately but if  you choose a particular gauge called as a
Coulomb gauge which we will just see then these two terms can be combined into one
term and then of course you have a term which is a square over 2m and e square over 2m
into a square and this term is called as the paramagnetic term and this  is called as a
diamagnetic term. Now it turns out that we will neglect this diamagnetic term and in the
parlance of perturbation theory you can say that you know if b is not strong enough then
a would also be weak so a term which is of the order of a square can be neglected.

However we have seen that in our case the magnetic field b is not weak at all and then  we
need to take into account terms such as b square or a square. However it does not contribute
to the Hall conductivity even though it contributes to the longitudinal conductivity however
since the main focus is on Hall conductivity will drop the diamagnetic term altogether and
only worry about the paramagnetic term. This is of course the unperturbed problem which
is solved in the sense that these unperturbed problem we know that suppose this and this
acts on some wave function psi m will give  you a em psi m and that problem is known. So
which means that this unperturbed term which is a part of the many particle Hamiltonian  is
known or  at  least  if  you even add inter  particle  interaction  the  assumption  is  that  that
problem is completely solved and we have to only look at the effect of the paramagnetic
term. So this term can be written as so we specialize into this term for the moment which is
p dot  a plus a dot p and suppose we act so this that the paramagnetic term so let's let me
call this as HP and let this call this as HD D for the diamagnetic and P for the paramagnetic.



  So HP is like this so if I want to understand that how do I do a simplification of this  I
consider an arbitrary state psi and then this will be like e over 2 m now your p dot  a is
minus ih cross del and dot dotted with a and plus a into minus ih cross del and this  acts on
psi. So look at this term this term actually looks like a del and a psi where a is the vector
potential so this is like a dot del psi and plus a psi equal to psi del dot a.

 So there are these two terms that are present now you see that this is actually there are
two terms and these term if we consider that a gauge where this equal to 0 this is called
as a Coulomb gauge and in this Coulomb gauge it only is left with this term which is
same  as this term. Okay so with this minus ih cross adjusted there and so these two terms
can be combined and one can write down just one term which is so this paramagnetic
term which now let me call it as Delta H or H prime whatever you want to call it is that
extra term whose effect needs to be you know considered and this is nothing but this is
equal to e over ih cross so this is a minus ih cross e over m and a dot del. Okay so this we
want to consider its effects on psi m.

 Okay which is the unperturbed state so we are really doing a perturbation theory but in this
case  it's  slightly  different  notionally  from the  perturbation  theory  that  you might  have
learned in your second course of quantum  mechanics or even in the first course of quantum
mechanics this is done on a system of many  particles. Okay so once we know this so our
Hamiltonian has a form which is apart from these constants which we can take into account
so the constants are like this, this is nothing but so if you take the minus ih cross this DeltaH
takes a form equal to so minus ih cross del so this  is e a dot p over m and so the p is the
momentum so this is p over m is v and e into v is equal  to so we can write this as so there is
I think there is a sign that is missed here so this  there should not be any sign so there is a
sign that comes here and that tells you that  this v over m p over m becomes equal to v and
then e into v becomes equal to current  density so this is actually equal to minus j dot a. 

 

Okay so we are going to work with this as the perturbation which is minus j dot a and  this
perturbation the effect of this perturbation to linear order in a is what we actually talk about
when we do this okay.
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 So let me write down the perturbation term and this effect of this would be considered on
the conductivity of the problem and in particular we talk about the hall conductivity okay it
can also be used in order to calculate the longitudinal conductivity which we are not doing
here but can be done and also it is important to remember that you need to take into account
the a square term which is nothing but the diamagnetic term here okay. So this is our like
our starting point of a perturbation theory in this particular case now in order to proceed
further there are a few simplifications or even you can call them as tricks these tricks are
being introduced to you know make life simpler and to achieve the goal in a manner that we
wish to such as we there is no need but of course we take because these fields are DC fields
DC means they are constant fields either the  electric field or the magnetic field however we
take them to be an alternating field that is we talk about an AC field and with which sort of
oscillates with characteristic frequency Omega and as I said that there is no problem if we
simply talk about just the electric field even though we know that there is a hall there is a
magnetic field there which moves the electrons in the transverse direction and that's how the
pile up the charges pile up at the edges which gives rise to hall conductivity however we
will simply talk about electric field and do a linear response theory only with the electric
field okay.  

