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 Music. We have been talking about various properties of the quantum Hall systems, and
issues related to a quantum Hall effect.  I will continue with that discussion and unfold
some more you know unanswered questions.  So let me start with a nice idea that had
been put forward by Laughlin, one of the persons,  who I said that got a Nobel Prize for
the fractional  quantum Hall  effect.   So he had put this  idea called as a Corbino disk
geometry, it is sometimes written with a D I S K. So this is due to Laughlin and somehow
it should not depend upon the geometry of the disk, but this argument for this particular
case it does.  So what I you know try to tell you here is that there is a disk okay, and it
has an annular region the electron gas actually resides here.

  So in this region between that and there is a hole inside this region.  So this is a disk
geometry and this disk geometry has this 2D electron gas at low temperature  because we
want  the  coherence  of  the  electronic  wave  functions  to  exist,  so  that  the  quantum
phenomena becomes apparent, and that is why we want the temperature to be low.  And
this is the geometry and there is of course this electrons are in presence of a magnetic
field, but in addition to that, there is a magnetic field that threads.  So this sample okay or
these  system  rather,  and  this  hole  inside  so  this  is  like  a  bagel  shaped  thing.

  So the hole inside is precisely that we are able to thread it with a magnetic field and as I
said the disk geometry is important in this particular case, and so we thread a flux Phi
through this, and let us see that what this flux has got to do with Hall conductivity.  Just a
priori, Laughlin thought it to be this quantum Hall effect phenomena to be like a quantum
pump which pumps electrons from one edge of this disk to the outer edge or the inner
edge to the outer edge and so on okay.  And so if we increase this flux slowly okay,  I
will tell you what slowly means if you increase this flux slowly, from 0 to some Phi okay
and say let us call it as a flux quantum which is Phi 0.  So just to remind you that Phi 0 is
nothing but h over e, and once when one does that so  when I say slowly what I mean is
that, the over a time period that time period let us call it as a t0.  So slowly such that t0 is
much much greater than the energy scale of the problem, or the inverse of the energy
scale of the problem and here the energy scale of the problem is given by Omega B is
actually h cross Omega B but this is we understand that this is you know you can take h
cross  to  be  1  for  the  moment  or  you  can  write  also  h  cross  Omega  B.



 So this is what I mean by slowly so you increase the flux slowly  from 0 to this flux
quantum, and if that happens the classical electrodynamics says,  that whenever there is a
change in flux it is equivalent to an EMF being developed.  So it will develop an EMF
which is given by there is not electric field, so we will write it as EMF and so this is
actually like a voltage it is called as electromotive force but it is like a voltage and this is
equal to nothing but at this del Phi del t okay, where del Phi is the change in the flux or d
Phi dt if you wish.  So over a time t so this is 0 to Phi 0 and in a time frame  which is
given by t0 so this is equal to so the EMF developed is given by Phi 0 by t0 okay.  So this
is  the  EMF and  because  of  the  EMF developed  there  will  be  a  transport  of  say  N
electrons from the inner edge of this disk, which is here let me show it by a color.  So the
electrons from here will be transported to here so there will be N electrons that will be
transported from the inner edge to the outer edge, and that will give rise to a current okay,
and  as  I  said  that  there  is  a  disk  geometry  so  the  current  is  purely  radial  okay.

