
Topology and Condensed Matter Physics 
Prof. Saurabh Basu 

Department of Physics 

Indian Institute of Technology Guwahati

Lecture – 01

Introduction to Topology

  Welcome  once again let me get into the course called topology and condensed matter physics
and  this is Saurabh Basu who would be teaching this course I am from department of physics
IIT Guwahati my email address is here. 
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So I start with conjecture by Poincare in made in 1908 and in fact he is the sort of  person who
initiated the study of topology in different branches of physics and he made  this statement is
somewhat strange.  However there is a conjecture which was later on solved and this conjecture
said that the  Poincare topology is a disease from which the human race will soon recover.  We
will not get into what he exactly wanted to mean by this but there are far reaching  consequences
of this topology in various branches of physics which is what we shall elaborate  here.  So it is
known for a reasonably long time that topology may have significant bearing  on classifying
systems  and  the  way  it  occurs  is  that  we  know  that  there  are  systems  which   have  these
singularities that appear in the system and these singularities in certain  systems they appear as
vortices  or  vortex  and these  vortex is  something that  it  is  like   complex  number  equal  to  r

exponential i .  So when theta goes from 0 to 2  these complex number remains unchanged.
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  So there is sort of the center of this or the origin of this definition of complex number  is where a
vortex resides.  So the focus is that whether these vortices can be contracted to a point without
crossing  each other that is without crossing one vortex and this branch of mathematics which
now has  entered significantly into physics which is called as a homotopy theory and it plays a
very important role in algebraic topology.  So Poincare started all these studies and so all these
things started roughly about  the end of the 19th century which is 1890 and so on and so while
investigating problems  in celestial mechanics which is popularly known as classical mechanics
in the modern  times.  So there are a few things that he noted one is the smooth mapping between
the surfaces.

  Second is there are these fixed point theorems and then there are the singularities of the  vector
fields etc. there may be a lot more and so these are really the applications of  topology in physics
and Poincare so he sort of pointed out that these results of these  they can be systematically
applied  to  other  mechanical  systems,  electromagnetic  systems,   optical  systems in  particular
acoustic systems and so on.  Now is this very new is this something that we have never been
aware of these applications  of topology in physics say for example and it's not that I mean if you
really  think about   this  Gauss's  law let  me  write  that  and  Ampere's  law in standard  electro
magnetics.  So this was E.dS is equal to Q enclosed by ε0 and it's a closed surface integral  and
this is the surface is a we sort of call it as S and also B.dl where B is the magnetic  field here is the
electric field so flux of the electric field and this is like the line  integral of the magnetic field is
like μ0 I enclosed I am sort of for convenience  I am taking it to be vacuum but then you can write
down in matter as well where you to  use T and H and so on. 

 Now you see that these integrals over these geometric sort of curves so here there is  a surface
for the Gauss's law and there is a contour in the this Ampere's law and these  fluxes and the line
integral of the magnetic field gives you a constant so this is just  a constant here and this is a
constant here so these constants are really the topological  invariant which means that we can
deform this surface and we still would get the same result.



  So, they involve the surface integral and line integrals and as I said that so suppose  you have a
charge here a Q and you can have a surface which is you know surrounding it  enclosing it will be
the Q by ε0 and I can also deform this surface like this it  still would be the same integral or rather
the resultant will be same of the integral  and if I still deform in this particular fashion it will still
be same and similarly the line  integral of B say we start with this and this contains a current so I
will just show that.  So this is that it's a current and the magnetic field the line integral of the
magnetic field  will give you the I enclose so it's μ0 I and if I now change it to another one but
enclosing this will still be the same and so on.  
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So this is the first realization of topological invariant or the application of topology in  the field of
physics and so if we continuously deform that these things as long as we do  not cross that charge
which is like a singularity or a vortex or we don't cross that current  current carrying wire we are
fine in defining these invariants or rather these equations.  And in fact Lord Kelvin in its model
for atoms have actually said that these atoms  are knotted vortex lines in ether.  So this is Lord
Kelvin's model of atoms.