(Equation 2)

So let's consider an electric field of this form so this is your E0 and say exponential minus i
Omega t as I said it's a trick and the trick is introduced at this stage for the reason that we
are going to talk about a gauge which requires taking a time derivative 1 and secondly of
course keeping in mind that we are really talking about DC fields we will put Omega going
to 0 so as a limiting case okay.



 So this is a particular kind of harmonic dependence on Omega that we have introduced
here and  what we do is that so your E is obtained from minus delA delt we have taken it's
also a minus grad Phi which we have we can scale it to 0 and the time or this from the
Maxwell's  equation the electric  field  is  obtained from the time derivative  of  the vector
potential. So this is your E of t and it's precisely for this reason that we have taken it is a
function of time because your A of t it's  really like E divided by I Omega exponential
minus i Omega t okay.  

So this is your A and if you take a derivative so take a derivative so you take a del A del  t
or a da dt that's equivalent so we will have a E over i Omega and we will have a minus  i
Omega e to the power minus i Omega t so this Omega will cancel and i will also cancel  and
so on so you get this E equal to minus delA delt that relationship to be valid and that's why
so this is the form of the vector potential in terms of the electric  field okay. 

So now we know or rather we have assumed a form for the vector potential we can put that
back into this  equation so let  me now go one step back and sort  of start  naming these
equations so let's call this as equation 1 and this perturbation term to be equation  2 and let's
call this as equation 3 and so on. So we are to find you know the this potential rather these
perturbation term which has a form J dot A and A is assumed to have a form like this at the
end after do we do all the calculations we will put Omega going to 0 to take the DC limit
okay alright.

So let me calculate the current or the expectation value of the current in these perturbed
states so these states that includes the perturbation so we calculate J so J is the current
density that flows due to this perturbation term that we have so we need to calculate this
alright. So this is the job that we have in hand and understand that I remind you of three
pictures that in basic quantum mechanics you might have been exposed to one is called as
the Schrodinger picture in which you have the wave function that depends upon time  but
the operators do not so let's call any operator as don't depend upon time okay. So this is the
Schrodinger picture and then we have Heisenberg picture where it is just the opposite that is
psi  does  not  depend on time however  the  operators  depend upon time just  the reverse
scenario and if you remember that we have actually calculated the equation of motion by
taking a d dt of O equal to OH where O is any operator and H is a Hamiltonian as ih cross I
have to write here and so this is the Heisenberg equation of motion.  

A third picture which is very important for the many particle system in fact all the many
particle system the greens function and all the perturbation theory that we talk about  are



developed in the interaction picture and both where both psi and O depend on time  okay.
So this is in a nutshell this is the different pictures of quantum mechanics that one deals
with now it is very important to realize that when you calculate the expectation value of an
operator which is a physical observable it won't depend upon which picture you adapt  to
rather it will be independent of the picture and all those results will be same in all  the
representations.

 In any case since I said that the in the interaction picture both psi and H are dependent on
time H means the Hamiltonian which is an operator that depend upon time so we will resort
to the interaction picture here because you saw that the Hamiltonian or at least the H delta
H which we are interested in is time dependent through these A the vector potential. 

So we will resort to this picture and of course we will have to evolve the wave function so
wave functions are definitely time dependent as the time proceeds or passes by then the
wave function evolves as well all right.  So any operator let's say we have been writing it as
O but let's say any operator in this  picture the interaction picture it evolves as some U
inverse A of 0 and U which is a unitary operation and U is actually a unitary operator which
is written as exponential minus I H naught T over H cross you can set H cross to be equal to
1 otherwise you have to carry it all the way. In any case this is a unitary operation that  one
can perform on any operator such as the Hamiltonian and in this particular fashion and we
will see the time evolution of the operator. So A is the vector potential in this particular case
we are not talking about vector potential as an operator this A is okay let me change this
then let me go ahead with O because A is already the vector potential  and so on.

 So this is the O is the an arbitrary operator and this is your the unitary transformation  so U
is an unitary operator.Okay. So this is my operator and how does the wave function behave
this is also standard basically that comes from these interaction picture this evolves as some
T to T naught and then psi is T naught. So let us call it as A and let us call this as B so this
is how in the interaction picture the operator and the wave function evolve.
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All right so we will have to work in this interaction picture and perform a perturbation
theory in order to get the expectation value  of an observable. In this particular case the
observable is nothing but the current  density okay. All right so this one you know the U
T of T0 in the interaction picture  again is written as minus I by h cross some T0 to T
delta of h T prime and a d T prime  and so on. Now it's very important to understand in
the interaction picture this is actually the time evolution operator invokes the perturbation
term or the interaction term. So here you can treat both of them to be with you know
interchangeably the what do you want to call them I mean this same as the interaction
term in the language of the many particle systems.