  So the radial current that you know is it gets generated because of this transport of
electrons n electrons is nothing but ne which is the total charge divided by the time over
which this event takes place.  So it is minus ne by t0 and so the rho xy the basically the
Hall resistivity you can call it RH as well, this is equal to the EMF which we have found
out, divided by the radial current which is Ir which we have just written down.  So this is
minus Phi 0 divided by t0 and divided by a minus ne over t0 okay and this is nothing but
this is equal to Phi 0 the minus sign cancels the t0 cancels and this is equal to ne, and this
is putting Phi 0 equal to h over e one gets h over Ne square, and this is precisely the Hall
resistivity that we have been talking about that these n which denotes an integer  and in
this particular case n denotes a number of electrons that are transported from the inner
edge of this system to the outer edge of the system,  and h over e square sets the scale of
the resistivity and this is the Hall resistivity.  So Laughlin actually viewed it as a quantum
pump  which pumps electrons from the inner edge of the sample to the outer edge, and
this is a nice visualization of the quantum phenomena.  So that's what happens that there
are one electron being transported from the inner edge to the outer edge or there are two
electrons that are transported from the inner edge  to the outer edge as you increase the
magnetic field that threads the system, which is in the you know the region inside and in
the annular region, where the two-dimensional electron gas exists that responds to it by
whose conductivity or the resistivity behaves in this particular fashion.



  So this is one of the things that have been put forward at that time.  Let me tell you
something interesting about the edge modes you have heard the edge modes taking part in
conduction and conductivity of Landau levels.  Once again I remind you of the picture let
me draw it  here so that so these are the closed orbits, which do not give rise to any
passage of current, however the electrons do not get to complete full oscillation at the
edges, and they would you know move in this fashion at the edges, so they would give
rise to drift as well as you know conductivity.  It is very important to understand which
we have not discussed and we are going to discuss now is that if the electrons actually
move in this particular direction on the upper edge of the sample, it will move in the
opposite direction in the bottom edge of the sample  or in the other edge it could be
reversed that is at the upper edge, it moves in a direction which is from right to left,  or
and in the bottom it could be from left to right.  Now these are called as chiral modes, and
these chiral modes exist at the boundaries of the sample, or at the edges of the sample and
they call it chiral, because there is certain kind of handedness or chirality which means
that  they  are  you  know  opposite  in  direction  at  the  two  edges.

  And so you can visualize it as just like a highway on either side of the highway, the cars
move in different directions the kind of drive that we have we moved on the left side of
the lane and the ones that are going from in a particular direction moves in the forward
direction say moves in the left lane and whereas the one that comes in the other direction
would move in the right lane, and so these electrons exactly follow this lane structure,
and just like the cars follow the lane driving for safe you know driving the the electrons
they follow these safe driving principle and they only propagate in one direction at one
edge of the sample.  Now this hasn't been made clear and we are going to make that clear



now, and we also want to understand how these edge modes appear.  Let's again write
down the Hamiltonian in the Landau gauge which we have done earlier, more than once
so the kinetic energy is written as so these are so okay I have written 2 m outside.  And
we have taken again a gauge in which so it's a gauge that is there in the y-direction  so the
gauge is that the this is 0 Bx 0 and so on.  So x is the coordinate x coordinate and B is the
magnetic field, and in this gauge it's sorry I should write it the so it's plus e B x square,
and plus there is a square and plus  now there is a V(x) that comes so your A is equal to
(0, Bx, 0) okay.

 
  Now this V(x) is coming for the edges because of the presence of edges, so let's see how
it  can  be  you know understood.   So  this  V(x)  is  like  a  potential  that  is  felt  by  the
electrons, say for example you have a potential which is say given by this, and there are
these edges and the edges give rise to a potential for the electrons, because they cannot go
out of the sample.  So it is like a potential that they feel at the edges where they have
infinite potential  such that they are unable to go out it just like a particle in a box.  So at
the edges they feel this potential let's say between some -a and +a, which defines the
dimension of the sample okay. And of course in the absence of this potential, the wave
function is or the lowest wave function is simply the ground state, basically the ground
state wave function is simply a Gaussian.

 I told you that it's a Hermite polynomial multiplied by a Gaussian.  So that polynomial
for the lowest one is equal to one or a constant, and it's only a Gaussian which has a
width which is given by this magnetic length, which we have written down several times
which  is  h  cross  over eB okay.   This  came in the wave function  if  you look at  the
previous classes, you will see that these lB which we call it as a magnetic length and we
call it a lB because it depends on B. All right, so this potential is this and it is quite flat at
all places or rather in all regions between -a and +a, and shows a discontinuity at the
edges okay.  So what we can do is that even if there is say some disorder and impurity
where the potential can actually be like this in between, and we really do not care about
the  nature  of  the  potential  which  is  what  we  show  there.

