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  Hello, welcome to lecture 1 of module 3. This is lecture number 7 of this course. In this  
lecture we are going to discuss about quantum measurement process and this concept is 
extremely  important in the context of quantum entanglement as you will see later and this 
measurement  process in quantum mechanics is fundamentally different from the classical 
measurement process.  Please note that the classical information theory is formulated 
independently of the measurement of  the system. This is because of the reason that you 
are always going to get the same result if the  system processes the same information which 
is totally different in the quantum information  processing. So let us discuss about 
measurements now and you will find this concept a little bit  technical but I try to give as 
much example as possible. So let us begin. Measurement is  basically an experimental 
procedure meant to determine the value of a physical observable.  That's what we mean by 
measurement. So it's an experimental procedure to determine the value of a physical 
observable and this procedure has to be such, in fact it has to be carefully designed so that 
it should be this procedure should be such, it should be such that the observable being 



measured  being measured does not get altered.  And in quantum mechanics measurement 
has a very important role and it's a it's a very critical  concept. 
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 By making a measurement on the system what we mean by in quantum mechanics is that  
we project the system state vector into one of the basis vector that the measurement 
equipment  defines. Let us say we have this is pictorially speaking suppose this is my 
system and this  system is in the state say ket psi and by making a measurement what is 
done is that this state  vector ket psi is projected into one of the one of the eigenvalues let 
us say ai so and  the corresponding eigenstate say eigenstate ket ai. So because of the 
measurement this state vector  ket psi is projected into one of the eigenstate ai and 
measurement of an observable suppose  anyway all of us we already know that any 
physically observable quantity is always  represented by an operator in quantum mechanics 
and measurement of an observable a of a system  in the state psi yields an eigenvalue a of 
the operator and corresponding eigenstate is say ket  ket a suppose because of the 
measurement eigenvalue i get is eigenvalue we get is  a and the corresponding eigen ket is 
ket a and the probability of getting the eigenvalue  probability of getting the eigenvalue a 
is given by mod square of this quantity right  this is what we know it is also one of the 
postulates of quantum mechanics. 
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So basically measurement causes the state of the system ket psi to collapse into an 
eigenstate ket  a so if you say measure the observable a then you are going to obtain the 
eigenvalue a or in other  words you the state is getting collapse into the eigen ket a to 
describe this process by an  operator acting on the state generally we introduce the so-called 
projection operator. 

 So projection operator i think most of you may know just let us have a  quick recap what 
we mean by projection operator once again so the action it's basically action  of the 
projection operator is to project the state along another state suppose the projection  
operator let me define is say this one ket a bra a so this is the projection operator  and if 
suppose my state is ket psi and i can write it as a superposition of eigenkets  say this is the 
superposition principle. 
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 Then the projection operator say pj  it if it is operated on the state vector ket psi what it is 
going to result is this projection  operator pj is ket j bra j and it operates on ket psi which 
is the superposition of the eigenkets  uh like this right and i can now write this quantity as 
follows i can write it as say ket j  and this i am having ci is just a number and i have z i so 
this quantity is nothing but kronecker  delta j i so because of this i am going to get simply 
cj kj so as you see the projection  operator pj projects the state vector along the direction 
of the ket j okay. 
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 And there are many  properties of projection operator some of the notable properties are 
very easy to prove for  example if you can easily verify it pj squared is equal to pj right that 
it's very easy to see  another property is the projection operators are mutually orthogonal if 
you have two projection  operator different projection operators say p i and p j and it's we 
equal to delta i j  p j that means if i is not equal to j then the p i p j product is going to give 
you zero  and projection operators this is very important projection operators are complete 
basically these  are projectors so you have this is basically the so-called completeness 
condition because this is  equal to identity operator and in fact it is easy to see that this 
results is because p i  is nothing but ket i bra i and as we know that this is nothing but the 
so-called  completeness condition and also projection operators because has to be hermitian 
and it  is also easy to see p i dagger is equal to p i okay this is Hermitian. 
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 Note this particular  it's very easy to see also that the probability of getting the eigenvalue 
a if the state is in the  system is in the arbitrary state ket psi the probability of getting the 
eigenvalue a would  be given by mod square of this quantity and which actually i can write 
also as this psi p a right  psi okay so the projection operator p a projects ket psi into 
eigenstate  ket a and the probability is can be written in this in terms of projection operator 
this  can be written very simply by this expression. Now let us understand the measurement 
process  a bit more clearly to do that let us say a system is in an arbitrary state ket psi say 
the system  is in an arbitrary  state ket psi okay and the observable is represented by operator 
we are interested in  measuring an observable and this observable is represented by the 
operator a. 
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 And this operator a satisfy the eigenvalue equation a ket a n is equal to a n  ket a n and a 
n these are as you can see these are eigenkets and this is your eigenvalue  okay and 
measurement of the observable a on the system yields any of the eigenvalues right  okay 
let me make you understand it by this. 

