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Edge modes of Landau levels, Incompressibility of Quantum Hall States

  We  have been talking about various properties of the quantum Hall systems and issues
related  to a quantum Hall effect. We will continue with that discussion and unfold some
more you know unanswered questions. So, let me start with a nice idea that had been put
forward by Laughlin,one of the persons who I said that got a noble prize for the fractional

quantum Hall effect. So, he had put this idea called as a Corbino disk geometry, it is
sometimes written with a D I S K. So, this is due to Laughlin and somehow it should not
depend upon the geometry of the disk, but this argument for this particular case it does.
So, what I you know try to tell you here is that there is a disk ok and it has an annular

region the electron gas actually resides here.

(Refer Slide Time:1.22-8.15)

So, in this region between that and there is a hole inside this region. So, this is a disk
geometry and this  disk geometry has this  2D electron  gas at  low temperature at  low
temperature because we want the coherence of the electronic wave functions to exist. So,
that the quantum phenomena becomes apparent and that is why we want the temperature
to  be low and this is the geometry and there is of course, this electrons are in presence  of
a magnetic field, but in addition to that there is a magnetic field that threads. So, this
sample or this system rather and this hole inside.



So, this is like a bagel shaped thing. So, the hole inside is precisely that we are able to
thread  it  with  a  magnetic  field  and as  I  said  the  disk  geometry  is  important  in  this
particular case and so, we thread a flux phi through this and let us see that what this flux
has got to do with Hall conductivity. Just a priori Laughlin thought it to be this quantum
Hall effect phenomena to be like a quantum pump which pumps electrons from one edge
of this disk to the outer edge or the inner edge to the outer edge and so on ok. And so, if
we increase this flux slowly ok,I will tell you what slowly means if you increase  this flux
slowly from 0 to some phi ok and say let us call it as a flux quantum which  is phi 0. So,
just to remind you that phi 0 is nothing, but H over E and once when one does that.

So, when I say slowly what I mean is that the over a time period that time period let  us
call it as a t0. So, slowly such that t  is much much greater than the energy scale of the
problem or the  inverse of the energy scale of the problem and here the energy scale of
the problem is  given by omega B is actually h cross omega B, but this is we understand
that this is  you know you can take h cross to be 1 for the moment or you can write also h
cross omega  B. So, this is what I mean by slowly. So, you increase the flux slowly from
0  to  this  flux  quantum  and  if  that  happens  the  classical  electrodynamics  says  that
whenever there is a change in flux it is equivalent  to a EMF being developed. So, it will
develop an EMF which is given by there is not electric field

So,  we  will  write  it  as  EMF  and  so,  this  is  actually  like  a  voltage  it  is  called  as
electromotive force, but it is like a voltage and this is equal to nothing, but at this del phi
del  t where del phi is the change in the flux or d phi dt if you wish. So, over a time t so,
this is 0 to phi0 and in a time frame which is given by t0. So, this is equal to so, the EMF
developed is given by phi0 by t0. So, this is the EMF and because of the EMF developed
there will be a transport of say n electrons from the inner edge of this disk which is here
let me show it by a color. So, the electrons from here will be transported to here.

  So, there will be n electrons that will be transported from the inner edge to the outer
edge and that will give rise to a current and as I said that there is a disk geometry. So, the
current is purely radial. So, the radial current that you know is it gets generated because
of this transport of electrons n electrons is nothing, but n e which is the total  charge
divided by the time  over which this event takes place. So, it is minus n e by t 0 and so,
the rho x y the basically the hall resistivity you can call it a RH as well this is equal to the
EMF which we have found out divided by  the radial current which is IR which we have



just written down. So, this is minus phi 0 divided by t0 and divided by a minus n e over t
0 and this is  nothing, but this is equal to phi 0 the minus sign cancels the t0 cancels and
this is equal to n e and this is putting phi 0 equal to h over e one gets h over n e square
and this is precisely the hall resistivity that we have been talking about that these n which
denotes an integer and in this particular case n denotes a number of electrons that are
transported from the inner edge of this system to the outer edge of the system and  h over
e square sets the scale of the resistivity and this is the hall resistivity.

So, Laughlin actually  viewed it  as a quantum pump which pumps electrons from the
inner edge of the sample to the outer edge and this is a nice visualization of the quantum
phenomena. So, that is what happens that there are one electron being transported from
the inner edge to the outer edge or there are two electrons that are transported from the
inner edge to the outer edge as you increase the magnetic field that threads the system
which is in the you know the region inside and in the annular region where the two-
dimensional electron gas exists that responds to it by whose conductivity or the resistivity
behaves in this particular fashion. So, this is one of the things that have been put forward
at that time. 

