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  Let  us look at the Hall effect quantum Hall effect that we have been talking about in a
symmetric  gauge what I mean by symmetric gauge is that we have been talking about the
Landau gauge  which is either in the x direction that is the vector potential to be either in
the x  direction or in the y direction. We have actually dealt with both of them but these
particular  thing where the symmetric gauge where the system has you know circular
symmetry  will   be  useful  and not  only  that  we shall  need it  later  for  discussing the
fractional quantum  Hall effect.  So, we start discussing about symmetric gauge. So, what
I mean by symmetric gauge is that  for a constant magnetic field the vector potential is
given by half r cross B and this will have  to be inserted into the Schrodinger equation
and hence solve okay. Now of course this has  both the x and the y component which is
written as it is a y x cap minus x y cap and it is  a valid vector potential because if you
take the curl of it, it gives you the magnetic  field in the z direction. So, this has rotational
symmetry alright.

  So, now our Hamiltonian is the same basically the which is a p plus e A square over 2 m
it  is  just  p  square  over  2  m  in  absence  of  the  magnetic  field  but  the  mechanical
momentum  gets a change or gets transformed into p plus e A in presence of the magnetic
field alright.  So, this can be now written as so let me introduce a new momentum which
is equal to a pi.  So,  let  us write it  as pi square over 2 m where pi is of course the
canonical momentum now  which is equal to p plus e A that takes into account the effect
of this  vector potential.   So,  pi is  the new momentum and it  obeys the commutation
relations.

  So, let us write commutation relations of the pi. So, one can check easily that pi x  and
pi y is  has a relation which is ih cross square divided by lb square this  is of course
different than px and py. In absence of a magnetic field px and py would commute but in
presence  of a magnetic field they would not commute and particularly in this particular
situation   they  would  definitely  not  commute  okay.  So,  we  can  write  down  the
Hamiltonian here which  will do that. So, let me write down the Hamiltonian. So, the
Hamiltonian is 1 by 2 m and I have  px plus e By by 2 and a square and plus py minus e
Bx  by  2  square  okay.



 So, the pi x and  pi y are these and you can check that this obey a commutation relation
which it is ih  cross square divided by l B square where l B is nothing but the magnetic
length that we  have seen several times earlier okay. So, this is equal to h cross over e b
this  basically   this  pi  gives  a  new  set  of  canonical  operators  which  obey  certain
commutation  relations  which   are  shown  here  okay.  Now  the  algebra  of  harmonic
oscillators we know at the back of our mind  that this solutions are going to be harmonic
oscillator solutions because if you change  the form of the vector potential the problem
does not change and neither the outcomes of  problem that is the eigen solutions would
not  change  if  you  change  the  gauge.   So,  we know that  these  are  going  to  be  still
harmonic oscillator and I am sure that you  are familiar with the harmonic oscillator in
terms of the operator algebra using a and  a dagger where a actually annihilates a boson
or an oscillator from a state n. So, it reduces  to in the Fock space Fock space means the
number of particles basis it reduces the number of  particles and a dagger increases a
number of particles.

 So, it goes to the from one  level to the next level by applying a dagger and by applying
an a which is an annihilation  operator one can go from a lower energy level which is n
minus 1.  So, from n by applying so, there is a a dagger which acts on n and it gives you
something  and it gives you a n plus 1 and this a acting on n it gives you a something and
n minus  1 and this something is called as root over of n and this something is root over
of n  plus 1 you can check that. So, so these a and a dagger operators form the basis of
these  problems and just following that if you now these a and a daggers are of course,
combinations  of x and p, okay. So, it is written in terms of linear combinations of x and
p. So, it is  in terms of so, a is written as some x plus ip and a dagger is written some x
minus ip  or the reverse of it along with some factors which properly give you the the
commutation  relations of x and p in terms of a and a dagger.