 Suppose we have a a number of copies of the  system and the system is in the state ket psi 
suppose we have n number of copies like this  ket psi ket psi like this n number of identical 
copies n copies we have okay n number of copies  we have the same system exact system 
and we are making a measurement on the system and basically  the observable a and if we 
measure make a measurement then because of the measurement  if i make an individual 
measurement on ket psi then i may get any one of the eigenvalues  eigenvalues let us say i 
get the eigenvalue say a5 if i make another measurement on this ket psi  suppose i get this 
time a 100 all identical copies i have i make measurement on each one  each of them at the 
same time then i am going to get sometime i will get a say 60 and suppose i  make 
sometimes i may again get say a5 as i have got it here and like this okay suppose i here  get 
again suppose a 60 or say 61 and so on any of the eigenvalues okay. 
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 Then if suppose  some eigenvalues because of this numerous number of measurements 
some eigenvalues you are getting  again suppose some number of times let us say say you 
get suppose say we get  say we get the eigenvalue lambda m pm number of times pm 
number of times  okay that's the frequency at which we get the eigenvalue pm lambda m 
pm number of times we get  now if say n is very large suppose n tends to infinity the 
number of copies  of the system is very large then the fraction of measurement then fraction  
of measurements fraction of measurements so this is fraction of measurements that give  
that give lambda m is simply we get it pm number of times and n number of copies we 



have right so  this is what we are going to have and this basically is nothing but the 
probability of  getting the eigenvalue lambda m. 

 I hope you are getting the idea in other words what i mean to  say is that quantum 
mechanics tells us the rate at which we will obtain a particular outcome  when we have an 
infinite number of copies of the same exact systems okay. 
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 So basically  quantum mechanics tells us quantum mechanics tells us that the rate this is 
important the rate at which  the rate at which we will obtain we will obtain a particular a 
particular outcome  when we have an infinite number  number of copies  of the same exact 
system this is important to understand because the essence of measurement  is hidden here 
in this particular statement that i have written here let me make a little bit of more  
elaboration here. 