  Potential which is what we show there.  Now this potential is smoothly varying okay at
all places excepting at the boundaries.  So we can do a Taylor expansion of this potential
V(x) which is equal to V(x0), and plus a del V del x, x minus x0 plus terms other terms
which we neglect okay.  So this is the first term see V(x0) is a constant which you are
doing a Taylor  expansion  about  a  point  x0 and assuming that  these is  smooth even
though with disorder it does not look smooth but then if you pick up a region, where it
looks smooth, this expansion can still be done.  And once this you do the expansion the



middle term that is the first term is anyway a constant,  so it does not bother us much this
looks  like  an  electric  field  okay.

  So it is like a potential due to an electric field okay.  So then because of this term the
particle actually acquires a velocity in the y-direction.  So there is a drift velocity in the y-
direction so that drift velocity can be written as a vy equal to -eB and a del V del x as it is
written there.  So this is the drift velocity in the y-direction okay.  So once we get this of
course each momentum is actually labeled by a wave function, rather each wave function
is labeled by a momentum k which is located at different x positions  that is different
values of x which is given by x equal to -k lB square and this k is the momentum and
then lB is  the magnetic  length that  we have talked about  and it  has a  drift  velocity.

  So now you see that in this left edge del V del x is negative okay  and at the right edge it
is positive.  So del V del x is negative here and it is del V del x is positive here  and this
is why we said that the modes are chiral because they have opposite velocities at the two
edges,  remember we just said that at the two edges they move in different directions, and
because their  sign of  the velocities  drift  velocities  in  the  y-direction  are different,  of
course, now we are talking this as the y-direction you just change your picture, you could
draw this picture like this and if you are more comfortable in thinking about y-direction
being this and so on and so on and then you have all these cyclotron orbits, which do not
take  part  in  any  kind  of  conductivity  okay.   So  this  because  of  the  sign  difference
between the two this  del  V del x at  the two edges the electrons  move with different
velocities or directions  at the two edges of the sample.  So if vy at the left edge has a it
has a sign different sign with respect to that at the right edge, and because there is a drift
in the y-direction, that is, vy, there will be a current that will be generated which I can
find it out by taking this dk over 2 pi, this is like the one dimensional Brillouin zone, and
dk is integrating over all the k modes or the momentum values, and then I also divide it
by 2 pi just that you know it does not blow up, and I said because the 1D Brillouin zone
is from -pi to +pi,  so this  is  divided usually  by 2 pi,  if  you take a two dimensional
Brillouin zone this will be like  d2k divided by 2pi whole square and so on okay.  So this
is in one dimension we are talking about so it is a vy and dk okay and then we put all
these factors there, so one gets that it is a 2 pi lB square lB square is equal to h cross over
eB, and this is equal to a dx 1 over eB and del V del x, which I basically write it as dV dx
without any loss of generality.



 So it is now a K space integral in this step is converted into a real space by using these
velocity expression and we have also used lB equal to  or lB square equal to h cross over
eB okay.  Now let me calculate this neatly. So we have the Iy the this Iy can be actually
calculated to be equal to e square over 2 pi h cross into VH okay where 2 pi h cross is of
course nothing but h and VH is the Hall voltage okay. Then what happens is that if you
get this  then a sigma xy which is the Hall conductivity or you can talk about the Hall
resistivity  which is inverse of that this is equal to Iy by VH or in other words rho xy
which is  equal  to  VH by Iy,  which gives  you h over  e  square okay.  So this  is  the
conductivity  or the resistivity let  us let  us talk about resistivity  you can talked about
conductivity  for  the  so  let  us  say  conductivity  of  a  single  Landau  level  and  this  is
resistivity.

