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  We are going to discuss a number of topics.   As we have done it  in the previous
occasions.  We start with this thing called or the effect called as the Shubhnikov-De haas
oscillations.  The first is the oscillations in the conductivity or the resistivity in presence
of magnetic  field of these two dimensional electron gases that we are talking about.  Of
course these are name of two people and in fact there is another effect which is closely
related it is called as a De hass-Van Alphen oscillations which is seen in the susceptibility
of  magnetic  system.   This  susceptibility  is  actually  equilibrium  property.

  So one can use equilibrium techniques of statistical mechanics in order to calculate the
susceptibility  and see its oscillation as a function of B or 1 over B that is the magnetic
field.  Here we are going to talk about conductivity.  So conductivity is a non-equilibrium
process because of the reason that you are driving  the system there is a battery connected
which sends a longitudinal current and also other  reasons that for which it is a non-
equilibrium process we will  just come to that.   Now this is this  Shubhnikov-De haas
oscillations  is  seen in  the longitudinal  conductivity  that   is  sigma xx and it  has  also
oscillations and as I have mentioned earlier that full  treatment of this cannot be done at
this  level  because  we are not  used  to  or  rather  exposed  to  the  non-equilibrium this
formalism  such  as  talking  about  the  Boltzmann  transport  equations   and  so  on.

  I will just show a few steps and of course we will come back to it when we talk about
the Kubo formula and calculation of conductivity from there.  Once again just repeating
that Shubhnikov-De haas oscillations is the oscillation in the conductivity  profile as a
function of the magnetic field.  So what it means is that it  is as opposed to the Hall
conductivity  it  is  the  magneto   conductivity  or  the  conductivity  in  the  longitudinal
direction.  So basically sigma xx or rho xx that shows oscillations which we have seen in
the if  you look at the integer quantum Hall plateaus.  So whenever there are plateaus in
the Hall conductivity these the magneto conductivities  are completely flat and at 0 and
whenever the Hall conductivity jumps from one plateau  to another this one shoots up the
sigma xx or the longitudinal conductivity shoots up  the system undergoes to a series of
metal  to  insulator  transitions  which  is  what  we   have  said.

  So we are just some basic steps of non-equilibrium Boltzmann transport equation it tells
you  that the conductivity is obtained so this is the conductivity it is obtained as sigma



which is n e square tau over m that's the Drude relation and now we'll write it in terms of
an integral so it's 2 e square over m and one can write it as d 2 k by 2 pi square.  So this is
a two-dimensional Brillouin zone because we are talking about two-dimensional  system
of course please don't be confused that we are writing k but k is not a good  quantum
number I  mean not the both the k's  are not good quantum numbers in this particular
problem so  we'll  change it  to  an  energy integral  I'm only  writing  it  formula  for  the
conductivity.  So this is equal to some epsilon and then there is tau of epsilon and there is
a minus  df dE now you might wonder that why where are all these things coming from
this  is  nothing   but  the  relaxation  rate  or  relaxation  time  rather,  which  in  the  non
equilibrium problem  is an energy dependent quantity it's not exactly like the one that we
have seen in the Drude  formula where tau is the relaxation time and it's a constant for a
given material.  This one is coming from the Fermi distribution function and if you sort
of look at it that  the Fermi distribution function it can be plotted as follows so this is f
and this is  f of epsilon and this is epsilon and this is say for example mu or epsilon f
otherwise  it's equal to 1 but at this point there is an infinite discontinuity which can be
written  as actually like a delta function so this is where this thing coming from and this is
an energy relaxation time is an energy dependent quantity.  So the carrier density which
is  here  so  that  is  obtained  from  and  not  to  forget  that  this   two  comes  from spin
degeneracy okay so this is spin degeneracy tau is relaxation time  and this is a Fermi
distribution  function  and  so  on.

  So n can be written as d 2 k 2 pi square and f epsilon g epsilon where g epsilon denotes
the density of states.  There is only a qualitative description of the problem and of course
your f epsilon is  nothing but 1 divided by beta epsilon minus mu plus 1 that's a Fermi
distribution function  so this sigma can be written as e square by m that's a conductivity is
e square by m and  0 to infinity and there is a d epsilon g epsilon when I convert this
momentum variable to the  energy variable I'll bring this density of states and minus df d
epsilon and as I said  that the minus df d epsilon is nothing but the delta function.  So one
can put in all these things and can calculate the integral provided one knows  what is the
dependence of these relaxation time on energy okay and this is important  to know and
one can actually take into account various effects inside this such as scattering  etc from
impurities or from other agencies and so on.  So all these things can be taken into account
here in order to obtain the conductivity which  has this form in the Boltzmann transport
equation.   So  this  will  be  made  clear  when  we  actually  do  a  calculation  of  the
conductivity however  we just wanted to leave it at that. 