(Refer Slide Time:8.39-20.40)

Let me tell you something interesting about the edge modes you have heard the edge
modes taking part  in conduction  and conductivity  of Landau levels  ok.  Once again I
remind you of the picture let me draw it here so that. So, these are the closed orbits which
do not give  rise to any passage of current. However, the electrons do not get to complete
full oscillation at the edges and they would you know move in this fashion at the edges.
So, they would  give rise to drift as well as you know conductivity. It is very important to
understand which we have not discussed and we are going to discuss now is that if the
electrons actually move in this particular direction on the upper edge of the sample it will
move in the opposite direction in the bottom edge of the sample or in the other edge it



could be reversed that is at the upper edge it moves in a direction which is from right to
left or and in the bottom it could be from left to right ok. Now these are called as chiral
modes and these chiral modes exist at the boundaries of the sample or at the edges of the
sample and they call  it  chiral  because there is certain kind of handedness or chirality
which means  that they are you know opposite in direction at the two edges ok.

And so, you can visualize  it as just like a highway on either side of the highway the cars
move in different directions the kind of drive that we have we moved on the left side of
the lane and the ones that are going from in a particular direction moves in the forward
direction say moves in the left lane and whereas, the one that comes in the other direction
would move in the right lane. And so, these electrons exactly follow this lane structure
and just like the cars follow the lane driving for safe you know driving the electrons they
follow these safe driving principle and they only propagate in one direction at one edge
of the sample  ok. Now this has not been made clear and we are going to make that clear
now and we also want to understand how these edge modes appear ok. Let us again write
down the Hamiltonian in the Landau gauge which we have done earlier more than once.
So, the kinetic energy is written as so, these are so, I have written 2 m outside and we
have taken again a gauge in which so, it is a gauge that is there in  the y direction.

So, the gauge is that the this is 0 Bx 0 and so on. So, x is the coordinate  x coordinate and
B is the magnetic field and in this gauge it is a sorry I should write  it the so, it is a plus E
Bx square and a plus there is a square and plus. Now there  is a Vx that comes. So, your a
is equal to 0 B x 0 ok. Now this V of x is coming for  the edges because of the presence
of edges.

So, let us see how it can be you know understood. So, this Vx is like a potential that is
felt by the electrons say for example, you have a potential which is say given by this and
there are these edges and the edges give rise to a potential for the electrons because they
cannot go out of the sample. So, it is like a potential that they feel at the edges where they
have infinite potential such that they are unable to go out it just like a particle in a box.
So, at the edges they feel this  potential let us say between some minus a and plus a which
defines the dimension of  the sample ok. And of course, in the absence of this potential
the wave function is or the lowest wave function is simply the ground state basically the
ground  state wave function is simply a Gaussian.

I told you that it is a hermite polynomial multiplied by a Gaussian. So, that polynomial
for the lowest one is equal to 1 or a constant and it is only a Gaussian which has a width
which is given by this magnetic length which we have written down several times which
is h cross over Eb ok. This came in the wave function if you look at the previous classes
you will see that these LB which we call it as a magnetic length and we call it a LB



because it depends on B all right. So, this potential is this and it is quite flat at all places
or rather in all regions  between minus a and plus a and shows a discontinuity at the edges
ok. So, what we can do is that  even if there is say some disorder and impurity where the
potential can actually be like this  in between and we really do not care about the nature
of the potential which is what  we will show there.

Now, this potential is smoothly varying at  all places excepting at the boundaries. So, we
can do a Taylor expansion of this potential V of x which is equal to V of x0 and a plus a
del V del x x minus x0 plus terms other terms which we neglect ok. So, this is the first
and term see V of x0 is a constant  which you are doing a Taylor expansion about a point
x 0 and assuming that these is smooth  even though with disorder it does not look smooth,
but then if you pick up a region where it looks smooth this expansion can still be done.
And once this you do the expansion the middle term that is the first term is anyway a
constant. So, it does not bother us much this looks like an electric field ok.

So, it is like a potential due to an electric field ok. So, then because of this term the
particle  actually acquires a velocity in the y direction. So, there is a drift velocity in the y
direction. So, that drift velocity can be written as a Vy equal to minus Eb and a del V del
x  as it is written there. So, this is the drift velocity in the y direction ok.