 Suppose if we have just one copy right rather than n number of copies if we just  have one 
copy we can only know the probability of getting a particular outcome so if we have say  
this eigenvalue equation say a n a n this means that if the system is in an arbitrary state ket 
psi  and which i can write it as a superposition of the eigenkets like this where cn is a 
complex  coefficient and by now you know that cn i can write it as a n psi right. 
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 So the probability  of getting the eigenvalue a n is simply would be mod of a n psi whole 
square and this is nothing but  cn mod square. So now the process of measurement can be 
actually this described in a picture  pictorially i can describe it as follows suppose let me 
let us say on let me draw the x-axis for  x-axis and y-axis on the x-axis let me put the 
eigenvalues okay suppose i have these eigenvalues  in the x-axis and okay let us say 
eigenvalues are say a1 a2 a3 a4 and so on like this a5  and so on we are having all the 
eigenvalues on the x-axis and along the y-axis let me  put the corresponding probabilities 
suppose p of a n that's the probability of getting a particular  eigenvalue so and the system 
is in an arbitrary state ket psi and these eigenvalues you know  depends on the operator a 
only okay it depends on the operator a only and it does not depend on the  state ket psi now 
each eigenvalue has a particular height given by the square of the absolute square  of the 
coefficient suppose the probability of getting a1 is going to be given by c1 mod square  and 
in this prob in this diagram it would have some height or corresponding to a1 the probability  
is mod c1 square corresponding to a2 the probability would be say c2 mod square  
corresponding to a3 let us say it is c3 mod square and so on corresponding to a4 it may be 
the height  may be this much c4 mod square for a5 it may be like this right it would be c5 
mod square  it would be c5 mod square and so on that's how you will get so basically what 
you are getting is  the is an distribution it's a probability distribution that you are basically 
obtaining here  and higher the height higher is the probability of obtaining that particular 
eigenvalue so if we  have a very large number of copies of the exact system that means 
ideally say n tends to infinity. 
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  If n tends to infinity a very large number of exact copies of the system we have the fraction  
of time we get any given outcome approaches this particular distribution okay the this 
particular  probability distribution means the what i mean to say is that the fraction of times 
we get  any given outcome any given outcome  approaches this distribution. I hope you get 
the idea here  however for any individual measurement we cannot know beforehand what 
will be the outcome  okay unlike classical physics in quantum mechanics we cannot predict 
the precise outcome of  measurement of a physical quantity instead what quantum 
mechanics tells us is the precise  probability distribution of all possible outcomes of that 
measurement. 
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   Now to be more formal we  construct a measurement operator say mm such that the 
probability such that the probability  of obtaining an outcome probability of obtaining an 
outcome say m in the state ket  psi is given by  this expression p of m which is probability 
of obtaining the outcome m is given by  the expectation value of m m dagger mm this is 
the expression and here mm as i said is the  measurement operator and this measurement 
operator satisfy the completeness condition  sum over all indices m small m m m dagger 
mm is equal to identity  and the state  which we can get immediately after measurement is 
given by the state immediately  after the measurement is this will be more clear to you if i 
give you an example i will give you  very soon now the state immediately after the 
measurement is ket  m is equal to  equal to mm ket  psi this is the measurement operator 
mm  and divided by square root of p of m okay or if i write the full expression then this 
would be mm  ket  psi and here i have expectation below this m m dagger mm i'm not going 
to write the operator  sign again and again so i'm just writing here but later on i will avoid 
to put a uh you know this  sign here cap sign okay now let me give an example so these are 
these two are very important result  this is also in fact this is also these three are very 
important result in the context of  measurement operators. 
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 To give you an example let us say we have a  superposition state like this ket  psi is it's a 
qubit state it's a superposition of ket  0 and  ket  1 a and b are the complex coefficient and 
we measure this particular state to see if it is in  the state ket  psi ket  0 or ket  1 okay so 
the measurement operators here  we define them like this we have we have two 
measurement operators and these are the projection  operators one is ket  0 bra 0 like this 
and another measurement operator is m1 that would be ket  1  bra 1 these are the two 
projection operators and getting the outcome 0 that means getting  the the system in the 



state ket  0 so we said it is p of 0 there's a probability of getting  the state to be in the in the 
ket  state 0 is given by this expression now it will be m0 dagger m0  ket  psi. 
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 Okay let us open it up so if you open it up first of all as you can see m0 dagger m0  is 
simply it is m0 dagger is m0 is ket  0 bra 0 right and m0 dagger is the opposite of that so  
that would be simply this one this is your m0 dagger and which is same as m0 and now we 
have  simply ket  0 bra 0 and therefore here let me put ket  0 bra 0 psi and this guy is 
nothing but modulus  of modulus square of this quantity and this is again nothing but mod 
of a square this is  basically a known result to us i'm just showing you the application of 
this measurement operator  and as i said the state immediately after the measurement is 
now ket  0 so as per our definition  we have m0 ket  psi divided by p of 0 square root of p 
of 0 which is we have m0 is ket  0 bra 0  applied on ket  psi and divided by square root of 
mod a square right p p0 this we have already  worked out and this implies that we are going 
to have it would be simply a0 right divided by mod  mod a okay so this is actually nothing 
but this is nothing but the state ket  0. 
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 Similarly for the other case m1 we can have it now here you just have to note that the 
quantum  state is defined up to a phase and here this quantity a by mod a it can be at the 
max e to  the power some some phase factor would be there and and anyway this phase 
factor as you know it's  not going to play any role here. 