 Even though we have derived it for just one Landau level, it does not matter if you have
a number of Landau levels many of them because you know as long as your Fermi energy
lies completely covering one Landau level or the other this argument still holds good.
The other good part of this is that we have not talked about the explicit form of V(x),  we
simply have taken that they have discontinuity or there is a sharp rise only at the edges
and you have no problem in assuming that even if that red curve that we had shown it
with it is also equally applicable. So the details of V(x) is missing, and that is why this
argument is elegant because there is no sort of specifics  of the potential that is included.
It  also you know saves us from this ambiguity  that  we have been facing that  how a
Landau level can conduct because a Landau levels are found  to be extremely flat and
extremely flat implies that there is there is no velocity, the kinetic energy is zero.  So if
the kinetic energy is zero how does it conduct  and the conduction is really happening at
the  edges  if  you  you  know  go  here  and  if  you  try  to  let  me  use  a  color.



 So this is where the Fermi level is and then you have a conduction because that is where
here at this point let me circle it out here and here the levels the Landau levels actually
meet the Fermi level. So if there is a crossing of any of the levels across the Fermi level,
then there has to be metallic conductivity metallic-like conductivity. Okay so as I said
that we have discussed it for a single Landau level but it holds for a large number of
Landau levels as well as long as the Fermi energy lies between the filled and the unfilled
Landau levels. Okay and let me ask another question why are the plateaus robust but also
why are the edge modes robust and when I say robust, I mean that because there are a lot
of impurities and so on, so induced by the impurities or induced by the scattering of the
impurities  don't  the  edge  modes  also  go  away  don't  they  melt  away  in  a  heavily
disordered sample and the answer is no the edge modes are robust because of the reason
that if you think of this picture again, you can decide on your x and y axis  the edge
modes are here and they are here. So there are no states for these edge modes to scatter,
because all  of them are insulating modes all  these modes here, they do not allow the
electrons to occupy, because they are all  insulating once their  character is completely
different  from  the  character  that  you  have  for  the  edge  modes.

 Okay so if this thing has to scatter, it has to scatter from here to here or here to here
because  that's  where  only  you  have  metallic  edges   or  the  nature  of  the  states  are
conducting. Okay I mean the nature is conducting for only the edges and they cannot
scatter and because you're talking about a macroscopic sample, this is too far off and the
probability of scattering would be extremely small. Okay so this is the reason that can be
assigned to the robustness  of the edge modes and they do not go away. In fact what
happens is that there are experiments  so if you actually put a single impurity like this so
this is the impurity that you have put, and try to you know find out the edge modes so the
edge modes will do like this,  so they'll you know so this is in this direction say in this
direction,  so they will simply maneuver around the impurity and will not get scattered by
it because if it gets scattered  then it has to scatter to some state available state there is no
phase space for scattering  and that's why they cannot scatter to anything and they will
remain robust, and will give rise to the conductivity. Let us ask another question or rather
rephrase this, how the plateaus  are robust plateaus in the hall resistivity or conductivity.



 So, this I mean how do they exist and they are so much of impurity  and disorder why
they don't just again just melt away just as we said.  So, suppose we have only filled
Landau levels and such that the magnetic field is like this,  it's n0 by nu and a Phi 0, we
have defined everything your Phi 0 equal to H over E, n0 is the electron density and nu is
an integer.  So,  this  is  the  condition  that  has  to  be  satisfied  for  the  plateau  to  occur,
because we have said that B over Phi 0 equal to some n0 by nu  and this just that equality
condition would give rise to a plateau. So, the moment you are tuning B you go out of
this condition your B becomes not equal to n0 by nu and Phi 0.  So, for a point that is for
a given point this condition is satisfied and at the next point that is at the next available
value of the magnetic field  and how do you change the magnetic field, you change the
current  in  the  electromagnet  which  is  producing  the  magnetic  field.