Okay. So this is how the unitary operator evolves a system a state psi of T from an initial
state T 0 to a final state T. Okay. And that involves the interaction term or the delta H that is
here. Okay. There is another quantity called as T this is called  as a time ordering operator.
Now if you want to know in details you can look at these Fetter Walichka there is a book by
Fetter Walichka or there is a book by G. D. Mahan and there  are other sources available on
the YouTube personally I have a course on these advanced condensed matter physics which
deals with the developing the formalism of the perturbation theory from the scratch. So
what it does is the following it orders the times you see that there is a T 0 to T and we are
writing it as an integral which means that it goes from T0 to T0 plus delta T then it goes to
T0 plus 2 delta T and then it goes to  T0 plus 3 delta T and so on till it reaches you know the
T1.  So you need to have a mechanism which orders these from you know the earliest time
to the  right or left whichever I mean basically to order these times in the sequence that
they are you know occurring and why is that important it is important because your delta H
at time T1 will not commute with delta H at time  2 in general.

Okay. Otherwise if they commute at all times then there is no problem I mean then the
problem is much simpler and because you have a time dependent problem which explicitly
depends on time and  then you need to keep a track the way they are occurring. So this is
that time ordering operator that you come across. Okay. And it of course sort of make sure
that  you know the ih  cross  du dt  is  equal  to  some deltaH into  u.  So that's  that  is  the
Schrodinger equation for or the equivalent of the Schrodinger equation for the operator.

 So that's the time dependent Schrodinger equation for this unitary operator u. Okay. So let
us understand that at time t equal to infinity minus infinity sorry at time t equal to minus
infinity you had nothing you had only the bare system. Okay. And at time t equal to minus
infinity you have switched on the electric field.



Okay. So the system  that you let the system evolve and come to at the present time or at t
equal to 0 and so on. At this time the many body ground state let's write this as 0 it's a
ground state but nevertheless some many body ground state which may have you know
interactions inbuilt into it but of course we do not have any effect of delta H at t equal to
minus infinity and we'll call this state as 0 with a ket understanding that 0 is actually a many
body ground state. Okay. Fine. So all right so we'll do it step by step.

So u of t it is actually u of t and with a t0 from minus infinity. Okay. So we set t0 the
earliest time the most primitive time to be at minus infinity when there was no effect of the
perturbation and after that  the perturbation is switched on. Okay. So the t0 goes to minus
infinity and because now it depends only on one time variable we simply call it as u of t.

Okay. So you always  calculate some expectation value in a perturbation theory by using
the different orders of perturbation  theory and so on. So we are going to calculate J of t and
the J of t can be calculated within  this 0 that is many body ground state evolves a J of t and
a 0 and t and so on. So this you are calculating the expectation value between the known
states. So this 0 is at t equal to minus infinity but that many body ground state would evolve
with time that's why we have written 0 of t and we still assume this is a intrinsic assumption
of perturbation theory that you still have the 0 that is a ground state to be a valid description
of  the system. So your the delta H term hasn't taken the system too far away from the
ground  state so that there is no point in talking about the expectation value with respect to
the ground state.

But the perturbation theory intrinsically assumes that it still is a you're not too far away
from the ground state and that's why the ground state expectation values can still give you
meaningful you know corrections because of the perturbation to the unperturbed energies or
other quantities like here we are talking about J average of J. 