So, once we get this of course, each momentum is actually labeled by a wave function
rather it is a wave function is labeled by a momentum K which is located at different x
positions  that is different values of x which is given by x equal to minus K Lb square and
this  K is the momentum and then Lb is a magnetic length that we have talked about and
it has  a drift velocity. 

So, now you see that in this left edge del  V del x is negative and at the right edge it is
positive. So, del V del x is negative  here and it is del V del x is positive here and this is
why we said that the modes are chiral  because they have opposite velocities at the 2
edges. Remember we just said that  at the 2 edges they move in a different directions and
because their  sign of the velocities drift  velocities  in the y direction are different.  Of
course, now we are talking this as the y direction you just change your picture you could
draw this picture like this and if you are more comfortable in thinking about y direction
being this and so on and so on and then you have all these cyclotron orbits which do not
take part in any kind of conductivity  okay.



So, this because of this sign difference between the 2 this del V del x at the 2 edges the
electrons move with different velocities or directions at the 2 edges of the sample. So, if
Vy at the left edge has a it has a sign different sign with respect to that at the right edge
and because there is a drift in the y direction that is Vy there will  be a current that will be
generated which I can find it out by taking this dk over  2pi this is like the 1 dimensional
Brillouin zone and d k is integrating over all the k modes or the momentum values and
then I also divide it by 2pi just that you know it does not blow up and I said because the
1d Brillouin zone is from minus pi to plus pi.So, this is divided usually by 2 pi if you take
a 2 dimensional Brillouin zone this will be like  d2k divided by 2pi whole square and so
on okay. So, this is in 1 dimension we are  talking about. So, it is a V y and d k okay and
then we put all these factors there.

So,  one gets that it is a 2 pi L b square L b square is equal to h cross over E b and this  is
equal to a d x 1 over E b and del V del x which I basically write it as d V d x without  any
loss of generality. So, it is now a k space integral in this step is converted into a real
space by using these velocity expression and we have also used Lb equal to or Lb  square
equal to h cross over E b okay. 

(Refer Slide Time:20.44-27.0)

Now, let me calculate this neatly. So,we have the Iy the this Iy can be actually calculated
to be equal to E square over 2 pi h cross into Vh okay where 2 pi h cross is of course,
nothing, but h and Vh is the  hall voltage okay. Then what happens is that if you get this
then a sigma xy which is the hall conductivity or you can talk about the hall resistivity
which is inverse of that this is equal to Iy by Vh or in other words rho x y which is equal
to Vh by Iy which  gives you h over E square okay.



So, this is the conductivity or the resistivity  let us let us talk about resistivity you can call
talked about conductivity for the. So, let us say conductivity of a single Landau level and
this is resistivity. Even though we have derived it for just one Landau level it does not
matter if you have a number of Landau levels many of them because you know as long as
your Fermi energy lies completely covering one Landau level or the other this argument
still holds good. The other good part of this is that we have not talked about the explicit
form of V of x. We simply have aken that they have discontinuity or there is a sharp rise
only at the edges and you have no problem in assuming that even if that red curve that we
had shown it with it  is also equally applicable.

So, the details of Vx is missing and that is why this argument is elegant because there is
no sort of specifics of the potential that is included. It also you know saves us from this
ambiguity  that  we have been facing  that  how a Landau level  can conduct  because a
Landau levels were found to be extremely flat and extremely flat implies that there is
there is no velocity the kinetic energy is 0. So,if  the kinetic  energy is 0 how does it
conduct and the conduction is really happening at the edges if you you  know go here and
if you try to let us let me use a color. So, this is where the Fermi  level is then you have a
conduction because that is where here at this point let me circle it out here and here the
levels the Landau levels actually meet the Fermi level. So, if there is a crossing of any of
the levels across the Fermi level then there has to be metallic conductivity metallic like
conductivity.

 So, as I said that we have discussed it for a single Landau level, but it holds for a large
number of Landau levels as well as long as the Fermi energy lies between the filled and
the unfilled Landau levels. And let me ask another question why are the plateaus robust,
but also why are the edge modes robust. And when I say robust I mean that because there
are a lot of impurities and soon.

So, induced by the impurities or induced by the scattering of the impurities do not the
edge modes also go away do not they melt away in a heavily disordered sample. And the
answer is no the edge modes are robust because of the reason that if you think of this
picture again you can decide on your x and y axis the edge modes are here and they are
here.