 So,  a  and a  dagger  have  their  own commutation   relations  because  these  are  these
oscillators  are  bosons.  So,  they  obey  bosonic  commutation   relations  and  x  and  p
commutation relations are known which is given by x p is equal to  i h cross and this
operator algebra is quite familiar to the first course of quantum mechanics.  So, I leave it
to you to brush up that and if you now in terms of these pi operators  that is pi x and pi y
in presence of these magnetic field which is represented by a symmetric  gauge then if
one defines that a dagger equal to 1 by root 2 h and pi x plus i pi y and  a to be equal to 1
by root 2 h and pi x minus i pi y. So, this you can check that a and  a dagger have a
commutation  relation  which is  equal  to 1 and for that  you require the  commutation
relations of pi x and pi y which is what we have derived.  So, in terms of this operator
Hamiltonian which we have written earlier this Hamiltonian  this Hamiltonian that you
see here in this step.



 So, let us call this as again as equation  1 this as equation 2 this as equation 3 and this as
equation 4. So, if you look at equation  3 or rather put them in equation 3 you get h to be
equal to h cross Omega B the cyclotron  frequency a dagger a plus half and a dagger a is
nothing but the number operator it just  counts the number of oscillators in a given state
in the Fock space with you know index  n. So, a dagger a it yields the number operator
for the problem. So, if this is the number operator so, this is an operator and this  a dagger
a acting on n will give me a n and n. So, this you can write it as it is an eigenvalue.

  So, this is that the wave function or the Fock space basis and so, this gives you the
eigenvalue and hence you have h cross Omega B equal to n plus half same thing that you
have seen earlier and Omega B is nothing but equal to e B over m.  Even though and
some new operators have been introduced and a new commutation relations  you have
seen but there is something very important which is going to come up in this  context
which you should keep in mind because when we discuss the fractional quantum Hall
effect that is going to be very important, okay. So, for convenience let me write that I will
use that in just a while that let me use some operator which is x x cap plus y y cap  and
this is equal to nothing but R minus l B square divided by h cross and Z cross pi this  pi
operator. So, I introduced some vector operator in terms of these pi operators and  they of
course keep the commutation relations that we are interested in. So, these components  of
this  operator  it  replace  I  mean it  gives  you the  proper  commutation  relations  for  pi.

  So, that is what we wanted to write down. So, h is of course replaced by the l B square
in the commutation relation that you are mostly aware of between the position variable



and  the momentum variable. Now this we really have a two-dimensional symmetry we
have a  circular symmetry of the problem because if you look at the gauge that we have
chosen  it has a y x cap and x y cap. The only problem that we see with this energy this
energy expression  which you are very familiar  with in the context of both harmonic
oscillator and electron in  a magnetic field is that we find only one quantum number
which is n, but there should  be another quantum number for this particular problem and
that  is  a  very  important  quantity   or  that  is  you  know a  conserved  quantity  in  this
particular case and that comes from  the degeneracy. Let us see how that arises in this
present context.

  So, we talk about degeneracy, okay. So, what is this degeneracy we have talked about
this   in  details  this  is  equal  to  the  degeneracy  if  you  go  back  and  look  at  earlier
discussions  you will see that this is equal to Lx into Ly into eB  divided by h okay where
Lx and  Ly are dimensions of the sample. So, this is like the maximum degeneracy which
is arising  out of the number of you know states or particular Landau level contains a very
large number  of states and this counts the number of states that each of the Landau levels
comprises of,  okay. So, you remember this Phi 0 which is called as a flux quantum is
nothing but h  over e. So, I can move this e down and write it as Lx Ly into B divided by
h over e and  now this Lx into Ly is nothing but A.

 So, this is B into A divided by some Phi 0 that  is the flux quantum and this really is the
degeneracy that we talk about in usual sense.  So, this is nothing but Phi over Phi 0, okay.



This Phi over Phi 0 which means that the flux  that threads the sample divided by the
quantum of flux. So, that is that gives you the degeneracy  of this. Now, because of there
is a very large number of electrons that must be occupying  each of those degenerate
states and such large number of electrons actually makes the problem  a more difficult
because suppose you want to take into account interaction between the  electrons if a
particular state contains or a particular Landau level contains a large  number of electrons
then there has to be electronic interactions and we have no idea how to deal  with it
exactly unless we do a computational exercise.