  He considered atoms as knotted vortex lines embedded in ether. Ether is just a medium and we
have seen this in the context of light which eventually Michelson and Morley actually said that
there is no medium through which the light travels and that was a famous Michelson and Morley
experiment.  So this is something similar to that and in particular you know this multiplicity of
the atoms which arises because of the number of unpaired electrons and these multiplicity  is due
to the different ways that you know the vortex lines can be knotted.  So multiplicity is related
variety of ways that the vortex lines can be knotted which means all these vortex lines  can be tied
with each other and this is of course not a good description which Lord Rutherford  came and you
know completely modified it and it's actually the model of atom that  is taught in undergraduate
as well as even in school levels but however this was the  original idea of Lord Kelvin.  So there
have been bits and pieces of these topological implications coming into various  fields of physics.
However it found really its you know foothold in a few areas and these  areas are  So one of them
is Dirac's argument or his you know conviction about the magnetic monopole.  So let me write
Dirac's magnetic monopole.

  This was as early as 1931 then came the Aranov-Bohm effect.  This was in 1959 and then it was
you know one of the main topics of our discussion which  is quantum Hall effect which is 1980.
So the first one as I said is due to Dirac and then it was Aranov-Bohm.  Quantum Hall effect was
due to Klitzing and soon after that Gossert, Stormer and Sui they  have published the fractional



version of it the fractional quantum Hall effect as it's  known and then we have these quantum
spin Hall effect  is around 2005 and you know really a bunch of paradigmatic models or tight
binding models.  So as a material you know this monopole is not a material neither is Aranov-
Bohm effect  which are just phenomena. Quantum Hall effect  is the first  realization that 2D
electron gas in presence of a strong  magnetic field can be considered as a topological insulator
and this was the first realization  of quantum or rather topological insulator which was in 1980. 
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Different  kind  of  topological  insulator  with  spin  filtered  edge  modes  etcetera  they  were
discovered in 2005 and they found to have a lot of applications in very interesting  phenomena
called  as  spintronics  which  in  principle  could  replace  the  electronics  and  would  be  a  next
generation devices communication devices and so on.  And we'll talk about you know 3, 4 and as
well 5 where we would talk about a number  of models which are very simple models yet they
capture the topological properties in  a very systematic way and we can because of these are tight
binding models so they  can be written down nicely in case space.  So we can calculate the
topological invariant and we can show that when the system sort  of makes a transition from a
topological phase to a trivial phase or vice versa or from one  topological phase to a different
topological phase that are characterized by different  values of the topological invariant.  So we'll
talk about these 3 in details throughout the course however just to make matters complete  let me
discuss these Dirac's magnetic monopole and Aronov-Bohm effect in very brief so that  one gets
an idea that which are as you see that chronologically they occurred much before  the quantum
hall effect and these arguments are very elegant and they are definitely worth  seeing in this
context.

  However we'll not sort of deliberate on them too much and we'll go on to this actual studies  of
topology in condensed matter physics whereas these the first two actually correspond to  any
general physics in particular say quantum physics or electrodynamics say for example. 

(Refer Slide Time: 16.20-21.50)



 So let's talk about these Dirac monopoles.  Okay so suppose there is a monopole that exists okay
so it's like a point like magnetic charge  and if that would create a magnetic field.  So for a point
field which is given by B equal to let's call it a g to be the magnetic charge and let's  write down
this as r by r3 which would be represented by a potential which is given  by this and this is as
opposed to a vector potential there is a scalar potential which  depends upon the vector r and if
we want to reduce the complexities then these r can simply  be the vector r can simply be just r
and not a vector which means that it has no dependence  on the angular variables θ and φ okay.
So g is the magnetic charge and V would be simply equal to so V of r will  be equal to g over r
and then so this is you know because of this identity that the  Laplacian of 1 over  r so if you take
the Laplacian of that and this is equal to minus 4 π δ3r and this is a Dirac delta function in three
dimension and this is the Laplacian  of 1 over r this must be a known result in electrodynamics.