  So, the magnetic field changes its value and this condition goes out of balance, and the
equality becomes a non equality. If that happens then how are plateaus formed in the first
place, because then you will have a small you know infinitesimally small region, where
this condition is satisfied and after that this condition is not satisfied. Now here is where
the disorder comes into the picture,  and which is what has been told earlier that consider
a single Landau level. This Landau level looks very sharp when we have calculated it
from considering an electron in a magnetic field, but however when there is disorder in
the system, this really looks like a band of certain width, okay.  Then it gives a finite
width to the Landau levels.



  I will be writing Landau levels as LL in a lot of places. So, please get used to it. So,
even if this condition it goes  out of this equation goes out of balance that is the equality
breaks down, even then the plateaus continue to exist, because of this certain you know
width of  the Landau levels  now owing to disorder  okay. Disorder does not  mix two
Landau levels  the other Landau level is here, which is also slightly broadened okay and
this broadening is due to disorder okay.  So, it the sigma xy remains constant or the rho
xy remains  constant  as  you know the  chemical  potential  sweeps through this,  or  the
magnetic  field  is  increased  there  is  for  a  region,  that  is,  you  know  this  inequality
conditions  remains  as  equality,  because  there  are  a  lot  of  conducting  levels  that  are
available, and that is why this rho xy it is a freezes at a given value  and then when you
increase magnetic field enough then these physically the chemical potential goes out of
this band  and there has to be jump in the rho xy and so on which which is what we have
said  ok.

 So, this is the reason that this plateaus are robust and they do not go away and if you
make the sample more and more disordered there is nothing happens  to these plateaus
because this  plateaus actually  they arise because of the presence of disorder,  and of
course the magnetic field has to be large if the magnetic field is very small  and still you
have disorder present in the system, then these two Landau levels are too close to each
other,  and  this  exactly  what  happens  in  classical  Hall  effect  which  Edwin  Hall  had
discovered  in  1879,   where  he  had  shown  that  the  Hall  resistivity  actually  linearly
increases with so B and such that the Hall coefficient is actually a constant which gives
you the 1 over n e where n becomes electronic density.  So, in that case the Landau levels
are close to each other the two conditions that are responsible for this one is that the
magnetic field was very small there, I told you it is around 0.3 to 0.4 Tesla, which is very
small here the magnetic field is of the order of a few Tesla even you know some close to
10 to 15 Tesla and the temperature is low.  So, there is nothing it  sort  of makes the
Landau levels  come any close  to  each  other,   there  is  just  a  broadening induced by
disorder.



  So, let me go to another related topic, the nature of the Landau levels,  I am particularly
talking  about  incompressibility,  okay.   Now,  you  have  to  understand  what  is
incompressible  in  an  electronic  system,  how  is  incompressibility  defined?  You  can
understand that may be a steel a piece of steel  or a piece of brick or a or a piece of
concrete  is  in  incompressible,  because  you are trying to  compress  it  and it  does  not
respond okay.   A sponge  maybe  compressible  a  piece  of  clays  compressible,  but  in
electronic systems, incompressibility is defined slightly differently.  What it means is that
you are putting in more and more electrons into the system,  but the chemical potential
does  not  increase.

  Let me spend a few minutes talking about the chemical potential, what it is.  If you read
any book on statistical mechanics it will tell you that it is the energy required  to add one
particle  in  the  system  may  it  be  fermions  or  bosons,  or  anything  okay  or  classical
particles. So, why do we need energy to add one particle in the system, can't we simply
add  that  is  there  a  energy  cost  associated  with  this?   Yes,  there  is  an  energy  cost
associated with this, you can understand this in this particular fashion in which this is the
distribution this called as a Fermi-Dirac distribution  and this is called as a Fermi energy.
Now the Fermi energy and chemical potential are related.  Fermi energy is the chemical
potential at T equal to 0,  at T not equal to 0 the definition  of Fermi energy becomes
fuzzy  it  no  longer  exists.

  So, it is chemical potential can be talked about at any temperature okay.  The Fermi
surface itself is not a well-defined quantity at finite temperature.  So, what I mean to say
is epsilon f is mu at T equal to 0.  So, we are talking about t equal to 0.  So, we can talk
about  mu  or  epsilon  f  it  does  not  matter.