  But suppose we want to do it perturbatively or one want to deal with it perturbatively
that is also impossible because it becomes an infinitely degenerate perturbation theory
and that becomes an intractable problem, okay. So, but you see that if you have N to be
the  total number of electrons suppose then G over N okay is nothing but equal to  the
again that EB over you know sort of N h and so on and so this becomes so g over N  I
have taken out the area so this becomes g over A and then I divide it by the number  of
total number of particles okay. So, this becomes equal to n h and so your n is nothing  but
that is equal to okay so this does not have to be in the sense that it can be still  g and this
n is equal to N over A okay so that everything falls in place.  So, this degeneracy divided
by the number of particles now if you look at the conductivity  expressions which we get
for the Hall effect so the Hall conductivity is nothing but n e  over B this is we have
derived this a number of times and also the quantization says that  it's is E square over h
into nu where nu is equal to 1 2 3 etcetera etcetera okay. So,  if I equate because both of
them are same so it's any over B is equal to E square over  h into nu and so this becomes
equal to so 1 E cancels and I can write this as n over  n h over nu equal to e B and so on.

 So, basically you get exactly the same relation that you  have gotten here so your e B
over n h e B over NH is equal to 1 over nu and this is the nothing  but the restatement of
this equation that we have written down earlier okay.  We haven't been numbering the
equations but let's say this is equation 5 this is equation  6 this is equation 7 and let's say
this is equation 8 and this is equation 9. So, equation  8 and 9 are identical and this is
really  also  useful  for  interpreting  this  fractional  quantum   Hall  effect  to  be  precise
because for a filling fraction nu equal to one third it means that  there are three available
states for particle for the Landau level for the lowest Landau  level we are only interested
in the lowest Landau level or most of the time we are interested  in the lowest and all
level unless there are some pathological signatures that makes us  go to or rather deal
with or consider higher Landau levels.  So, this is what the interpretation of nu is for a
fractional quantum Hall effect and  on the other hand the integer quantum Hall effect for
that case nu gives the total number  of filled Landau levels okay. So, these are the things



that we need to know or rather  we already know about this okay it's just that the context
of the fractional quantum  Hall effect is being talked about.

 So, this is one of the most prominent fractions that  one mentions in the context of this
fractional quantum Hall effect okay.  So, let me write down the Hamiltonian which we
have written down just a while back. So,  this is a px plus eB y by 2 square plus py minus
eB x by 2 square that's the Hamiltonian  here and I can write that down as introducing
that r operator and the pi x and the pi y  operator I can write this but then you know I
want to introduce a new operator here and  that operator is called as the Lz and the Lz if
you define Lz to be like minus h cross  divided by 2 l B square x square plus y square
plus l B square divided by 2 h cross pi x square  plus pi y square okay.  To remind you
what is Lz? Lz is nothing but the z component of the angular momentum and  this will
now  deal  with  the  degeneracy  or  rather  the  eigenvalues  of  Lz  will  deal  with   the
degeneracy. Just to give you a short reminder of the first course of quantum mechanics on
the algebra of angular momentum see these Lx Ly, this commutation relations is like I  h
cross  Lz.
li
 So, in fact these angular momentum operators are neither fermions nor bosons  they have
their own commutation relations and so on.  So, Ly Lz so this is really in a cyclic fashion
it's equal to I h cross Lx and Lz Lx is equal  to I h cross Ly in fact you can write this
combine this as Li Lj equal to I epsilon ijk  Lk there is h cross of course  Lk and let me
not forget the h cross h cross sets the scale  of the problem. So, what I am trying to say is



that  so epsilon ijk  is  called  as a  Levi-civita  tensor which is  equal  to  1 when ijk  are
clockwise are cyclic basically which means  that if you write down ijk in the clockwise
fashion then epsilon ijk equal to 1.  However if you break the clockwise thing that is if
you say jik then that picks up a negative  sign okay. So, the if you write Ly Lx then it will
be  a  negative  I  h  cross  Lk  okay.

 So,  this takes care of that and if two of the indices are same then of course this is equal
to 0 the Levi-civita tensor is equal to 0 and then we can understand that if I and  j are to
be same then of course they commute and then the commutation relation gives you  0
okay. And there is also another way to combine this commutation relation is called  i h
cross L cross L is i h cross L this should you know make you rethink that L is not a
classical operator because any classical vector would have given you when you cross it
with  itself it gives you 0, but these are quantum mechanical operators and which when
you cross  it with itself it gives you i h cross L and is basically the same thing.  And then
there  are  many relations  like  L square commutes  with  all  components  of  Li  and we
actually pick up to solve the you know the second order differential equation that arises
out of these angular momentum vector or rather the square of the angular momentum we
use  L square and Lz to be the basis for our problem because Lz is actually having a very
simple  form Lz depends only on like del del Phi where Phi is the variable the azimuthal
angle I  mean theta and Phi you know theta is the angle and this Phi is the other angle that
you have  I mean in this particular sense. So, there is a vector r so, this vector r  so, the
magnitude is r and this angle is theta and this is Phi. So, we are talking about  that Phi
okay.