  So what it tells you is that these if you take these things if you take the Laplacian  that's del
square and operate it on 1 over R it will give you 0 contribution everywhere  excepting at r equal
to 0 okay.   So that's  why this  delta  function comes and because we are  talking about  three
dimensions  say spherical  polar  coordinates so it's  a  δ3r.   So then the magnetic analogue of
Gauss's law becomes equal to divergence of  B is equal  to a 4  π g δ3r okay.  So that's like the
Gauss's law that we are aware of.  Now you know what happens when you have a magnetic field
to be present the wave function  of the particle that evolves.

  So usual you know the wave function sort of can be represented as if  p is a good quantum
number or  k is a good quantum number it's represented by this but in presence of a magnetic
field p is actually p minus e A okay where a is the vector potential corresponding to  the field.
Now in literature you might see a C below which is actually in Gaussian unit we want  to write
down in the SI unit.  So now because of this there is a phase difference if a particle you know sort
of goes from let  me write it here itself. 

 If particle goes from point A to point B it picks up a phase  which depends upon the path.  So
remember if there is no magnetic field then these phase that you see is not a path  dependent
phase  however  this  picks  up  a  path  dependence  phase  and which  this  called  as   a  minimal



coupling or the piles coupling and this phase is given by e by h cross and  a to b a r.dl where dl is
a vector that connects the point a to b.  So dl connects a to b okay this points okay.
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  Now consider a closed loop C okay.  So we will write down Gauss's law.  So the Gauss's law
which we have written down just a while back.  So this Gauss's law will give us a potential okay
this is basically the flux of the electric  field.  So e dot ds and this is over s and this is nothing but
let us just call it as because  we are talking about electrons and or the electric charge and this so
let us write e  over ε0 and similarly for the Ampere's law  which we will write it as phi b this is
equal to s and b dot d say for example s again so  that is this which is nothing but if there is a
monopole then this will be like g over  μ0 okay.

  So s is any surface which is bounded by this by the C  alright so as the particle it is transported
around this loop which is  this  closed loop  C then it  will  sort  of  this  magnetic flux say for
example so particularly we are talking  about this flux for a closed loop is nothing but it is like e
over ћ then it is a  r.dl and this is equal to e over ћ we apply stokes theorem and stokes theorem
says that  a.dl  or  the  line  integral  of  any  vector  is  equal  to  the  curl  of  that  vector   and  the
corresponding surface integral where the surface actually is just like this that  is bounded by this
closed curve C.

 So this is equal to b.ds and this is nothing but  a e by ћ and this is a φ which is a b okay.  So this
is that b.ds which is what we have defined as flux of the magnetic field  okay so we just assuming
that there is a magnetic monopole that exists and the description of  the electric field and the
magnetic field are in the same footing and that is why we  can write down this.  So now talk
about the wave function of the particle so the wave function needs to be  single valued which
means that if you take the wave function over a closed loop then  there is no effective phase that it



picks up you are not talking about the dynamical  phase but over that complete circle it will not
pick up any phase.

  So the δφ should be equal to some 2π into n where n is an integer okay.  So this tells you that if
the change in so this is a phase shift of the wave function  and then this is δφ equal to 2πn now
that tells you that the magnetic flux  is quantized φb must be quantized  so that tells you your φb
is equal to 2πћ by e into n which is nothing but  h over e into n okay and so h over e is nothing
but you know that is the flux quantum so this  is the flux quantum which is very familiar and
multiplied by n okay. 
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So the magnetic flux will be some integer times the flux quantum and in fact what Dirac  showed
that this product of the electric charge and the magnetic charge so this product  of electric and
magnetic charges and so this is equal to h over 4πn and this is  the main result that he said that
these  charges  are  quantized  so  the  existence  of  magnetic   monopoles  would  explain  the
quantization of the electric charge okay and these integer  n that you see is a topological quantum
number okay.  So it counts you know the number of windings around a singular point and the
singular point  is the point at which the monopole resides so the monopole actually acts like a
vertex  and you take the wave function or to take the particle around that and it just counts  the
number of times it sort of winds okay and these are also you know can in a sort  of tight binding
model we will see how to calculate that and so on in order to calculate  the topological quantum
number or which is called as a topological invariant okay.  So the next is Aronov-Bohm effect let
us write S2.