So the features of these the Shubhnikov-De haas oscillation  so the results are that the
magneto  conductivity  has  oscillation  period   oscillation  periods  which  are  given  by
epsilon f by h cross omega  B where epsilon f is a Fermi energy and h cross omega B is
the scale the energy scale  from the magnetic problem and importantly the amplitude of
the oscillation decreases  with B in this fashion that it goes as this amplitude goes as sine
hyperbolic 1 over  B.

  In fact it actually goes as like sine hyperbolic some delta over B where delta includes m
star  which is a we can call  it  as a magneto transport mass.  So this mass is not the
effective mass that we have talked about that the particle picks  up in presence of a band
but this is because of the magnetic field it picks up a mass which  is different than its bare
mass or the cyclotron mass that we have talked about.  So what happens is that physically
as the magnetic field increases basically the Landau  levels sequentially cross the Fermi
level.  So let me remind you of this that you have this as the Landau levels which are
equally  spaced and these Landau levels are slightly broadened because of the presence of
disorder.  So one way is to at a given value of magnetic field you can talk about that the
chemical  potential is you can assume the chemical potential to be somewhere but now as
you increase the  magnetic field suppose you keep the chemical potential here which is
also the Fermi energy.



So let's say the Fermi energy is here and now remember that picture that we have talked
about  that  really  there  are  at  the  edges  of  the  sample  there  is  an  infinite  potential
discontinuity or there is a sharp discontinuity at the edges and so this is the chemical
potential   and as  you are  increasing  the  magnetic  field  these  difference  between  the
successive Landau  levels increase and then these Landau level will first cross the Fermi
level and then  as you tune the magnetic field to larger and larger values then even this
will cross the  Fermi level and so on.  So if you at an arbitrary position if you place your
Fermi level so that that defines  the filling the number of electrons and then you are
tuning the magnetic field then the  magnetic field will the larger magnetic field will cause
larger change in the value of between  the two Landau levels and suppose the chemical
potential is placed somewhere in between then  it will be sequentially and periodically the
Landau levels will cross the Fermi level and  that will cause fluctuation in conductivity
and how it does that because the conductivity  is proportional to the carrier concentration
and also it is proportional to the carrier  scattering probability.  So it's a carrier density
and scattering probability.  So let me write that so conductivity is proportional to one
carrier concentration or the density  of carrier and two it also depends on the scattering
cross-section  or  scattering  probability  let's  call  it  a  scattering  probability  that  is  the
electrons scattering into states that are unfilled.  So if all the levels the Landau levels are
completely filled and the chemical potential  of the Fermi energy lies above a few such
levels here I have shown two such levels it's  above that then of course there is no where
the electrons can scatter to because there  are no available states but when this the Fermi
level let me draw it with another color  say the Fermi level is here it's in the inside the
Landau level then there are unfilled states  which are above this red line that the electrons
can scatter into and this gives rise to the  non equilibrium situation.



  So there are scattering taking place and if you see that whenever we have talked about
the Landau level and the Fermi energy vis-a-vis the you know the position of the Fermi
energy  all the time we have specifically talked about that how the Fermi energy is placed
that  is   all  the  I  mean  a  few Landau  levels  which  are  below the  Fermi  energy  are
completely filled  that is the Fermi energy lies above them okay but it's always not the
case where scattering  takes place so this conductivity will have to you know take into
account all of that  so the density of states at the Fermi level now you understand that
which electrons are  taking part in this conducting process or this conductivity which
contribute to the  conductivity the electrons that are at the Fermi surface they are mostly
you know susceptible  to the transport properties or taking part or contributing to the
transport properties.  So the electrons which are at the Fermi level or just below the Fermi
level they are responsible  and these so basically how is the density of states at the Fermi
level  that  decides   the  nature  of  the  conductivity.   So  the  density  of  states  decide
conductivity  and the conductivity is proportional  to the  carrier  concentration and the
scattering probability basically the periodic fashion in which the  Landau levels actually
cross the Fermi level that gives rise to the fluctuation in the  conductivity and this is
called as the Shubhnikov-De haas effect SDH in short okay so this is called  as the S-D-H
effect  and  these  oscillations  are  actually  measured  in  experiments  and  they   the
theoretical explanation or the theoretical formalism that are calculated or rather that  are
you know derived to know the oscillations its dependence on the magnetic field or the
inverse  of  it  and  the  temperature  etc  all  of  them  very  nicely  corroborate  with  the
experimental  results that are obtained.  So we have talked about the Hall conductivity or