 So, the angular momentum is being invoked into remember when we have taken  a
gauge the Landau gauge which was either Px or Py were found to be conserved and that
is what gave rise to the degeneracy because I say Px is conserved then any value of Kx
would satisfy the n plus half h cross omega for the spectrum.  And similarly if you know
Py is  conserved then  any value  of  Ky would have  given the   same spectrum.  So,  n
becomes independent of either Kx or Ky and the quantization that  comes along with so,
Nx  and  Ny  and  that  is  what  give  rise  to  this  degeneracy.  Here  none   of  them are
conserved Px and Py are not conserved because you see that in this equation, equation
number 10 that you have both Px Py and x and y.  So, if all these variables are there or
these  operators  are  there  together  then  of  course,   nothing Px Py are  not  conserved
because they do not commute with each one the Px will not  commute with x and Py will
not  commute  with  y.

 Instead the Lz commutes with the Hamiltonian  this you can check that h Lz is equal to
0. So, h Lz equal to 0 and let me remind you  that what is Lz what is the eigenvalue of Lz
or and L square this is a function called  as the spherical harmonics which gives you so,
Lz acting on this will give us m h cross  y lm theta Phi. So, Lz is a good quantum number



and not Px and Py and so on.  So, Lz if you put in the relationship that we have talked
about let us call this as equation  11 and look at the definition of a and a dagger that we
have written down in equation 5. So,  if you put equation 5 that is a and a dagger you get
a neat relation for the Lz operator  which is equal to h cross a dagger a minus b dagger b
where,  okay.

 So, we introduce new operators  a b and b dagger such that the eigenstates of these h
written in equation 10 can be written  as now we will  write that  psi  in terms of the
quantum numbers. So, let us write them  as n,m and we have already seen n comes in the
energy expression where n takes value  0 1 2 3 etcetera. So, this is written as a ket n,m
which is equal to a dagger to the  power n b dagger to the power m and divided by root
over of n factorial and m factorial  and this acts on 0 0. So, that is n equal to 0 m equal to
0 are the states which let  us call them as vacuum. So, we have introduced these new a
and b operators in order to write  the eigenstates of 10 that is equation 10 the Hamiltonian
in equation 10. So, these  actually are the eigenstates of equation 10 let us call them as 13
and so on.  

So, the quantum number n denotes energy and m denotes degeneracy and you know it is
convenient  in this particular context to use the complex number z which is given by x
plus iy and we  will of course, discuss this in little more details definitely with more
details than  what we are doing now for the lowest Landau level, we will call this as LLL
ok.  There is a standard terminology that is used here. So, psi LLL of z this is equal to



this  is the so, it is z to the power m and exponential minus z square divided by 4 L b
square and  so on ok. So, I am only writing the you know the unnormalized part of the
wave  function.

  So,  there is  a  Gaussian which you know that  it  is  there in  the harmonic oscillator
problem  and then there is a Jastrow factor which does not let two electrons come very
close to each  other because of the strong Coulomb repulsion that you have, but we will
talk about this  in more details later. So, m of course, is equal to m 0 1 2 etcetera so on.
See this m that you know depicts or rather it represents the angular momentum quantum
number in general in quantum mechanics problem these m takes values minus l to plus l
when  you have a Y lm function and so on, but here of course, there is no L it is only n
and  m and  we have  formulated  the  problem in  terms  of  so,  energy is  a  conserved
quantity  which   gives  you one  quantum number  which  is  n  and L z is  a  conserved
quantity  which  gives  another   quantum number  m  and  we  have  written  the  Lowest
Landau level which is the most sort of important  thing in our discussion that the Lowest
Landau level will be discussed mostly in the context  of quantum Hall effect and this is
how the Lowest Landau level is written down.  So, we have solved the problem in the
mixed gauge or the symmetric gauge where a is given  by half r cross p and neither px
nor py are conserved in that case and we but fortunately  we have been able to find that
there is another quantity that is conserved the apart from  the energy which is that L z
okay and this is this part is called as a Gaussian which  we have seen that is present there
and then this is that a Hermite polynomial, but this  Hermite polynomial is now written in
terms of the complex number.  Alright let me sort of go to another topic and which is
quite important and so on.