  So before this effect was you know first proposed as a thought experiment by Aronov and Bohm
and then you know it was actually verified in experiment by Chambers in 1960 so this  was in
1959 yeah so just about a year later it has been verified.  So the burning question is that we know
about fields electric field and magnetic fields  and electric field corresponds to a potential such
that E can be written as you know mine  as grad phi and for a static case the curl of the electric
field is equal to 0 and just  the other way around the B has also sort of is represented by a vector
potential and this  has no scalar analog I mean in the sense that B is obtained from a vector
potential by taking  the curl so B is equal to curl A and this is quite an important thing in the



development  of these Maxwell's relations and I mean equations say Maxwell's equations and
how the wave  propagation etc  were sort  of  you know from these written down from these
Maxwell's equations.  However, Aronov and Bohm argued that it is not the fields that are most
important it  is the potentials which are phi and A are quite important in fact they are more
important  than the fields and in fact the all the Maxwell's equations can be equivalently written
down  in terms of these potentials instead of the fields which is more familiar to anyone you
know working on this or studying physics.  So in order to you know sort of pin down their views
they asked to consider so this is like  a solenoid a very long solenoid and so to show that it is long
that is like infinite  this thing we are showing this and there are these this turn the wires are
wound around  the solenoid and why we have taken it to be very large is or very long is that we
want  to eliminate the edge effects.  Now inside the solenoid suppose the current is I so current I
which is going through the  loops and wound around the solenoid and this will produce a very
constant  or  uniform magnetic   field  inside  the  solenoid  and  this  magnetic  field  outside  the
solenoid is 0 and that is  why we have taken we have neglected the edge effects and that is why
we are talking about  that we are you know talking about a very large solenoid.

 So inside the magnetic field is nonzero and uniform outside it is equal to 0 but outside  it is equal
to 0 does not mean the vector potential is equal to 0 in fact the vector  potential exists such that
the curl of the vector potential vanishes and we know that  when curl of a vector vanishes that
means it is an irrotational vector which means that  it does not rotate it does not curl it is like a
vector that is you know either increasing  monotonically or decreasing and so on so forth.  So
nevertheless I mean the whole assumption is or rather the these finding is that the  even though
the magnetic field is 0 the vector potential still exists and how would we know  that the vector
potential exists so one can send one electron from one side of the solenoid  suppose you are
having the solenoid one can one electron can be sent from the right of  the solenoid and go and hit
a screen at some distance away and another electron can be  sent from the left of the solenoid and
would again go and incident on the screen at a distance  at a certain distance away.  Now these
two electrons they also can be considered as waves and these two waves when the incident
would have a different phase okay and the it will have a constructive interference or  a destructive
interference depending on the phase relationship between the between the  two electrons which
goes from the left and the right and this phase difference can be  obtained or rather it is finite
because the vector potential exists and this is equal  to E over h cross and A r dot dl where dl is
the length that it travels and A is the  vector potential that exists and this is again by using nothing
but the stokes law we get  it as B dot ds so this is you know that curve C and this is that S it is a B
dot ds.  So this is the thing and one can actually verify it in experiments which Chambers did  in
1960.  Now this is a very important thing that if this is a measurable quantity and this is  actually
verified in experiments which means that the potentials are more important quantities  than just
the fields and in fact this was earlier not known.

So what is important here is that you know the solenoid actually contains or the singularity  in the
vector potential is like a vortex as we have said and then you can actually view  the solenoid as a
hole in the space which is allowed for these vector potential okay.  So the quantization arises



from the fact that the curves in the space of A the vector  potential that enclose the solenoid are
non contractible okay so they cannot be contracted  and so on and these the winding number thus
produced which is a topological invariant  which is taking these particle around the solenoid these
winding number characterizes  you know the distinct homotopy classes etc.  So what I wanted to
make sure  is  that  as  soon as  there  are  these systems with singularities   or  vortices  here  for
example  this  there  is  a  vortex  which  is  coming  from the  solenoid   itself  and  the  magnetic
monopole is just like a vortex or a singularity at its position.  So there when you take a charge or
take a particle you know around it, it will give  rise to quantized effects and this is the topological
quantization that one is talking  about.  So this will not go away even if you know you can adjust
other quantities and this will  still remain. So Aronov-Bohm phase is an important it is a sort of
indication of topology playing a  role in this simple thought experiment okay.  