Hall resistivity now we have talked about  the other resistivity or conductivity that is in
the longitudinal direction if you wish  you can call this as sigma xx which is called as a
magneto conductivity or magneto resistivity  by rho xx and this magneto conductivity
shows these oscillations okay.  Alright so let me tell you another very important point and
that is called the importance of  the 2D geometry.

  We have been talking about that you know these electrons are confined in 2D and of
course  the energies are quantized in the Z direction but it's mostly residing in 2D and
how experimentally  we can achieve it I will just talk about it after this but let us try to
understand  that there are something special about this 2D geometry at least with regard
to the Hall  conductivity and the Hall resistivity.  To understand that let us understand
that  the  resistivity  and  the  conductivity  these   quantities  do  not  depend  upon  the
geometrical aspects of the sample that is these are inherent  properties of the carriers or
the electrons in this case and they are simply not a function  of how thick the sample is or
how wide the sample is etc.  So but when someone goes to the lab and tries to measure
these quantities they do not measure  resistivity and conductivity they measure resistance
or conductance.  So how is resistivity related to resistance and how is conductivity related
to conductance?  If the experimentalist find resistance and the theorists are interested in
the fundamental  aspect of things that is the resistivity or the conductivity then how do
they  correlate   how  do  their  findings  correlate  is  there  a  scaling  required  when  an
experimentalist give  you a result on the resistance of a sample say a 2D electron gas and
you as a theorist  have some expressions is there a scaling that is required.  So that's the
question that we want to answer ,and in 3D I am sort of it's like a quasi  2D so this is a
sample  geometry  that  we are  considering  so  this  is  a  certain  thickness   and  so  this
thickness  let's  call  it  as  d  let's  say  the  length  is  L  and  say  the  width   is  W okay.

  So there is a J x being passed here so this is your x this is your y and of course the  z
axis is perpendicular to the plane in which direction the magnetic field is applied so  this
is z.  Let me shade this portion by a different color okay.  So this is for this geometry the
current flows in the x direction basically your J y the  y component of the current density
equal to 0 and because that is equal to 0 we can write  down Ohms law which tells you
that  E x and E y that's  equal  to rho xx rho xy minus  rho xy and rho xx it  is  very
important to understand that this is an anti-symmetric  tensor and this anti-symmetric
property of the off diagonal elements is purely an artifact  of the magnetic field.  So if
you do not have a magnetic field this rho xy and rho yx will have the same sign  but in
presence of a magnetic field they have opposite signs okay.  So this E equal to rho j is
what we are writing so this is J x and this is equal to 0 so that  tells you that this is equal
to rho xx J x and rho xy with a minus sign and J x again  okay so this is the Ohms law so
we know that rho xx is equal to E x by J x and rho xy is  equal to minus E y by J x.



 So this is the longitudinal resistivity  and this is the Hall resistivity okay. 

So once we know this then the resistance now  we have talked about the resistivities and
the resistance so these are the resistivities  and these are resistances and this is equal to r
xx which  is  equal  to  V x by I  x  that   is  the  definition  of  the  resistivity  for  the  xx
component which is nothing but equal to  E x into L, L is the length of the sample, and
divided by the J into A, A is the area  of the phase that has been shaded in this thing. So
this is the area which is nothing  but it is equal to the W into D basically W is the width
and D is the thickness okay.  So this is equal to that and so this is nothing but, so this is
nothing but the rho xx, xx  and this V x and this is E x into L and so this is rho xx L by A
okay.  So  this  indeed   the  conductivity  or  the  resistivity  resistance  rather  in  the
longitudinal  direction is related  to the resistivity  in that direction that is longitudinal
direction by these geometrical  factor which is L over A, L is the length of the sample and
A is the area of that of  that phase which I have marked.