 Let  me write down the title of the topic and mostly I will be discussing so, please I mean



listen  to me carefully. So, the topic is 2D electron gas this you know to tight binding
model  systems and so, I will say there is a role of the periodic potential.  We have been
talking about 2D electron gases and that part is clear that why we have been  talking
about 2D electron gases because the experiments demand that we deal with 2D electron
gases which have a lot of defects and disorder and which we have seen that they are
actually  beneficial to the study of quantum Hall effect because that broadens the Landau
levels and  the chemical potential gets to spend some time in that band so, that it gives
you a  plateau otherwise without  that  there would be no plateau  and then it  will  be
straight  line monotonically increasing with B. So, this 2D electron gas is being exposed
to a  transverse magnetic field and that makes the problem somewhat complicated and
strange because  why I am saying strange is that the system does not have a time reversal
invariance.  The time reversal invariance is broken by the magnetic field present in the
system and  if you want to understand why magnetic field breaks time reversal invariance
one simple  way to see it is that the curl of B equal to mu 0 J.

  So, when I say time reversal invariance I do not really mean reversing time or t goes  to
minus t what I mean is that a particle is moving with a velocity v plus v. Now if  the
particle changes the direction of its motions that is if it starts moving with a  minus v does
the physics remain  unaltered  that  is  the meaning of time reversal  invariance   and in
presence of a magnetic field that does not happen.  You can understand it by you have a J
which is a current density and the current density  actually involves a negative sign to be
picked up as because a current is nothing but the  charge by time and if you are changing
the sign of t the current changes sign hence the  current density would change sign and
under such time reversal invariance in that case  B will have to change sign which means
it does not remain invariant.  And another simple way of understanding it is that you
know there is a phase that the  wave function picks up in presence of the magnetic field
and this phase is equal to  I integral a dot dl which you can write it as B dot dS which is
nothing but the flux.  So, this is the you know the phase that the electron or the charged
particle  picks  up   the  wave  function  of  the  charged  particle  picks  up.

 So, when you evolve it with time  usually a wave function is evolved like psi exponential
I omega t where omega denotes  the energy of the of the system or h cross omega. So,
both psi exponential I omega t  and minus I omega t they denote valid solutions of the
problem. So, if  t  is  changed to minus  t  that  is  also a valid  solution.  But here what
happens is that you already have a phase.  So, the wave function is exponential I phi and
then now you put a dynamical factor that  is you evolve it with time and now you change
the  time  to  minus  t  then  it  becomes  just  like   this  exponential  minus  t.

 So, this is not the same as the wave function that is would  have been there without the
magnetic  field.   So,  magnetic  field  breaks  time reversal  invariance   and the disorder



which is present in the system it breaks the translational invariance  okay. So, the system
is  left  with almost  no symmetries.  So,  we know that  this  you might   have learnt  in
classical mechanics etcetera which goes by the name Noether's theorem that  if there is a
conserved quantity the corresponding or rather if the system remains invariant  under
certain operation then there is a physical quantity that remains conserved. And another
way of stating this is that if there is a symmetry then the corresponding quantum number
becomes  conserved.

 So, if you talk about a hydrogen atom it is a spherical thing. So,  I will just draw it and
then I will remove it later. There is a proton here there is  an electron here this is just say
in a spherical shell it is going around the nucleus this  has a rotational symmetry right. I
mean if  you rotate  the  atom by certain  angle  the  system  does  not  change.  So,  and
because  there  is  a  rotational  symmetry  the  angular  momentum   remains  conserved.