So what is this? So this is equal to the 0 and then you have a U inverse so I'm evolving the
state as we have done it here, here U of t now t0 is minus infinity so this and then J of t and
then U of t and then a0. So this 0 is that many body ground state at t equal to minus infinity
all right. So we will have this as so this is 0 and this is a J of t and plus i over h cross minus
infinity to t and then I use a dummy variable dt prime and then I have a commutator which
is delta h and so this is at a t prime and then a J of t and so on. So this is the let me use
another bracket so that it doesn't look like the commutator bracket. Where does this come



from? You have to understand that I have done a simplification or rather skipped one step
let me show you that step here. 
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So our U of t is simply equal  to now of course a time ordering is of course required at its
minus ih cross minus infinity  to t h delta h of t prime and dt prime. So this is your that and
then I have to calculate  this quantity U inverse t Jt and U. So U inverse t J of t and U of t so
this is equal to the  time this thing and exponential i over h cross minus infinity to t delta
delta h t prime  and dt prime and now I will write a J of t and then I will write exponential
minus i  by h cross minus infinity to t delta h of t prime and dt prime. So now what we do is
that we make this expansion that exponential minus i by h cross this minus  infinity to t and
delta h t prime dt prime I write it as 1 minus i by h cross minus infinity to t delta h delta h t
prime dt prime and then of the order of delta h square is neglected  ok.

So this term is neglected because the intrinsic assumption of a perturbation theory is that we
will not of course here we want to see it in the linear response of the system that is to first
our power in  a  how does the system behave or  how does  the properties  of  the  system
behave and also it is true that in keeping with the assumption of perturbation theory we are
not considering any higher order ok. So this thing let us call it so this is equation number 3
let us say this is equation number 4 this equation number 5 this is equation number 6 and
this is equation number 7 and so we will have maybe this one as equation number 8 this is
equation number 9. 

So if you put this in equation 8 putting equation 9 in equation 8 so we have a 1 plus because
this u inverse is 1 plus i by h cross minus infinity to t delta h t prime dt prime and a J of t



ok. J of t is here in equation 8 and then 1 minus i by h cross minus infinity to t delta of h t
prime and dt prime ok. Alright so I have two brackets at the two  ends and I have a J t in
between so I will just do a multiplication so this will be simply a J of t that is 1 J t and 1 and
then second term will be i by h cross I have infinity  to minus infinity to t delta h t prime J
of t ok.

And of course you have to write dt prime there you can write it and then the next term will
come with a minus sign i by h cross that is 1 Jt and the term that is there you understand
that just do this simplification and then you will have so a J of t and a delta h of  t prime and
a dt prime you can actually keep the J t outside this thing ok. The J of t  can be outside and
you have a minus infinity to t and so on ok. So this is your term and this can be written as J
of t that is the first term and then  I have plus i over h cross now you see that this is a delta h
J and this is J delta h  so this is like a commutator so this is written as a minus infinity to t
dot dt prime and  this h prime of t delta h of t delta h and a J of t it really does not matter
because  the integral is over dt prime so it is not touching the t that dependence of J. 

So this  is the commutator so this is the commutator that I have talked about at the end of
the  last slide here that commutator ok. So and then there is of course a term which  is the J
of t which is here as well so and now this J of t is not important for the reason  that this J of
t is a current density without an external electric field ok which can be there due to a variety
of reasons but it is not important for us we are only interested in this commutator and which
arises because of the electric field alright.
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So we  got  an  expression  for  that  for  your  J  now let  me  get  an  expression  for  just  a
component of J that is maybe Jx or Jy or Jz and so on so forth so this is equal to equal  to 1



by h cross omega and I now I put the explicit form I use your delta h equal to minus J dot a
and a I use it as what has been written earlier that use a as E over i omega exponential
minus i omega t ok alright. So if you do that then the particular component of the current
that looks like this and this is equal to 1 over h cross omega and then minus infinity to t and
dt prime and a 0 and Jit prime and a Jit and a 0 and the you  have to write the electric field
so this is Ej exponential minus i omega t prime ok. So the commutator of delta h and its t
prime and J at t takes this form because delta h is nothing but J dot a and then you use the
relation for a which we have assumed within a certain gauge and so this is equal to a Jit
prime and a Jit so this we've taken within  the many body ground states and so on ok. 

Now it is easy to see that or rather it doesn't harm us if we assume the system is a time
translationally  invariant  that  is  we can  translate  time  without  any sort  of  breaking any
symmetry so it has time translation symmetry because  there is nothing that breaks that time
translation symmetry. So what it means is that there are two times t and t prime that you see
there  so this  two times  can  be  converted  into  one time  if  there  is  a  time  translational
symmetry which means a t minus t prime can be written as some t double prime this is
perfectly fine and we can in that case your the limit actually changes from minus infinity to
t so this is  becomes minus infinity to t this limit becomes equal to 0 to infinity ok.