 Now let us discuss about the projection measurement  and which is a special case of the 
generalized measurement scheme so we are now going to discuss  about projection or 
basically not projection let me the terminology appropriate terminology  would be 
projective measurement projective measurement which is a special case of  the generalized 
measurement okay so say to understand that let us we have an observable o  and which can 
be of course observable o it's represented by an operator o cap in the quantum  mechanics 
and this has say eigenvalues are say lambda i and the corresponding orthonormal  
eigenvectors are represented by ket  lambda i like this right this is what the set of 
eigenvalues  corresponding to the observable o and these are its eigenvectors. 
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  So in that case i can now  represent this operator the so-called spectral decomposition i 
can do this we have done  and it's actually it's very simple also you can have i is equal to 1 
to say n o cap and this is  your lambda i lambda i okay this is the completeness condition i 
am using o lambda i  because the eigenvalue equation is going to be satisfied so therefore 
i can write o  operator o cap is equal to i sum over i here it will be lambda i this is an 
eigenvalue it is  lambda i ket  lambda i bra lambda i okay the operator anyway i can 
represent it in this form  it's called known as the spectral decomposition of the operator o 
now let us make the measurement  operator i am talking about projective measurement so 
let me define a operator m measurement operator  in this form so lambda m lambda m and 
the corresponding uh its hermitian conjugate would be  again as you can see it would be 
ket  lambda m bra lambda m. 
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 It's very easy to see that sum over  all this thing is nothing but if you just do it m m m 
dagger m m you will find that this is identity  so therefore this particular property of 
measurement operator is anyway satisfied  by this projective operator also. 

 Now the probability for a given outcome  it's a kind of repetition but we are doing it in the 
context of projective measurement  probability maybe later on it will be more clear to you 
if i give more examples and i will do that  so for probability for a given outcome for a given 
outcome m of a of a measurement let me  write m as m t for measurement is then 
expectation value as i we have this result general result  this is what you will have and this 
in the case of projective or this thing what we are having  this is psi and this is lambda m 
right and this is again lambda m ket  psi. 
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 This guy is nothing but  mod of mod square of this quantity lambda m psi mod square 
okay which is exactly the absolute  square of the expansion coefficient of ket  psi for that 
eigenstate. 

 Now what about the state after  measurement so this is one result we have and state after 
measurement msmt that means measurement  is going to be m m ket  psi divided by square 
root of p of m which is here psi  m m dagger m m ket  psi right so if i open it up then you 
will get it would be lambda m lambda m  ket  psi divided by square root of this result 
already we have so let us put it that would be  modulus square of this quantity inside the 
bracket lambda m psi mod square. 
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 So from here  i get it as this is just a number right this is just a number so let me write 
lambda m psi  it's a complex number divided by lambda m psi okay and this is lambda m 
ket lambda m  and this as you can see it is nothing but e to the power i theta because this 
is a complex number  i can always write it as e to the power i theta into the modulus of this 
quantity this modulus  get cancelled out and you'll be left out with e to the power i theta 
lambda m okay here theta  is an arbitrary phase and just like lambda ket  lambda m is the 
is an eigenstate similarly e to  the power i theta ket  lambda m is also an eigenstate of the 
observable o or the operator  o cap. 
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   Okay so this generalized measurement scheme can easily be actually generalized  to 
density operator as well so let me now extend this concept to the case of density operator  
formalism also extended to density operator case first let me do that for pure state  that is 
very easy and simple actually it's very straightforward and as you know a pure state is  
represented by density operator rho is equal to this ket psi bra psi and therefore the 
probability  of an outcome p of m is going to be this is our result from generalized 
measurement scheme  so i can now write it in the using because this is nothing but the 
average right kind of expectation  value and we know from our density matrix formalism 
this i can write is as trace rho m  m dagger mm so this is the result i have in the in terms of 
density operator now. 
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  Now what about the state when the state changes after a measurement with result m the 
density  operator the density operator corresponding to okay first let me write the state after 
measurement  as you we know that we are going to get the state to be say this one let me 
name it as say ket phi  after measurement i get the state to be like this i have this psi m m 
dagger mm ket psi  the corresponding density operator that means at the output after the 
measurement i would get  you will just for pure state is very simple this is what you will 
have and if i open it up  what i am going to get is this m m ket psi this bra psi m m dagger 
divided by in fact you will  get two terms and square root will go away and you will be left 
out with m m dagger m m ket psi  very straightforward i think all of you can see this and 
this would be the output  that means the after measurement the state would be the density 
operator would be m m rho m m dagger  divided by trace of rho m m dagger mm okay so 
this is also an important result and this we  have got in the context of a pure state but the 
extension to the mixed state is also very  straightforward and in the case of mixed states 
we are going to get actually the similar result. 
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  So let me just quickly discuss that as well for mixed state our density operator for mixed 
state  is given by this expression p i is the probability ket psi i ket bra psi i so this is the 
density  operator for the mixed state and this actually i can write as sum over i's this is 
probability  this is probability p i and this i can write the density operator for the pure state 
gets psi i  right ket psi i i can write it the density operator rho i is referring to the density  
operator corresponding to the pure state ket psi i so this is the expression i can write now  
the join probability let me write because you see in the case of mixed state two probabilities 
are  involved here one is the so-called classical probability and then the quantum case 
which we  have discussed in great detail when we have discussed density operator 