 And similarly R xy is minus V y by I x which  is equal to minus Ey W that is the V and
this is equal to J into A okay. So this is  equal to rho xy into W by A okay. So you see
that  in  a  3D  sample  to  connect  the  resistivity   and  the  resistance  you  need  these
geometrical factors L by A and W by A. Now the moment  geometrical factors come into
the picture it becomes important to know their exact values  and to ask this question if I
change the dimensions what will happen to the values of the resistance.  Of course if you



change L by A and multiply you know say L by a factor of 2 and divide  A by a factor of
2 then of course this ratio goes up by a factor of 4 which means that  the r xx will be 4
times rho xx okay.

 So they are not the same so you need that scaling  factor by knowing the dimensions of
the  sample  that  you  are  dealing  with.  And  similarly  for   this  Hall  resistance  it  is
connected to the Hall resistivity by this W over A again you  know you can change the
ratio and that ratio will determine what exactly is the relationship  between them.  Now
what happens is that in 2D so this requires L by A and W by A which are geometrical
quantities   alright.  So let  us talk about  in  2D okay.  Now there is  something slightly
interesting  about 2D which from a very general perspective let me tell you this that I can
write down  R equal to rho into 2 minus D okay.

 That is the resistance and the resistivity are really  connected by this thing where D
denotes the dimensionality.  And if you wish to test this let us test it from the knowledge
that we have acquired in  class maybe 8th or so where we have seen that the resistance of
a wire a cylindrical wire  is given by r equal to rho into L by A. I mean I am just talking
about a geometrical  sample where L is the length of the wire and A is the area of cross
section. So it is this  kind of a geometry that we usually talk about where A is this area
and this length is L  and so on. So this tells you that this has a dimension of length this is
a dimension  of length square so this actually goes as length to the power rho by length
and if  you  test  this  that  is  in  three dimension these of course are three dimensions.

 So D equal  to 3 r equal to rho by so the dimension so it is 2 minus 3 so it is equal to 1 so
there  is there has to be a L here. So rho into it is 2 minus D okay. So if you put D equal
to  2 it becomes rho by L okay. Now this is the point that for D equal to 2 this of course
gives you that there is no r is same as rho but it is not that simple which is what we  are
going to point out this looks like the 2D is special where r and rho will be just  the same
thing. So there is no conflict between a theorist and an experimentalist if you want  to
know the  intrinsic  property  of  the material  it  is  displayed by the  resistance  that  you
calculate because your the geometric factor which is L here that cancels out.



 Let us see  that more elaborately okay. So now we talk about a 2D sheet okay so this has
a length  L and it has a say a width W you can take both of them to be same does not
matter and  you have a sheet current which is Jx so Jx is the current density in the x
direction  okay. So we have rxx we have rxx equal to Vx over Ix equal to ExL divided by
J into  W, J into W so this is in I mean multiplication sign and when there is a x I will
write it  as a curly x like the one that I have written here. So this is nothing but equal to
rho  xx L over W okay. So there is still  the longitudinal part of the resistance is still
depends on  the geometric parameters by these so Rxx and rho xx are still dependent on
geometry and  if you change this ratio L by W then the dependency so R by rho changes
and you need  to know that how you have changed the dimensions of the sample in order
to  answer  that  what's   the  relationship  between  the  R  and  the  rho.

 Let's see for the hall so the hall resistivity  says that it's Rxy which is equal to minus Vy
because minus because of the reason that  I have told you this earlier that this is x and this
is positive y so the hall voltage  is in this direction so that's why it's a minus Vy because
that's a minus y direction  so this minus y direction. So this minus Vy divided by Ix and
this is  equal to minus W Ey and Wj basically this Jx and this is equal to the W will
cancel  is equal to minus Ey by J if you wish you can write a Jx here in that case so there
is a Jx and so on. So there is a Jx there is a Jx and this is nothing but rho xy.  So in 2D
Rxy and rho xy are identical so the property of the sample is exhibited by the  resistance
that you calculate in the lab okay so this is an important thing so they have  the same unit
so  there  is  no  geometrical  factor  that  connects  one  to  the  other  okay  so  direct
measurement of Rxy will lead rho xy. Let us also show this that since we are talking
about this let's say the unit of the Hall resistance. I mean of course Hall resistance  has
Ohm  or  you  know  kilo  ohm  that  we  talk  about  because  h  over  e  square  is  25.