 And the corresponding quantum numbers of the angular momentum which are  L and M
in this case that we talk about that they remain conserved as well okay.  And you can
represent  the  wave  function  in  terms  of  those  conserved  quantum  numbers  which
become gives you the eigenstates of the problem. And similarly you know if you have a
translational  invariance then you can write down the wave function as in terms of the
momentum variable  that is a k okay. So, you can write down so exponential ikx is a
solution is a plane  wave solution where k is a good quantum number. So, that there is the
system is translational  invariant and you can use the momentum or the wave vector to be
a  conserved  quantity.

  So, if k is conserved as n pi over L then n becomes so kn then n becomes a good
quantum  number for this problem. Unfortunately our system has lost both of them and
the disorder  is as I said it is intrinsic to the 2D electron gas so they have to be there,
okay. Still  the  quantization of the plateaus are preserved.  So, this is the main thing
which is surprising but nevertheless it is true it is expensive  experimentally true and if it
is true there must be a strong reason for that or there  must be something that is protecting
these plateaus. And it turns out that it there is  really something that protects or rather in
systems with broken time reversal invariance  it shows quantized Hall effect or quantum
Hall effect where the plateaus are related  to a topological invariant which has a name
Chern  number.

  So,  the previous  discussion that  we have  on Kubo formula  so if  you derive  Kubo
formula   for  the  particular  case  of  quantum Hall  effect  then  that  will  give  you this
conductivity   will  be  quantized  in  terms  of  Ne  square  over  H  where  n  denotes  the
numbers 1, 2, 3 etc.  And these Chern number also it turns out that for a time reversal
invariance broken system  the conductivity is like C into E square over H where C is
called as a Chern number and  this Chern number takes only integer values and it takes



values such as maybe 0, 1, 2  and so on so forth. And the reason that even if a 2D electron
gas in presence of a magnetic  field it is low on symmetries however the plateaus exist
because the plateaus are related  to certain topological invariant and these invariants only
can change discretely from  one value to another but it cannot just like that that is it
cannot be slowly made to vanish.  So, it just abruptly take from 1 to 2 to 3 and so on
which is what we have seen in the  plateaus.  

Now in order to see this Chern number or the topological invariant or they are in general
called as the TKNN invariants by the name Thouless, Kohomoto, Nightingale and Nijs.
So,  it is called TKNN invariant. So, T is Thouless, Kohomoto, Nightingale and his name
is the last  one is it  is Nijs, Dennice, N I j s that is the sort of generic name for the
topological  invariant and maybe some other invariants are come into this and we will see
that one  more such invariant which is called as a Z2 invariant.  So usually in condensed
matter physics the physical properties are protected by symmetries  which is what we
have discussed and so it is now becomes an important thing to understand  for us that
how the  protection  of  the Hall  plateaus  in  presence  of  periodic  potential   where the
translational  invariance is preserved and one can have block bands in it.  What I  am
trying to say is that it is very difficult to understand the protection in the context  of these
topological  invariant though we will  also derive from the Kubo formula these  churn
number and hence the quantization of the Hall plateaus, quantization in the resistivity  of
the  conductivity  of  the  Hall  plateaus.   But  it  is  much  easier  to  understand  this
quantization  if  you take  a  translationally  invariant  system  or  a  system in a  periodic
potential. So, what I mean by a system in a periodic potential  so, if you recall the band
theory of solids that you have learned in the first course  of solid state physics where you



have the there are these ions or the atoms which are sitting I mean let us talk about just
ions and these ions are like gives potentials  like  this I am just assuming them to be
attractive they could be repulsive as well.

  So, I am and so on and then electron that passes through it  okay it  is a negatively
charged particle that passes through it. So, electrons are not interacting among themselves
okay at least we ignore that but what we take into account is that this electron while it
passes through this periodic potential which has this property that V of r equal to V of  r
plus r where this r is this periodicity in real space.  In that case the wave function of the
particle is given by Bloch's theorem which states that  a psi a k of r is equal to u k of r and
exponential i k dot r okay this is called as a Bloch's  theorem and it tells you that this
fellow this u k of r picks up the periodicity of  the lattice which means u k of r is equal to
u k of r plus r and this is called as a  Bloch's theorem. See slowly we have migrated from
the 2D electron gas to a periodic potential  which has translational symmetry because we
need to understand how this problem of  quantization of Hall  plateaus be understood
through a calculation.  As I said I will also show that from the Kubo formula how the
conductivity of the 2D electron  gas is really related to the the chern number okay which
is  a  topological  invariant.