  If you now want to add one particle to the system all these states are filled okay.  So,
you have to add it right here just after this, if you see this black spot that I have drawn
you have to add it there.  So, you have to spend that much of energy okay.  Now if you
physically want to understand that in any given system is not fermions,  but in any given
system how that energy cost comes about if you try to add one particle.  So, what will
happen is that if you try to add one particle,  suppose one student enters a class okay  and
you can you can always claim that he goes and sits in the seat, that is vacant or the bench
that  is  vacant  for  him  to  occupy.

  But for the electrons all of these other electrons will have to come to equilibrium along
with this particle being added or this electron being added to the system,  they all have to
come to equilibrium again and that is costs energy and this is the energy cost that we talk
about or in  sort  of defining a chemical  potential,  it  is  defined by mu okay.  So,  the
incompressibility of a system is you know discussed or rather it is detailed whether a mu
is a function of n.  So, it is by this del mu del n and so on so forth okay.  We will see this
in just a while, but let me talk about the compressibility, the definition of compressibility,
or  even  equivalently  one  can  talk  about  bulk  modulus,  but  let  us  talk  about
compressibility here.  You have to remember that we are talking about a two-dimensional
system.

  So, we instead of volume we will have to talk about the area.  So, this is 1 by area and a
del A del P at a given N where A is area, P is pressure.  So, we are converging on the
definition that a sponge actually if you put pressure it crumbles. If you put more pressure
it crumbles even more and of course, it will go to a situation where you cannot compress
a sponge also even farther.  What we want to say is that these plateaus, in fact, I should
say that instead of the Landau levels, we can say the quantum Hall states in fact, those are
better  description  of  this.

  So, nature of the quantum Hall states okay.  So, P is pressure and A is area and N is the
total  number  of  particles  alright.  So,  this  is  a  definition,  and  so,  how  is  pressure
thermodynamic pressure defined? The pressure is defined as minus del E del A, where a
E denotes the internal energy of the system  or del U del A if you whichever symbol you
want to use.  So, this is the definition of in a 2D of course, this del E del V in 3D.  So,
this is the definition of the pressure.  So, if you put that then the 1 by Kappa the Kappa
inverse, that is how it is usually written,  which is equal to this also called as a bulk
modulus.

  So, this is del P del A, N at a given N.  So, this is equal to A the minus signs cancel, and
it is a double derivative of the energy  with respect to the change in area at a given N.  So,
this is the definition of compressibility for us for this 2D electron gas.  Again we will use
this  nomenclature  or  this  abbreviation  several  times,  2DEG  means  two-dimensional



electron gas let me write it once and for all okay. So, we will use this definition now sort
of show that or rather state, that energy is an extensive quantity you all know that that is
it depends on the number of particles okay, which means E is equal to N epsilon n, where
epsilon is the energy per particle per particle  and n small n is the density, that is it is the
particle density or electron density whatever you want to call it okay.  So, what it means
is that so, this density actually is so, your N, the total N is equal to A times n okay.

  So, this is the areal density it is also called as a areal density.  So, the total number of
particles is the total area multiplied by this density and this 1 over Kappa including this is
written as this a few steps that you have to you know do telling you the essential steps, it
is d d of 1 over n slightly complicated derivative that I am talking about I am not talking
about d d n, but d d of 1 by n, it is equal to d epsilon n and then d of 1 over n.  So, it is
you know a double derivative, but the variable here inside is not n, that is, the density, but
it is 1 over n, and if you do this carefully you get this as 2 d epsilon n, d n plus n d 2
epsilon n d n 2 okay.  So, this is the expression for the compressibility or the inverse of
the compressibility. If you further simplify it, it becomes d n square into d 2 n epsilon and
d  n  2.