8 kilo  ohm but let's see that how it comes about in terms of the these length and mass
and  time and so on so forth okay. So h over e square is nothing but energy into  second
you remember what h is? h has a dimension of angular momentum because that's what
Bohr  had said that the electrons you know moving in certain chosen orbits would not
radiate  energy and their angular momentum would be quantized in unit of h or h cross
okay so  that's the that's angular momentum. So we write it as energy divided by energy
into  the length okay so this is equal to really second over length so that's time over so
this is like time over length. And similarly this R which is V over I that's  has a energy
over charge that's the so voltage is potential  energy divided by the charge  so this is
energy by charge and this is energy by time because so this is energy by time  and this is
equal to again energy into second this is not energy this is charge, charge  by time that's
current so charge square. So this is the resistance and if you simplify  it then it becomes
again equal to where you change the energy into second divided by so  this charge square
will be energy into length and the energy will cancel and it will become  again these
second which is T and divided by L okay.

 So that's the unit of all resistance, so this is rho xy and so on okay. So H over E square
has the unit of resistance and it's  also the unit of resistivity in two dimension, okay. So
that's one important thing and the  conductivity tensor which we call it by G R inverse
because these are tensors so these  are R inverse or you can write it as R inverse so you
have to take a inverse of a matrix  in order to calculate this. So for the quantum Hall
states of course the  rho xx equal to sigma xx equal to 0 okay this is an ambiguity that we
have  talked  about   a  number  of  times  that  this  really  happens  that  the  longitudinal



resistivity  vanishes   and the  longitudinal  conductivity  vanishes.  So  on  one  hand  the
system resembles that of  a perfect conductor and on the other hand it represents that of a
perfect  insulator.

  So both cannot be together but it really happens in presence of a magnetic field. So a
minus  G xy which is the conductivity or the Hall conductivity is equal to 1 over R xy
which  is equal to 1 over rho xy which is equal to a minus sigma xy okay. So conductivity
and the conductance  they have the same unit  and this  is  only true for  the Hall  case
however  the longitudinal case has a this length factor or the dimensions associated with
it.  So we have been talking about you know two dimensions and so on and then several
times  we have said that there are electrons are being confined in two dimensions but how
electrons  are made to confine in two dimensions what are the physical or experimental
ways of blocking  the electrons into escaping into the third direction or rather confine
them in the in  a two-dimensional plane okay that is what is important. So we say that
how  two-dimensional   electron  gas  is  formed  okay.

  So this is an important thing this is an experimental aspect that one needs to understand
that how it is formed okay. So this electrons combined or rather confined into these two
dimensions has a long history I mean this is like mid 60s of the last century that's  around
1965-66 the research was at its peak in order to have these electrons confined  into say
two dimensions and so on and to see the quantum effects more pronounced in  a more
pronounced  fashion  okay.  So  since  then  it  is  known  that  the  electrons  you  know
accumulated   at  the surface  of  silicon single crystal  which can  be done by inducing
positive gate voltage  and that forms a 2D electron gas and you already know this that
you know if you have  an electron in a in a one-dimensional box so this is that first
quantum mechanics problem  that you do so this is 0 to L and a particle is here so this
particle is here okay.  So these potentials are going to infinity okay so the particle cannot
escape the wave  function has to be equal to 0 outside and the reason that the wave
function has to vanish  is that because the potential is infinity here for the particle then for
the finiteness  of the Schrodinger equation that is what I am saying is that minus h square
by 2m d2  psi dx2 plus a v psi it's equal to E psi that's the equation which you solve there
is a second  order differential linear differential equation called as Schrodinger equation
and this is  which is what you solve and if this term goes to infinity which it does for
outside the  box then this has to be equal to 0. So for this to be infinity that has to be 0 so
wave  function has to be 0 and it has to smoothly match with the boundaries so the wave
function  the boundary condition is that psi at L psi equal to 0 and it has to vanish and
then one  can find out that for that to happen the keys become quantized which gives you
n pi over  L so the key values or this like the in one dimension the momentum of the
particle that  takes values which are pi over L 2 pi over L 3 pi over L and so on and it is
for this  reason that this is like so this is correct and then this gives you h square n square
pi square by 2m L square well L is a length of the box and this is how the energies are



quantized now n equal to 1 will have certain energy n equal to 2 will have 4 times that
energy  n  equal  to  3  will  have  9  times  that  energy  and  so  on  so  forth.