So, there are no states for these edge modes to scatter because all of them are insulating
modes all these modes here they do not allow the electrons to occupy because they are all
insulating ones their character is completely different from the character that you have
for the edge modes. So, if this thing has to scatter it has to scatter from here to here or
here to here because that is where only you have metallic edges or the nature  of the states
are conducting. I mean the nature is conducting for only the edges and they cannot scatter
and  because  you are  talking  about  a  macroscopic  sample  this  is  too  far  off  and the
probability  of scattering would be extremely small.  So, this  is  the reason that can be
assigned to the robustness of the edge modes and they do not go away. In fact, what
happens is that there are experiments. So, if you actually put a single impurity like this.
So, this is the impurity that you have put and try to you know find out the  edge modes.
So, the edge modes will do like this. So, they will you know. So, this is  in this direction
say in this direction.

So,  they  will  simply  maneuver  around  the  impurity  and  will  not  get  scattered  by  it
because if it gets scattered then it has to scatter to some state available state there is no
phase space for scattering and that is why  they cannot scatter to anything and they will
remain robust and will give rise to the conductivity. 

(Refer Slide Time:27.03-32.50)

Let us ask another question or rather rephrase this how the plateaus are robust. Plateaus in
the hall resistivity or conductivity.  So, this I mean how do they exist and they are so
much of impurity and disorder why they do not just again just melt away just as we said.
So, suppose we have only filled Landau levels and such that the magnetic field is like this
it is n0 by nu and a phi0 we have defined everything your phi0 equal to h over  e n0 is the
electron density and nu is an integer.

So, this is the condition that has to be satisfied for the plateau to occur because we have
said that a B over phi0 equal to some n 0 by nu and this just that equality condition would



give rise to a plateau. So, the moment you are tuning B you go out of this condition your
B becomes not equal to  n0 by nu and phi0. So, for a point that is for a given point this
condition  is  satisfied  and at  the  next  point  that  is  at  the  next  available  value  of  the
magnetic field and how do you change the magnetic field you change the current in the
electromagnet which is producing the magnetic field. 

So, the magnetic field changes its value and this condition  goes out of balance and the
equality becomes a non equality. If that happens then how are plateaus formed in the first
place because then you will have  a small you know infinitesimally small region where
this condition is satisfied and after  that this condition is not satisfied.

Now here is where the disorder comes into the picture and which is what has been told
earlier that consider a single Landau level. This Landau level looks very sharp when we
have calculated it from considering an electron in a magnetic field, but however, when
there is disorder in the system this really looks like a band of certain width ok. Then it
gives a finite width to the Landau levels. I will be writing Landau levels as LL in a lot of
places.

 So, please get used to it. So, even if this condition it goes out of this equation goes out of
balance that is the equality breaks down even then the plateaus continue to exist because
of this certain you know width of the Landau levels now owing to disorder ok. Disorder
does not mix two Landau levels the other Landau level is here which is also slightly
broadened  and this broadening is due to disorder ok. So, it the sigma xy remains constant
or the rho xy remains constant as you know the chemical potential sweeps through this or
the magnetic field is increased the there is for a region that is you know this inequality
conditions  remains  as  equality  because  there  are  a  lot  of  conducting  levels  that  are
available and that is why this rhoxy it is a freezes at a given value and then when you
increase magnetic field enough then these physically the chemical potential goes out of
this band and there has to be jump in the rho xy and so on which is what we have said ok.

So, this is the reason that this plateaus are robust and they do not go away and if  you
make the sample more and more disordered there is nothing happens to these plateaus
because  this  plateaus  actually  they  arise  because  of  the  presence  of  disorder  and  of
course, the magnetic field has to be large if the magnetic field is very small and still you
have disorder present in the system then these two Landau levels are too close to each
other  and  this  exactly  what  happens  in  classical  hall  effect  which  Edwin  Hall  had
discovered in 1879 where he had shown that the hall resistivity actually linearly increases
with so B and such that the hall coefficient is actually a constant which gives you the 1
over n e where n becomes electronic density. So, in that case the Landau levels are close



to each other the two conditions that are responsible for this one is that the magnetic field
was very small there I told you it is  around 0.3 to 0.4 Tesla which is very small here the
magnetic field is of the order of  a few Tesla even you know some close to 10 to 15 Tesla
and the temperature is low. So, there is nothing it sort of makes the Landau levels come
any close to each other  there is just a broadening induced by disorder okay. 