formalism now the  join probability join probability for the system for the system to be in 
the pure state  to be in the pure state ket psi i. 
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 And measuring  the result measuring a result say m is it would be first this is the probability 
p i  that is the probability to pick up the pure state ket psi i and then getting the result m 
outcome m  is p of m at say i right when you have picked up ket psi i and then getting the 
outcome so this is  basically the join probability and now you have to sum over all i's to 
get the total probability  for getting the outcome m as a result of measurement so total 
probability total probability  total probability of getting the outcome m right because you 
have so many pure states are involved  here every pure state is designated by one particular 
ket psi i so you have to sum over  all i's there and if you sum over all i's then here you have 
p i and this quantity for pure state  case you have already know that will be trace of rho i 
m m dagger m m so this is what you will get. 

  And this is very straightforward and very simple because of trace operation i can write 
trace here  and put the summation side inside the trace operation trace operator then we 
have sum over i  i have here p i rho i please note the symbol carefully okay this rho i'm 
writing kind of an  in italicized way for you know density operator thing and i have here m 
m dagger m m and this is  nothing but as you can see this is trace of rho rho m m dagger m 
m okay so as you see once again  we get the familiar expression that we have obtained for 
pure state also same expression  similar expression. 
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 The new state after measurement  of the mixed state becomes this also you are going to 
get exactly the similar one i don't  want to elaborate on it more but you can check it yourself 
this would be again you have to sum over  all i's here you have this p i and then you have 
m m ket psi i right and psi i m m dagger  this we have done for pure state case and here 
you have trace of rho m m dagger m m and  this is going to result in this particular 
expression m m rho m m dagger divided by trace of  rho m m dagger m m so here only 
expression looks similar only point you have to keep in mind is  that this density operator 
rho that i am writing here refers to the mixed state  and if it is a pure state then you have to 
write the density operator pertaining to the pure state  okay. So as you can see the general 
measurement scheme covers all operations that can be performed  on a quantum system. 
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 Many times we are not interested in the post measurement state of  the system but we are 
interested in the statistics or the relative probabilities of  outcome that we can collect by 
making a measurement on an ensemble this we can  generally do by the so-called povm or 
positive operator value measurement formalism let us  discuss it measurement of the povm 
kind let us consider the set of operators say em  is equal to m m dagger mm and of course 
all measurement operators whatever it is they have  to satisfy this particular condition so 
this has to be identity and the probability of outcome  the probability probability of outcome 
m right on making a measurement  on making a measurement let me write m as mt so this 
is i mean by this i mean measurement  on the state measurement on the state rho is p of m 
is equal to trace rho em this already we  know right and obviously for pure state. 
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 In the case of pure state in the case of pure state  this particular expression will simply boil 
down to expectation value of this operator  em in the state ket psi okay let me illustrate this 
povm  by an example couple of example first let me begin with a trivial example  say 
consider a projective measurement described by measurement operator  pm these are 
projectors such that pm pm dash because you know the projection operators are  orthogonal 
orthonormal delta m m dash pm this we already know and also sum over these operators  
is equal to 1 or identity.  
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In this case all povm elements are same as measurement  operators themselves because 
here em is equal to pm dagger pm and which is nothing but pm itself  right so here in this 
particular example all povm elements all povm elements are the same  as measurement 
same as measurement operators themselves operators themselves. 
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  Maybe let me give you an another example this may not be  very appropriate to you so 
let us say another example consider this one let us say ket psi  is equal to a state is given 
it's a qubit system it is in a superposition of ket 0 plus ket 1 this  plus ket 1 this qubit state 
what are the povm elements here it's also a trivial and you know  what are the povm 
elements here povm elements are two elements are there one is projector ket 0 bra 0  and 