  So this is the quantization that occurs in a usual quantum mechanics mechanical system
as  soon  as  you  try  to  confine  it  so  there  is  a  confinement  induced  you  know  the
quantization  there is another quantization that happens in presence of the magnetic field
which we  have seen as called as a Landau levels.  So there are you know two kinds of
quantization that takes place here and these two quantizations  put together will give us
all these quantization complete quantization picture of the levels  okay QHE the quantum
Hall effect has both these sort of inbuilt with each other.  Let me show experimental
setup where the 2D electron gas can be formed let me try to do  draw this so it is an
experimental setup okay.  So this is like a p-type silicon which is grounded below and
there are you know there  are source and there are drains so this is so this is the source
these are MOS devices  the metal oxide semiconductor okay.  I will tell you a very simple
picture of that so this one then there is a drain there so  this is the source this is the drain
okay and so there is so there is a drain this is  a p-type silicon this is silicon oxide which
is a in insulator and there is a region which  let me show it by a color so this is a region
which is a metal.

  So there is a metal oxide so there is metal here so this red is metal this is an insulator
called as an oxide and this is a semiconductor and that's why it's called as a MOS device
metal oxide semiconductor device you know the so these MOS structures and there are
quantum wells where you confine it again in the Z direction and make the electron or the



charges flow only in the XY plane that can be done.  So quantum wells and then there are
super lattices etcetera which are perfect examples  how the 2D electron gas are formed
okay.  So here we have discussed only the MOS structure and a simplified version of the
MOS structure  can be or rather what happens can be shown here in which so there is a
there is a metal  at a voltage V0 so it's attached to a battery at a voltage V0 and these are
the  charges   being  accumulated  here  this  is  that  oxide  layer  like  a  silicon  oxide  or
aluminum oxide  and so on which are known these insulating materials and there is a
semiconductor.  And in presence of such a structure the energy the potential energy Vz of
the electrons that  looks like this okay and this is this value is minus eV0 so the charges
actually accumulate  at the boundary of this metal and the oxide these metal oxide edge
and so what happens  is that in this particular case when you have these you have a
certain source voltage and  being applied and there is also a gate voltage here that is here
so there is a gate voltage  here so there is a VG that's applied the source is of course
drained and there is a  VD that is applied and VD is positive so this is positive and there's
a gate voltage then  the in this region the electrons start flowing between the source and
the drain and they  cannot escape because of the presence of the semiconductor so they
make a 2D electron gas  in this region itself and this is what we know by the 2D electron
gas  and  this  experiment   or  rather  these  kind  of  materials  are  being  subjected  to  a
magnetic field and then of  course we see all these hall effect etc.  There could be you
know more sort of elaborate discussion on this where actually you show  the energy band
diagrams and how the energy band diagrams with sort of no gate voltage  to be flat and
then as you apply a gate voltage then how the bands deform at the junctions  and how the
Fermi level crosses etc.



 how electrons get accumulated and that is actually shown  in this thing here by this
potential so this is a kind of potential that gets generated  for the electrons and that's why
the electrons  are  they  get  confined into  two dimensions.   So to  sort  of  wrap up the
discussion to wind up a whole lot of things that have been said  over the past few days
and so there is a sample hall sample or they just there are these electrons  that make orbits
and they make orbits these are called a cyclotron orbits and remember  there are these
magnetic field lines that so they make a center about the magnetic field  lines and the
magnetic field is large and that's why the cyclotron orbit gets smaller  and smaller in
which you can understand by you know who sort of just think of a charged  particle with
a velocity v and this is being balanced by so this goes into a circular orbit  which we have
shown and this  is  like  a  mv square  over  r.   So  you  see  that  b  and  r  are  inversely
proportional to each other which means if b is large r  is small and that's exactly what we
see here and there are these dots represents the magnetic  flux lines that penetrate the
sample.  So these electrons undergo a circular motion about those these points and but
that is only  the story that happens in the bulk at the edges they do not get to complete
oscillations  full oscillations and they become more energetic by scattering at the edges
and they drift  because of the magnetic field they drift from one edge to another they
actually give rise  to conductivity or the resistivity unlike the electrons at the bulk and
this is the  electrons will move in the opposite direction.  So if the electron moves in this
direction then the electrons will move in this direction  and this is because of the reason



that we have shown that if you simply model it by  a simple form of a potential that is v
of x and that shows a sharp behavior right at  the edges then these velocities are different
in  different  directions  because  the  velocity   the  slope  of  the  potential  is  different  at
different edges and this is called as the  electrons undergo a chiral motion okay and which
means  that  they  have  different  velocities   at  the  different  directions  and  so  on.