(Refer Slide Time:33.01-40.15)

So, let me go to another related topic the nature of the Landau levels I am particularly
talking about incompressibility okay.Now,you have to understand what is incompressible
in an electronic system how is incompressibility defined you can understand that maybe a
steel  a  piece  of  steel  or  a  piece of brick or  a  piece  of concrete  is  in  incompressible
because you are trying to compress it  and it  does not respond okay a sponge maybe
compressible a piece of clays compressible, but in electronic systems incompressibility is
defined  slightly  differently  what  it  means  is  that  you are  putting  in  more  and  more
electrons into the system, but the chemical potential does not  increase. Let me spend a
few minutes talking about the chemical potential what it is and if you read any book on
statistical mechanics it will tell you that it is the energy required to add one particle in the
system may it be fermions or bosons or anything okay or classical particles.

So, why do we need energy to add one particle in the system cannot we simply add that is
there a energy cost associated with this yes there is an energy cost associated with this
you can understand this in this particular fashion in which this is the distribution or this
called as a Fermi-Dirac distribution and this is called as a Fermi energy. Now the Fermi
energy and chemical potential are related Fermi energy is the chemical potential at t equal
to 0 at t not equal to 0 the definition of Fermi energy becomes fuzzy it no longer exists.
So, it is chemical potential can be talked about at any temperature okay the Fermi surface
itself is not a well-defined quantity at finite temperature. So, what I mean to say is epsilon
f is mu at t equal to 0 okay.

So, we are talking about t equal to 0. So, we can talk about mu or epsilon f it does not
matter if you now want to add one particle to the system all these states are filled okay.



So, you have to add it right here just after this if you see this black spot that I have  drawn
you have to add it there. So, you have to spend that much of energy okay. Now if you
physically want to understand that in any given system is not fermions, but in  any given
system how that energy cost comes about if you try to add one particle. So, what will
happen is that if you try to add one particle suppose one student enters a class okay and
you can you can always claim that he goes and sits in the seed that is vacant or the bench
that is vacant for him to occupy, but for the electrons all of these other electrons will have
to come to equilibrium along with this particle being added or the this electron being
added to the system they all have to come to equilibrium again and that is costs energy
and this is the energy cost that we talk about or in sort of defining  a chemical potential it
is defined by mu okay.

So,  the  incompressibility  of  a  system is  you  know discussed  or  rather  it  is  detailed
whether a mu is a function of n. So, it is by this del mu del n and so on so forth okay. We
will see this in just a while, but let me talk about the compressibility the definition of
compressibility  or  even equivalently  one can  talk  about  bulk modulus,but  let  us  talk
about  compressibility  here.You  have  to  remember  that  we  are  talking  about  two
dimensional systems. So, we instead of volume we will have to talk about the area.

So, this is 1 by area and a delA delP at a given n where A is area P is pressure. So, we are
converging on the definition that a sponge actually if you put pressure it crumbles  if you
put more pressure it crumbles even more and of course, it will go to a situation  where
you cannot  compress  a  sponge also  even farther.  What  we want  to  say is  that  these
plateaus in fact, I should say that instead of the Landau levels we can say the quantum
Hall states in fact, those are better description of this. So, nature of the quantum Hall
states okay. So, P is pressure and A is area and n is the total number of particles alright.

So,  this  is  a  definition  and so,  how is  pressure  thermodynamic  pressure  defined the
pressure is defined as minus del E delA where E denotes the internal energy of the system
or del U  del A if you whichever symbol you want to use. So, this is the definition of in a
2D of course, this del E del V in 3D.  So, this is the definition of the pressure.  So, if you
put that then the 1 by Kappa the Kappa inverse that is how it is usually written which is
equal to this also called as a bulk modulus. So, this is del P del A n at a given n. So, this
is equal to A the minus signs cancel and it is a double derivative of the energy  with



respect to the change in area at a given n. So, this is the definition of compressibility for
us for this 2D electron gas. Again we will  use this nomenclature or this abbreviation
several times 2DEG means two  dimensional electron gas let me write it once and for all
okay.  So, we will use this definition. 

(Refer Slide Time:40.22-44.10)

Now sort of show that or rather state that energy is an extensive quantity you all know
that  that is  it  depends on the number of particles  okay which means E is equal  to n
epsilon n where epsilon is the energy per particle per particle and n small n is the density
that is it is the particle density or electron density whatever you want to call it okay.