 So,  if you look at this expression that I have written down here there is the exactly the
same expression I have written down. So, this one is the same expression that I have
written  down here here okay where just I have used two symbols for this proportionality
which  are nu and c and what I say is that the churn number is it replaces nu and since
churn number  is an invariant is a topological invariant nu also is an invariant and that's
why the  plateaus exist. But it is difficult to show these things by doing calculations in a
system  such as a 2D electron gas okay. So, what we decide to do is we'll show this in a
system  which has translational invariance that is the case of a periodic potential okay.
And  for  a  periodic  potential  these  blocks  theorem  tells  you  exactly  what  the  wave
functions  are now you know wave functions you know only half of the story because you
also  need  to   know  the  energy  eigenfunctions  or  energy  eigenvalues  so  to  say.

 Eigenfunctions of this the eigenvalues  are obtained only within an approximation and
one of the approximations that you might  have seen in your solid-state physics course is
the one that's called as the tight binding  approximation okay. So, that's like saying that
the electronic wave function is tightly  bound to each of the lattice sites and it has only
very minor overlap with the neighboring  ion and very minor overlap such that you just
allow the electron to go from one site  to another one site in the crystal lattice to another.
I have just shown it in one dimension  but you can generalize it to three dimension. In
fact I'm writing this  with a k vector which  means that I really do mean that we are
talking about three dimension.  We will  have to now include the magnetic  field now



there's  something  interesting  about   it.

 When we the magnetic field of course breaks the time reversal invariance and we have
these  block spectrum farther get split into some complex fractal energy spectrum and
now what  does it mean by fractal? Fractals are self-similar objects okay. If you want to
know more on  fractals there are many documents that are on fractal it is characterized by
a fractional  dimension okay. So, this fractal like spectrum is known as the Hofstadter
butterfly.  So, you have periodicity of the wave function that becomes bloch bands put
magnetic field  into that the farther the bloch bands become you know it sort of splits into
complex fractal   energy spectrum which is known as the Hofstadter butterfly. I'll  just
write this name so that  Hofstadter butterfly the spectrum is called Hofstadter butterfly,
spectrum  means  the  energy   eigenvalues  okay.

 So, this presence of a magnetic field is important to be taken into account  in the context
of a crystal lattice okay. So, this is the important thing and it will  help us to understand
that  how  the  Hall  plateaus  are  related  to  the  topological  invariant  namely   say  for
example  a  Chern  number  okay.  But  there's  one  subtle  point  at  this  juncture  which
deserves  a mention that the magnetic flux that threads a crystal lattice suppose we are
talking about  a crystal lattice like this okay just a square lattice. So, there is one plaquette
of  a  square   lattice.

 So, you need to thread it by a magnetic field. Now these are the lattice constants  which
are of the order of angstrom okay maybe 2 to 3 angstrom okay.  But however you want
this threading or the flux that goes through this squarish region  should be in unit of these
Phi 0 which is equal to Phi 0 is equal to h over e okay.  So, you want these flux that
penetrates which is magnetic field multiplied by the area of  the square that I have drawn
here okay. So, the strength of the magnetic fields it has  to be extremely large for you
know this Phi over Phi 0 to have to be a number okay or  a fraction say for example.  So,
that's why people have to avoid this that you cannot have two large magnetic field that
becomes absolutely impractical  in terms of experiments  because you need large very
large   electromagnets  and  so  on  so  forth.

 So, people have artificially engineered super lattices  with very large lattice constants say
graphene is put on you know on a substrate of a hexagonal  boron nitride and this makes
a super lattice and this super lattice is a large lattice  constant and then if you have large
lattice constants at least 10 times bigger or even  more then you can have this the flux to
be also proportionately larger okay.  Now it is important to understand that as an electron
is hops on the lattice in a in  a 2d electron gas we have seen that p goes to p plus eA
where e is the electronic charge  and A is the vector potential. In a lattice what happens is
that the t it becomes like  t equal to exponential I Phi that is when an electron hops from
one side to another  the hopping term or the ability to jump it  is say t here it  is a t



exponential I Phi  and just to remind you that I have been talking about that I give you the
wave function but  I  have not told anything about the energy and the energy can be
obtained within some  approximation which is called as a tight binding approximation
and this in the tight binding  approximation you can write down the energy eigenvalues
where k is a good quantum number  to be cos k x a plus k y a in two dimension or in
three dimension you have a cos k z a  and so on okay. This is a simple cubic lattice the
tight binding dispersion for a simple  cubic lattice and also a mono-atomic lattice okay.
We will be talking about a more complicated  scenario than that and but we can just two
dimension you can just cut down on the last  term that is cos k z a and you have a tight
binding dispersion in 2D.