You can trivially see that Jit in that case becomes equal to 1 over h cross omega and from 0
to infinity and we have a dt double prime and this is equal to 0 and Ji 0 so t prime we are
setting to 0 and then we are replacing  t  by t  double prime because of the translational
invariance and this J it double prime and 0 here and then we will have an exponential so
there is an exponential i omega t there inside so this is multiplied by E j exponential minus i
omega t ok. So this is a commutator we should not forget  that this is a commutator ok. 

So Ji at 0 and J i at some t double prime and then you  have this thing to be present there so
the only you know time dependence is coming as a harmonic function exponential i omega t
and so on. So this gives you the linear response of the conductivity so the conductivity is
proportional to so remember that relation Ohms law that J equal to sigma E now you have
calculated J which is the expectation value of J and this is equal to the sigma is here and this
will be an exponential you know a minus i omega t here. So the sigma xy which is a Hall
conductivity or the Kubo formula for the Hall conductivity is a sigma xy equal to 1 over h
cross omega 0 to infinity and you have a 0 Jy 0  Jx t a commutator 0 and exponential i
omega t and  so on ok.



So that's the formula for the Hall conductivity and this is a well-known result  so this is the
result for the Hall conductivity and which involves only commutators which are J y that's the
current density in the y direction and the current density in the x direction at a different time
one of the times has been set equal to 0 and this sigma xy is a dynamical conductivity because
it depends upon the frequency and of course when we take the DC limit that is we'll put omega
equal to 0 this will become the the Hall conductivity  that we have seen ok. 

This is Kubo formula for Hall conductivity and if you want the longitudinal conductivity that
also can be done so you have to have sigma xx where it will be the current operators at two
different times but in the same direction so that will give you the the longitudinal conductivity. 
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So what we do next is that this is pretty much you know the formula that we wanted to
derive but this is not yet in a  form that we can use it to compute ok and let us get it into a
form that's you know  we can compute this and so what we do is we can write down this J
of t to be equal  to some U inverse J of 0 and U and we have seen this, this is the
interaction picture  this is how the operators transform and U is nothing but exponential
minus i H0 t by  H cross ok. Then we can use basically the eigenstates of H0 which we
know that's why I want H0 which are say m, n and so on so forth ok. So then we can
write down the sigma xy omega by introducing these states the basis states of or the
eigenstates of H0 as 1 over H cross omega 0 to infinity and a dt exponential i omega t and
I use the  completeness of states that is use this n, n that's equal to 1 the sum over n. 



So this  is there and then you have a term which is 0 Jy n n Jx 0 and a minus 0 Jx n n Jy  0. So
this is the simpler form in the sense that I have used the information that is already inbuilt into
the problem that is we know these eigenstates ok. So in a given problem these states will have
to be known these n and 0 and m etcetera all these things have to be known ok. And of course
we have to write down the energy exponents. So this is equal to En minus E0 t over H cross
which is that exponential i omega t and this is also exponential E0 minus En t over H cross ok. 

Now off hand it looks like you are calculating the velocity operator because J is nothing  but if
you write it's n Ev even if you know don't write that n which is an electronic density it's still E
into V. So V is the velocity so it's a y component of the velocity between these states of H0
which  are  known  and  then  x  component  of  velocity  and  then  multiplied  by  an  exponent
involving the energies of those states and minus of the Jx and the Jy they are in opposite order
or just the reverse order because we are talking about a commutator here ok. 

Now we'll perform this energy integral that is and in order to perform the energy integral there
are  two things  that  you need  to  keep  in  mind  ok.  Now the  energy  integral  looks  like  dt
exponential i En minus E0 plus omega into t and the other one looks like so 0 to infinity both
the cases and dt exponential i E0 minus En plus omega t I mean t and then of course there is a
H that one needs to put  there omega by H cross is energy omega equal to H cross omega ok.
So you have these integrals that you have to perform and these integrals will diverge at infinity
because these are exponential integrals.

So  the  standard  technique  for  calculating  this  integral  such  that  they  don't  diverge  is  by
introducing a  little  bit  of  damping ok.  So let's  say that  you know these are  En minus E0
whenever you have these if you just perform the bare integral it will go to infinity and what you
do is that you change omega to omega a plus some i eta or something ok. So once you do that
this will not diverge  farther because of this small eta and it will go into the complex plane and
there is also  a reason that you put a plus and not a minus because you are considering t greater
than 0 right from 0 to infinity. So there is no negative time so you want to do a contour  integral
by enclosing it in the upper half plane so that you can use Jordan's lemma. So this integral over
the real line is converted into a complex integral by you know sort of  trying to close it from the
upper half such that in this big circle so this is from 0 to infinity.