another one is e 2 is ket 1 bra 1 and it's very clear that sum over all these projectors  which 
is basically e 1 and e 2 e 1 plus e 2 should be equal to identity event right. 
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 And there are two  outcomes of the measurement so outcome outcome one two outcomes 
first outcome is say getting the  state ket psi this qubit state in the state ket 0 and the second 
outcome that say outcome number two  is getting the state ket psi in ket 1 okay and what 
about the corresponding probabilities  probability of getting the outcome one is given by 
this expression and you can easily work it out  it's very trivial so let me still work it out it 
is 1 by root 2 bra psi is bra 0 plus bra 1 here  and e 1 is this projector ket 0 bra 0 and ket 
psi is 1 by root 2 ket 0 plus ket 1 and as you can very  easily see that this is going to be 
equal to simply half right. 
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 So similarly you can make it  out that probability of getting the second outcome is also 
half and these results are already known  to you because there is a 50 50 probability of 
getting the state either in ket 0 or ket 1  i just have illustrated you only by this example. 

 You can see the importance of  povms when i talk about one important theorem or in 
quantum mechanics in particular related  to measurement problem and this theorem is this 
that non-orthogonal quantum states  non-orthogonal quantum states cannot be reliably 
distinguished non-orthogonal quantum states  cannot be distinguished and this has very 
important replication in quantum information  processing and many experiments so let us 
actually prove it. 
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To prove that let me  let me argue it otherwise let us say we have ket psi 1 and ket psi 2 
and these are two  non-orthogonal states say ket psi 1 and psi 2 are non-orthogonal non-
orthogonal quantum states  okay they are non-orthogonal quantum states and we will 
assume rather than assuming that because  we have to prove that they cannot be 
distinguished so let us assume otherwise that assume ket psi 1  and ket psi 2 can be 
distinguished okay can be distinguished if this is not we are going to  actually going to get 
some kind of a contradiction. 

 Now say there are two povms  there are two povms two experiments are there to say there 
are two povms two measurements e1 and e2  such that such that they can be distinguished 
such that psi 1 and psi 2 can be distinguished  can be distinguished reliably. 
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What does that mean this means that the probability  of measuring ket psi 1 and getting the 
outcome 1 is 100 so you are going to get psi 1 e1 psi 1  is equal to 1 and probability of 
measuring ket psi 2 and getting the second outcome outcome 2  is also 100 that means psi 
2 e2 psi 2 is equal to 1 or that also mean  this is important results that also mean the 
probability of measuring psi 2 and getting the  outcome is has to be is 0 so psi 2 e1 psi 2 is 
equal to 0 and probability of measuring the  state measuring ket psi 1 and getting the 
outcome 2 is going to be 0 psi 1 e2  psi 1 is equal to 0 okay so this is what we mean that if 
psi 1 and psi 2 can be distinguished  reliably by two povms e1 and e2. Now you see let us 
analyze it a bit further now we have this  expression psi 1 e2 psi 1 is equal to 0 from here 
one can easily obtain square root of e2  psi 1 is equal to 0. 
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This is trivial to see this is what you are going to get now since ket psi 1  psi 2 is not 
orthogonal is not orthogonal to psi 1 ket psi 1 so therefore psi 2 can be decomposed  actually 
into two components one component parallel to  psi 1 and another component orthogonal 
to psi 1 so one component orthogonal parallel to  psi 1 and other component is say phi 
which is orthogonal to psi 1 so this is what you should  get of course with the condition 
that mod alpha square plus mod beta square has to be equal to  1. 

So what is what is the you know result of this thing this means that then what you will have  
then you can see that square root of e2 psi 2 psi 2 i'm now writing it as alpha psi 1 plus beta  
phi so let me just write it alpha square root of e2 psi 1 plus beta square root of e2 ket phi  
okay. 
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 Now this is going to be equal to simply beta beta square root of e2 it would be beta  square 
root of e2 phi because this guy is anyway equal to 0 by the end of this expression right  so 
therefore we'll be left out with this one and this implies from here i can write psi 2 e2  psi 
2 right this would be equal to mod beta square and you will have phi e2  phi i think this is 
also trivial to see and of course this has to be less than or equal to  mod beta square if i take 
sum over all e i's all e's then i have this right e i phi. 