 So, this is that  t is the strength of hopping that we have written here and that undergoes
modulation  in phase by t exponential I Phi. So, this is called as a Peierls coupling so
Peierls  coupling okay. So, this picking up of phase is called as Peierls coupling and this
you  see that the system actually loses translational invariance. So, whether you can now
use k  as  a vector  but  fortunately  enough there  is  even if  the system does not  have
translational  invariance over say 2, 3 or 4 sides and so on because it becomes t e to the
power 2 I  Phi then it becomes t e to the power 3 I Phi and so on okay.  And it sort of
goes but you can always these Phi which is nothing but this a dot dl okay  and this you
can adjust such that because your you know exponential I Phi is same as  exponential I
Phi  plus  2  pi.



 So, if this phase gets modulated by a full 2 pi then you get  back the same hopping. So,
instead of sort of translational invariance everywhere you  do not get that but what you
get is that I am just talking about in one dimension you  get a translational invariance on a
number of sites.  So, that is called as a magnetic translational invariance or a magnetic
translation Brillouin  zone if you wish to call it and then so the phase will get modulated
and we complete a  phase of 2 pi. So, this phase is actually you know it is like there is a e
by h also  and that tells you that this phase is nothing but exponential I Phi by Phi 0 okay
because  I think there is a h here okay. So, a dot dl if you use over a closed thing if you
use  stokes theorem then it is b dot ds which is so by stokes theorem a dot dl over some
closed contour is equal to some b dot ds where ds is actually the surface area which
encloses  the contour and then this Phi by Phi 0.

  So, if you have this Phi which is equal to 2 pi n into Phi 0 for some value of Phi if  it
matches with that then you have this translational invariance and then you can take that
as the  periodic lattice and then do the calculations. We will show that for a specific case
because  this  will  enable  us  to  get  for  a  tight  binding Hamiltonian  or for a  periodic
potential it  will aid us to get the bands and we will see that how these Chern number
okay the topological  invariant which is related to the coefficient of the Sigma that is the
conductivity,  how   that  comes  about  and  how  that  is  a  constant  it  will  help  us  to
understand all of that  and we do that through a certain formalism which involves Berry
phase and Berry curvature  Berry connection and all that and this will get us close to a
field called as topology  and how this topology is connected to this present study we will
be talking about that.  Already we have mentioned that this quantum Hall state is the first
realization of a topological  insulator. So, there must be a topology coming in and why it
is a topological insulator because  the bulk of the sample remains insulating and it is only
the edges conduct.



 So, it is  a sort of electric field and a magnetic crossed magnetic field. So, there are the
cyclotron  orbits but so the bulk remains non-conducting or insulating but there are these
electrons  at the edges they do not get to complete the entire full oscillation and they kind
of drift  which gives rise to conductivity okay.  So, we will start with apart from a few
things that are necessary we shall do some calculations  on a crystal lattice and one of the
main things that we are interested in the context is called  as graphene okay. Graphene
has  been  discovered  in  2007  and  there  was  a  Nobel  Prize  awarded   to  Geim  and
Novoselov in 2010 and the discovery actually stated that this is the best known  form of a
2D material.  So, it is just one atom thick material and later on graphene becomes very
important for  a number of applications and it has a lot of elastic property the electrons
have very  large mobility it shows quantum Hall effect which can you know the room
temperature you  can see quantum Hall effect in graphene it has very large transmission
coefficient. So,  it is very transparent so if light can pass through it without a problem you
can  stretch   a  small  bit  of  graphene  into  a  large  area.

 So, it has very large expansion coefficient  and so on. So, we will talk about all of that
including of course Hall effect in graphene.  Thank you.