So you close it and it becomes a closed integral and then you can use the residue theorem.
Please get used to this complex integrals because they are they are they are ubiquitous in terms
of these all these contexts of condensed matter physics, Green's functions and so on ok.
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 So once you do that then the the sigma xy takes a form which is equal to minus i over omega.
So after you do the integral over time from 0 to infinity by using the complex integral now just
to remind you so you initially had only over the real line  from 0 to infinity. What do you do is
that you introduce small imaginary parts so that the pole that is where wherever you have pole
of this or rather this he resonance you bump it up by a plus i eta here and enclose it now it
encloses the simple pole or whatever is the nature of the pole and then you can use 2 pi i into
sum of residues, ok.

And then you perform this integral please go through this text called there is a textbook  on
complex analysis by Churchill ok. It is a very good book for complex analysis which tells you
how to do the complex integrals and so on. So this is equal to that and then of course your n
which is this n here this is not same as the as 0 so these are some excited states of the system
and that makes sense because for carrying the current it it has to you know visit the excited
state because there is a conductivity in the system. So the system would go from the ground
state to the excited state and the excited states are assumed to be different than the ground state.
So this is equal to 0 jy n and n jx and 0 divided by the energy denominator which is given  by
En minus E0 and a plus another term. So the term is 0 jx n n jx 0 divided by h cross omega plus
E0 minus En, ok. 

So you get this energy denominator. Now we are almost there excepting that we have to take
the DC limit and DC limit means omega going to 0 and how do we take  that? Let us you know
sort of write down the denominator as En minus E0, ok and this is equal to you write it as E n
minus E0 and you write it as1 plus h cross omega divided by En  minus E0 and then you write
it as 1 divided by En minus E0 multiplied by 1 plus h cross omega  divided by En minus E0 to
the power minus 1 and they do a binomial expansion and keep only the term which is with the



first term only which is linear in omega. So this is 1 by En minus E0 plus so this is equal to
minus h cross omega divided by En minus E0 whole square. So I do  a binomial expansion and
the minus sign gets replaced here, ok at this place and then you do this and then of course these
are terms which are omega square that are neglected.

Similarly you do that for the other term the second term inside the square bracket which is h
cross omega plus E0 minus E n and this will be like E0 minus En and minus h cross omega
divided by E0 minus En whole square and plus omega square order of omega square which
again  can be neglected. Now we actually drop this term the first term which is here so these
terms we  drop, ok. In fact for Hall effect these terms do not make a contribution and you keep
the term that is linear in omega because this has no omega part so this is like a DC thing and I
mean DC contribution which is not an important thing and in any case that they really do not in
a translationally invariant system they do not contribute to the Hall resistivity and so on, ok.  

So what you do is you put them there in that equation and then you see very nicely there  is a
omega in the denominator of equation so I have equation 9 and let us call it as  equation 10 and
equation 11 which is the Kubo formula and say this is equation 12 again another form of Kubo
formula 13 which is another form of Kubo formula we are progressively  getting you know
better and better in terms of its computability, ok. So now if you keep this term either of the
term which are same because there is a h cross omega and there is a square in the denominator
and the square means that en minus e0 square is same as e0 minus en square and the omega
will cancel with the omega in the denominator of equation 13, ok.

So once you do this your sigma xy becomes equal to now I do not need  actually the omega
gets cancelled so it becomes a DC expression and this is equal to ih cross  again n not equal to
0 and 0 jy n n jx 0 and minus 0 jx n n jy 0 jy 0 and either you call  it en minus e0 whole square
or e0 minus en which are same, ok. So this is really the Kubo formula for the Hall conductivity,
ok.You can also get  the longitudinal  conductivity  there are many things that  we have said
which are important that the diamagnetic term should also come in in order to calculate the
conductivity the longitudinal conductivity but here nevertheless we are interested in the off
diagonal form of conductivity which has this form let us call this as equation 14 and this is
what we wanted to calculate and this when you calculate it on a quantum Hall system it gives
you a values which are  h over e square and there is a integer in the denominator or you can call
the so the  conductivity so that is a resistivity the conductivity is actually n into e square over  h
where n is an integer, ok.That is where we stop for now and we will continue from here. Thank
you.
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