(Refer Slide Time: 36.59)

So let us come to physics and let me you know show you I have already told you this that  this
2016 Nobel Prize was awarded to for the theoretical discoveries of topological phase  transitions
and topological phases of matter.  These are by David Thaulus who won half the Nobel Prize and
the other half went to Duncan  Holden and Michael Costellis.   I  believe David Thaulus and
Michael  Costellis  they  were  awarded  for  the  topological  phase   transitions  whereas  the
topological phases of matter was due to Holden, Duncan Holden  which he showed in the mid to
late 80s through a number of you know very well cited publications  will talk about what is called
as a Holden model etc.  And this was in 2016 and after that it was these two gentlemen who had
popularized again  the concept of topology.
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It is not popularization it is more like applicability and into this quantum spin hall phase and  they
have written down Hamiltonian which does not have a quantum hall effect but it has  another
topological  invariant  called  as  a  Z2  invariant  and  this  is  non-zero.   They  won  a  2019



breakthrough  prize  in  fundamental  physics  awarded  to  Charles  Kane  and  Eugene   Milley.
Charles Kane is on your right and Eugene Milley on the left.  
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Let me read out the citation is very interesting particularly it is you know it predicts that  there
would  be  a  lot  of  applications  of  these  proposals  from  Kane  and  Milley  on  the  quantum
computation, quantum information etc. and quantum technologies.  

So the citation says that for new ideas about topology and symmetry in physics leading to  the
prediction of a new class of materials which are the quantum spin hall materials  that conduct
electricity only on the surface and this electricity is actually the spin  polarized current.  So the
description is quite interesting let me read it out for you.  Since the days of Ben Franklin we have
come to distinguish between electrical forms of  matter that are either conducting or insulating.
But that concept has been turned inside out by Charles Kane and Gene Milley who have predicted
a new class of materials the topological insulators that are inviolable conductors of electricity  on
the boundary but  insulating or  insulators  in  the  interior.   So this  very fact  that  they behave
differently at the edges compared to the bulk if you look  at this board that you are the screen that
you see if I have these screen the edges of  the screen that behave differently than the bulk I
would not feel comfortable about it.

In fact most of the systems that we know they have no distinction between the behavior of  the
bulk and the edges and this is what precisely makes these things so interesting.  So the discovery
has important  implications for the space race in quantum computing and  could lead to new
generations  of electronic devices  that  promise enormous energy efficiencies  in  computation.
Topological insulators also offer a window into deep questions about the fundamental  nature of
matter  and  energy.   These  they  exhibit  particle  like  excitations  similar  to  the  fundamental
particles of physics  electrons and photons such as them but can be controlled in the laboratories
in a way  that electron and photons cannot be done.  These connections offer a new conceptual
framework for controlling the flow of charge light and  even mechanical waves in various states
of matter.

  This is what I was saying that topology has proliferated beyond electromagnetic theory  or
optics or condensed matter physics it has entered into acoustics it has entered into  mechanical
matters mechanical sort of materials and various other things.  I mean unanticipated applications
to seem inevitable when the transistor was invented  in 1947 and no one could realistically predict
that it would lead to information technologies  that would allow terabytes of data to be crammed



into a tiny silicon chip and that is what  all are there in our modern day computers and mobile
phones and various other gadgets  that we see on everyday life.  The last part written in blue is
actually by Ed Witten who was the chair of the selection  committee and he said that Ken and
Millie introduced new ideas of topology in quantum  physics in quite remarkable way.  He is the
chair of the selection committee he says it is beautiful how the story has  unfolded.  

We  will  stop  here  today  and  we  will  carry  on  with  more  discussions  on  topology  and  its
relevance to condensed matter physics to be precise and we will see that as the course  you know
unfolds I am sure you will learn a lot of things about materials and in particular  as I said that
quantum hall effect is one such material which has been the first topological  insulator that means
that the bulk of the sample behave differently than the edges and  there will be more revelations
of different kind of materials you know which are either  dirty systems such as 2D electron gases
or they are crystal lattices with you know proper  symmetries and so on.

  We will stop here.  Thank you very much.
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