So, what it means is that so, this density actually is so, your n the total n is equal  to A
times n okay. So, this is the areal density it is also called as a areal density. So, the total
number of particles is the total  area multiplied by this density and this 1 over Kappa
including this is written as this a few steps that you have to you know do telling you the
essential steps it is d d of 1over n slightly complicated derivative that I am  talking about
I am not talking about d d n, but d d of 1 by n it is equal to d epsilon  n and then d of 1
over n. So, it is you know a double derivative, but the variable here inside is not n that is
the density, but it is 1 over n and if you do this carefully you get this as 2 d epsilon  n dn
plus n d 2 epsilon n dn 2 okay. So, this is the expression for the compressibility or the
inverse of the compressibility. 

You further simplify it, it becomes d n square into d2n epsilon and dn2.  Now going back
to the chemical potential so, mu which is the chemical potential this has a definition of



mu equal to del E del n that is how if you change the number of particle how does the
energy responds to it, it respond to it that is how the energy responds to change in the
number of particles and at a constant volume and this is equal to d of n epsilon divided by
d n and of course, at a constant volume which is. So, this 1 over k really looks like n
square d mu d n.  Probably this is a result which is known, but I still derived it because
this result is not known in the context of 2 d because we are talking about a 2 dimensional
electron  gas maybe this result is important and so, what it tells you is that the inverse of
the  compressibility  is  related  to  the  del  mu del  n  that  is  how the  chemical  potential
responds  to the change in the number of particles okay.

(Refer Slide Time:44.11-49.30)

For the quantum Hall  states  mu increases  discontinuously  okay. This  is  important  to
understand because I told you that as you change the magnetic field  mu does not increase
it sort of freezes and then it shows an increase with further increase in the value of the
magnetic field. So, this del mu del n is actually you know or del n del mu is actually
equal to 0 for the plateaus and if this is equal to 0 your kappa will become equal to 0, I
so, I inverted it so, that you can talk about kappa to be equal to 0. So, this tells you that
the quantum Hall states. 

So, QH let us QH states are incompressible okay. This is an important idea or this is an
important input to the problem that these plateaus that arise in the Hall conductivity or
the resistivity are incompressible in nature that is even if you try to pack more particles it



does not accept the chemical potential does not  go up okay. So, it becomes you know
sort of the del n del mu or the del mu del n they are discontinuous  function and so on.  

So, now let me show you a derivation of the Hall resistance a very simplified derivation
before we embark on a more thorough derivation for the Hall  resistance using Kubo
formula  okay. Alright so, let us talk about a sample length L okay just arbitrary length L.
So,  the  electric  current  carried  by  each  charge  each  electron  that  is  each  charge  or
electrons in this length in this L is equal to minus eV over L where V denotes the group
velocity okay and of course, e is the electronic charge. So, the total number of electrons
between momentum range I am writing it in short momentum range P and P plus dP not
writing it as a vector because it here it does not matter it can be found by multiplying the
two things which the one of them is the current carrying  per unit charge which is minus e
V over L and then you multiply it by the L by H into dP okay.

So, you multiply it by the current carrying per unit charge by this quantity H being the
Planck's constant okay. So, it is in this range and so, the current that comes is equal to
minus e V over L into L by H and a dP. So, that is the current the elemental current that is
there in this small length L in the momentum range P and P plus dP that is the current
that is generated. So, this current now this is a elemental current the full current or the
complete expression for current can be found out by integrating this between some P1 to
P2 which corresponds to the momentum values at the say the bottom edge and the top
edge depending upon you know which direction the current is flowing. So, they are the
top and the bottom edges are assumed to be perpendicular to the flow of the current okay.

(Refer Slide Time:49.40-)

So, then the current total current is equal to some P1 to P2 which corresponds to the two
edges as I said is minus e over H and there is a dE dP and this dP and this is nothing, but
equal to minus e by H and the potential energy at the let us write it as BE that is the



bottom edge minus VTE that is the top edge okay. So, this is the reason that this the
current flows where BE that it denotes the bottom edge and the TE denotes the top edge
okay. So, this is the potential energy and I can write down the potential energy as you
know minus e by H and this is like a minus eV2 say the voltage at the bottom  edge is V2
and it is V1 at the top edge. So, this is equal to minus eV1. So, this is equal  to it gives
you e square over H the e will come out and this is equal to V2 minus V1  okay.