  Now going back to the chemical potential so, mu which is the chemical potential, this
has a definition of mu equal to del E del n, that is how if you change the number of
particle,  how does the energy respond to it?  It  responds to  it  that  is  how the energy
response to change in the number of particles, and at a constant volume and this is equal
to d of n epsilon divided by d n and of course, at a constant volume.  So, this 1 over k
really looks like n square d mu d n, probably this is a result which is known, but I still



derived it because this result is not known in the context of 2D, because we are talking
about a 2 dimensional electron gas, maybe this result is important,  and so, what it tells
you is that the inverse of the compressibility is related to the del mu del n that is how the
chemical potential responds to the change in the number of particles okay.

 For the quantum Hall states mu increases discontinuously okay. This is important to
understand because I told you that as you change the magnetic field, mu does not increase
it sort of freezes and then it shows an increase with further increase in the value of the
magnetic field.  So, this del mu del n is actually you know or del n del mu is actually
equal to 0 for the plateaus, and if this is equal to 0, your kappa will become equal to 0, so
I inverted it so, that you can talk about kappa to be equal to 0.



  So,  this  tells  you  that  the  quantum  Hall  states.   So,  Q  H let  us  Q  H states  are
incompressible  okay.  This  is  an  important  idea  or  this  is  an  important  input  to  the
problem  that  these  plateaus  that  arise  in  the  Hall  conductivity  or  the  resistivity  are
incompressible in nature, that is, even if you try to pack more particles, it does not accept
the chemical potential does not go up okay.  So, it becomes you know sort of the del n del
mu or the del mu del n,  they are discontinuous function and so on. So, now let me show
you a derivation of the Hall resistance a very simplified derivation before we embark on a
more thorough derivation for the Hall resistance using Kubo formula okay.  Alright so,
let us talk about a sample length L okay just arbitrary length L.

  So, the electric current carried by each charge, each electron, that is, each charge or
electrons in this length  in this l is equal to minus e v over l, where v denotes the group
velocity okay, and of course, e is the electronic charge. So, the total number of electrons
between momentum range, I am writing it in short momentum range p and p + dp, not
writing it as a vector because it here does not matter. It can be found by multiplying the
two things, which the one of them is the current carrying per unit charge, which is minus
e v over l, and then you multiply it by the l by h into dp okay.  So, you multiply it by the
current carrying per unit charge by this quantity, h being the Planck's constant okay. So,
it is in this range and so, the current that comes is equal to minus e v over l into l by h and
a dp.



 So, that is the current the elemental current,  that is, there in this small length l in the
momentum range p and p + dp, that is the current that is generated. So, this current now
this is a elemental current the full current  or the complete expression for current can be
found out by integrating this between some p1 to p2 which corresponds to the momentum
values at the say the bottom edge and the top edge depending upon you know which
direction the current is flowing. So, they are the top and the bottom edges are assumed to
be perpendicular to the flow of the current okay.  So, then the current total current is
equal to some p1 to p2, which corresponds to the two edges as I said is minus e over h
and there is a dE dp and this dp and this is nothing,  but equal to minus e by h and the
potential energy at the let us write it as BE that is the bottom edge, minus V TE that is the
top edge okay.

 So, this is the reason that this the current flows, where B.E. that it denotes the bottom
edge, and the T.E. denotes the top edge okay. So, this is the potential energy and I can
write down the potential energy as you know minus e by h and this is like a minus e V2,
say the voltage at the bottom edge is V2 and it is V1 at the top edge.

 So, this is equal to minus e V1. So, this is equal to it gives you e square over h, the e will
come out and this is equal to V2 minus V1  okay. So, this is the this is the conductivity or
rather this is the total current, which is V2 minus V1. So, if I want to calculate the Hall
resistivity, which I write it as V2 minus V1 by I, this is, of course, h over e square. Now
you see that so, this is the Hall conductivity the unit of the Hall conductivity. We have



not done a very sophisticated analysis, we just simply you know sort of wrote down the
elemental current due to a certain number of charges in a length element dl, and whose
momenta lie between p and p plus dp, and from there we have calculated the total current,
and have calculated the Hall resistivity.