  So this makes it different the behavior of the bulk to be different than the edges, and
that's why they have earned a name called as a topological insulators and if you ask  the
question that are these edge modes robust they indeed are robust because if an electron
has to scatter from here the only possibility that it has to come to one of these states  now
because of the macroscopic length of the sample so these the all the states are full  so they
cannot accommodate more electron.  So there are no phase space for the scattering to
occur and that's why these even I mean  disorder and impurities and so on does nothing to
that and these electrons  are of course  we know that the energies  of the electrons in
presence of a magnetic field is shown by  this behavior and plus of course we do not
write it but this is a kz square by 2m where  there is a free motion in the z direction which
of course we are neglecting because  this is of no importance to us because electrons are
freely moving in the not freely but they  are confined in one dimension but this is if you
solve the 3d Schrodinger equation then  this will be there omega B equal to EB over M
and  for  the  two  dimensional  nature  I  mean   this  is  the  basically  the  result  of  two
quantization and if you do not have the magnetic field  then the energy is the ones that we
just talked about that which are functions of kx  and ky are like h cross square kx square
over 2m you can put a star here and plus ky square  over 2m star this you can put it a xx
and yy and so on where M alpha beta star which  are called as effective mass is nothing
but h cross square del square E and del k alpha  del k beta and the inverse of it that is the
effective mass and just also to remind you  that if you remember that how the density of
states go.  So the density of states as a function of energy is important especially the
density  of states at the Fermi level. 



So DOS in 3D it goes as let us call it as g epsilon it  goes as epsilon to the power half in
2D it goes as g epsilon goes as epsilon to the power  0 which means it is a constant and in
1d it goes as g epsilon as epsilon to the power  minus half. So since we are talking about
2d it is important  to us which means the density of states is constant which means that
there is no it is  for any value of energy it does not depend upon energy so it is just a
constant and so  this has a value which is one can find out that this is equal to M star by
pi h cross  square and this gives you the density of states at the I mean at any value of
energy basically  it  is independent of energy. So this was the quantization before the
magnetic  field after you put the magnetic field there is an additional quantization coming
which  are called as the these Landau levels.

 The Landau levels are enormously degenerate the  degeneracy is only limited by the
value of the magnetic field and the area of the sample  then we have seen that provided
the value of the magnetic field is such that it satisfies  certain criteria with regard to the
electronic density and the density I mean this degeneracy  then one gets a freezing of the
plateaus  that  is  the  plateau  freezes  at  some  h  over   e  square  with  integer  in  the
denominator. So it is the rho xy it happens like h over  e square and some n or what we
have called earlier as nu when nu equal to 1, 2, 3 etc  we have also seen that as soon as
you have a  plateau  in  the  hall  resistivity  the  magneto   resistivity  or  the  longitudinal
resistivity  completely  vanishes  and  today  we  have  also   seen  that  why the  magneto
resistivity  undergoes  through  fluctuations  with  certain  period  that   is  it  sort  of  rises
whenever the hall resistivity changes from one plateau to another it shows  a big jump



where the system appears to be like an insulator.  And so this is more or less you know
the story that so far has unfolded in front of us about  the quantum hall effect. I look for
more details if that is available on these things and else  will sort of go into looking at the
quantum hall effect in lattice systems. We have to  understand that how I have notionally
introduced this d2k 2 pi square when I was writing down  the conductivity expression.

 Now there in  this  particular  problem in the  2D electron  gas  there  is  absolutely  no
translational invariance so k cannot be talked about as  a good quantum number overall
this  of  course when we solve the Schrodinger  one electron   Schrodinger  equation in
presence of a magnetic field then of course one can define k etc.  But otherwise this 2D
electron gas k is not a good quantum number but in crystal lattices  suppose we talk about
a square lattice in particular we will talk about graphene which  is an important system
that has emerged in the last decade or decade and a half and we  will sort of show that
really this quantum hall effect in graphene gives rise to a lot  of new phenomena about
graphene and about topological insulators and about various other  things eventually led
to  a  phenomena  called  as  a  spin  hall  effect  which  is  relevant  for   the  discussion  of
spintronics.