So, this is the this is the conductivity or rather this is the total current which  is V2 minus
V1. So, if I want to calculate the Hall resistivity which I write it as V2 minus V1 by I this
is of course, H over e square. Now you see that. So, this is the Hall conductivity the unit
of the Hall conductivity. We have not done a very sophisticated analysis we just simply
you know sort of wrote down the elemental current due to a certain number of charges in
a length element dl and whose momenta lie between p and p plus dp and from there we
have calculated the total current and have calculated the Hall resistivity.

So, this is you know for an arbitrary filling fraction this for just for one electron. So, this
is  the Hall  resistivity  for nu equal  to 1okay. So, for an arbitrary filling  so,  your RH
becomes exactly of the form that you are familiar with its nu e square where nu is an
integer for the plateaus to take place okay. And this you know in a way most of the things
that are relevant to the story of the Hall effect or to understand  the phenomena of Hall
effect  has  been explained okay.   It  is  as  I  told that  it  is  the  first  known topological
insulator  because  the  bulk  and the  edge they  behave differently  with  regard  to  their
electronic conductivities or electric conductivities or resistivities.

And such a thing has never been seen and not only that the metrology part that I have
been  talking about right from the beginning that it has been able to find out this quantity
to be giving you the you know unit of resistance which is 25.813 kilo ohm. So, resistance
is  what you measure in the lab you can buy a multimeter in the market and that will
measure  resistivity. The scale is set by purely quantum mechanical  quantities such as H
and E and such coarse grain experiment that two dimensional electron  gas placed in a
magnetic field transverse magnetic field is able to give you the scale of the resistivity and



that is a big achievement. So, these the people who do metrology who sort of fix the
standards or work in this  Bureau of standards they say it  and this name of Professor
Klitzing  is  taken  with  great  respect  because  of  this  experiment  being  done  and  the
plateaus were seen.

And as I said that Edwin Hall probably would have seen this if he had access to large
electromagnets that could have given rise to very large magnetic fields which was not
available in 1879. And so, he could not see he saw the Hall resistivity to be a linear
function of the magnetic field and which is not the case here one actually sees that the
series of plateaus in the Hall resistivity it is only the resistivity shifts  from one plateau to
another and when it shifts it jumps discontinuously. So, there is almost  a discontinuous
jump there which means a sharp jump and not only that the magneto resistivity or the
resistivity  that  is  there  in  the  direction  of  the  flow of  current  is  0  most  of  the  time
excepting when the Hall resistivity shows a jump it shows a peak in the resistivity in the
magneto resistivity. And this phenomena this behavior of the magneto resistivity is also
revealed something very important because if it is 0 the magneto resistivity is 0 which
means  the  current  is  completely  you  know blocked.  So,  as  if  there  is  an  insulating
behavior  which or rather there is a conducting behavior because the rho is 0.

So, the resistivity  is 0. So, there is a conducting behavior and suddenly there is a peak in
the  resistivity   who  which  shows  that  it  is  an  insulating  behavior  and  then  again  a
conducting behavior when sigma xx or rho xx falls to 0 and so on. And I have also shown
that it can happen only  in systems with you know in presence of magnetic field that the
rho xx and the sigma xx can  simultaneously become equal to 0 because one of them the
ambiguity is that the one  of them talks about a perfect insulator then the other talks about
a perfect conductor. So, when rho xx equal to 0 you know that it is a perfect conductor
because there is no resistivity and when sigma xx is also equal to 0 it means that there is a
perfect  insulator  which.  So,  both  of  them cannot  be  there  together  otherwise  not  in
presence  of  magnetic  field.   So,  the  magnetic  field  the  role  of  the  magnetic  field  is
supreme and the two dimensionality  is supreme.

I will talk about this variation of the this magneto resistance that is sigma  xx or rho xx.
However, a full treatment of that would be difficult in this course because  it is a non
equilibrium  phenomena  and  one  actually  would  do  it  via  this  Boltzmann  transport
equation where the relaxation time needed to be or it needs to be calculated. I will  not go
into the details of those calculations of sigma xx. However, would qualitatively  explain
what are these or how these sigma xx or rho xx have oscillations. This along  with we
will  talk  about  the  experimental  situations  or  experimental  systems and so on which
should  give you a more or less a complete description about the phenomenon all hall
effect in a  2D electron gas.  Thank you.
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