  So, this is you know for an arbitrary filling fraction this for just for one electron. So this
is the Hall resistivity for nu equal to 1 okay. So, for an arbitrary filling, so, your RH
becomes exactly of the form that you are familiar with its nu e square where nu is an
integer for the plateaus to take place okay. And this you know in a way most of the things
that are relevant to the story of the Hall effect or to understand the phenomena of the Hall
effect  has  been  explained  okay.  It  is  as  I  told  that  it  is  the  first  known topological
insulator,  because the bulk and the edge they behave differently  with regard to  their
electronic  conductivities,  or  electric  conductivities  or  resistivities.

 And such a thing has never been seen, and not only that the metrology part that I have
been talking about right  from the beginning that it has been able to find out this quantity,
to be giving you the you know unit of resistance which is 25.813 kilo ohm. So, resistance
is what you measure in the lab, you can buy a multimeter in the market and that will
measure resistivity. The scale is set by purely quantum mechanical quantities, such as h
and e and such coarse grain experiment that two-dimensional electron gas placed in a
magnetic field, transverse magnetic field is able to give you the scale of the resistivity,
and that is a big achievement.  So, these the people who do metrology who sort of fix the
standards, or work in this Bureau of standards, they say it and this name of Professor



Klitzing  is  taken  with  great  respect,  because  of  this  experiment  being  done and  the
plateaus were seen.

 And as I said that Edwin Hall probably would have seen this, if he had access to large
electromagnets  that could have given rise to very large magnetic fields which was not
available  in 1879. And so he could not see he saw the Hall  resistivity  to be a linear
function of the magnetic field and which is not the case here, one actually sees that the
series of plateaus in the Hall resistivity, it is only the resistivity shifts from one plateau to
another, and when it shifts it jumps discontinuously. So, there is almost a discontinuous
jump there, which means a sharp jump and not only that, the magneto resistivity or the
resistivity that is there in the direction  of the flow of current is 0 most of the time,
excepting when the Hall resistivity shows a jump, it shows a peak in the resistivity in the
magneto resistivity.  And this phenomena this  behavior of the magneto resistivity also
revealed something very important, because if it is 0 the magneto resistivity is 0, which
means  the  current  is  completely  you  know blocked.  So,  as  if  there  is  an  insulating
behavior  which  or  rather  there  is  a  conducting  behavior,  because  the  rho  is  0.

 So, the resistivity is 0. So, there is a conducting behavior and suddenly there is a peak in
the resistivity which shows that it is an insulating behavior, and then again a conducting
behavior when sigma xx or rho xx falls to 0, and so on. And I have also shown that it can
happen only in systems with you know in presence of magnetic field that the rho xx and
the sigma xx can simultaneously become equal to 0. Because one of them the ambiguity
is that the one of them talks about a perfect insulator,  then the other talks about a perfect
conductor. So, when rho xx equal to 0 you know that it is a perfect conductor, because
there is no resistivity and when sigma xx is also equal to 0, it means that there is a perfect
insulator.  So,  both  of  them  cannot  be  there  together,  otherwise  not  in  presence  of
magnetic  field.

 So,  the  magnetic  field  the  role  of  the  magnetic  field  is  supreme,  and  the  two
dimensionality is supreme.  I will talk about this variation of this magneto resistance, that
is sigma xx or rho xx. However, a full treatment of that would be difficult in this course,
because it is a non equilibrium phenomenon one actually would do it via this Boltzmann
transport equation, where the relaxation time needed to be or it needs to be calculated. I
will  not  go  into  the  details  of  those  calculations  of  sigma  xx.  However,  would
qualitatively explain what are these, or how these sigma xx or rho xx have oscillations.

 So,  this  along  with  we  will  talk  about  the  experimental  situations,  or  experimental
systems and so on which should give you more or less a complete description about the
phenomenon of Hall effect in a 2D electron gas.  Thank you.