  Okay now this has to be less than or equal to mod beta square why because  because you 
know the probability of the outcome i is in the state shape ket phi because of the  
measurement e i is this and sum of all probabilities is has to be unity one okay  so therefore 
it means that you should have sum over i phi e i phi is equal to one  okay this is going to 
be equal to one so that's why it is less than mod beta square but this has  to be less than one 
because mod alpha square plus mod beta square is equal to one so mod beta  square has to 
be less than one okay but okay so what you get is this result you get but earlier  what you 
have obtained this you got but earlier you got this expression that this you have taken  it to 



be equal to one because you were able to distinguish psi 1 and psi 2 that is that is your  
assumption but what you have what resulted because of all these assumption you are 
getting in  contradiction. So this is this is a contradiction this is a contradiction  so what 
does it mean this means that we cannot we cannot reliably reliably distinguish  distinguish  
orthogonal states orthogonal states actually non-orthogonal states right  we cannot reliably 
distinguish non-orthogonal states ket psi 1 and ket psi 2. 
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 Now as a final  example to illustrate POVM formalism let me give you this example let us 
say Alice gives Bob  a qubit prepared in one of the two states that may say psi 1 is equal to 
ket 0 and ket psi 2  is equal to ket 0 plus ket 1 by root 2 okay now you can see that ket psi 
1 and ket psi 2  are non-orthogonal so Bob find it impossible to determine whether he is 
given ket psi 1 or ket  psi 2 with perfect reliability however it is possible to for Bob to 
perform a measurement  which distinguishes the state some of the time but never makes an 
error of misidentification. 
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 To understand that let us consider a POVM containing three elements consider a POVM  
containing three elements containing three elements very cleverly chosen elements given  
as this e1 is equal to root 2 divided by 1 plus root 2 ket 1 bra 1 this is one measurement one  
POVM element other one is e2 is equal to square root of 2 by 1 plus root 2 okay ket 0 
minus ket 1  bra 0 minus bra 1 divided by 2 and e3 is equal to I minus e1 minus e2 . 
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It's very  trivial and straightforward to see that sum of all EMs because this guy has to be 
satisfied  whenever you are considering some measurement operators this has to be equal 
to 1 so they form  a legitimate POVM. 

Now say Bob is given the state ket psi 1 okay ket psi 1 is equal to  ket 0 he makes a Bob 
makes a measurement he makes a measurement described by this  measurement described 
by these three POVM elements POVM which are e1 e2 and e3 okay. 

  Now the probability the probability probability very easy to see that probability that Bob  
will get the result e1 is 0. 
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You can see that because if you find out this expectation value  psi 1 e1 psi 1 if you work 
it out because e1 already I as I have defined here you see e1  if you take the operations ket 
psi 1 is ket 0 you can immediately see this is going to be 0  what does it mean this implies 
that if the result of his measurement is e1  if the if the result of Bob's measurement if Bob's 
measurement is e1  then then Bob can safely say Bob can safely safely say that the state 
provided by state received by  received by him or provided by Alice to him must be must 
have been  what must have been psi 2 not psi 1 right that's what it mean and in fact you can 
see  if you can work out psi 2 e1 psi 2 you will find that this is going to be non-zero  so 
therefore Bob has received the step psi 2 instead of psi 1. 
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 On the other hand  on the other hand on the other hand if the measurement if the 
measurement  outcome is e2 measurement outcome is e2 then then it must  have been have 
been the state ket psi 1 that Bob has received right because  because if you again 
mathematically see that if you calculate psi 2 e2 psi 2 you will find it to  be 0 and you will 
find psi 1 e2 psi 1 is non-zero similar argument now sometime what may happen is  this 
sometime Bob may get may get e3 and then Bob would not be able to then Bob cannot 
distinguish  or cannot actually conclude cannot conclude what state is given to him what 
state is  given to him I hope by this example you have seen the power of POVM 
measurements let me  stop for today in this lecture we have discussed about quantum 
measurement process  in the next lecture we are going to discuss about entanglement 
measures related to  discrete variables so see you in the next lecture thank you so much. 


