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 Let me give you some references for studying this Quantum Hall Effect and to remind
you that we are really talking about the integer quantum Hall Effect for now which can be
understood  from  a  non-interacting  electronic  picture.  We  don't  need  to  invoke  the
Coulomb interactions into the problem yet and we shall be carrying ahead with that. So I
will give you some references  which are important and they are I mean this there is a
reviews of Modern Physics,  and this is volume number 58 is volume 58 page 519 and it's
a 1986 this is a APS the American Physical Society, one of the journals on reviews very
famous journal. Then there was another by Robert Laughlin, and this is Physical Review
B and it's a volume 23 page 5632 and 1981, and then there are excellent review article
one of them by S.M. Garvin.

  This is available in the arxiv it's a preprint it's 9907002, there is another excellent one
which I shall be referring every once in a while by David Tong. This is a preprint as well
and it's probably a part of this TIFR Infosys lectures and this is again available freely in
arxiv 1606.06687. Apart from that there are a number of references which may be used I
will tell you as and when they are used and they are useful  for you to learn the subject.

  So let me then go back to the kind of discussions that we have been doing.  Let's say the
properties of the Landau levels and to talk about the properties  of course, you know that
these Landau levels are absolutely flat. Just to remind you that the energy obtained was
like n plus half h cross omega B it is same as that of harmonic oscillator excepting  that in



a usual harmonic oscillator that you learn in the first level quantum mechanics,  it is a
constant which depends only on the force constant k and the mass of the particle where as
here omega B depends on the magnetic field. It's actually e b over m and this is called as
the cyclotron frequency. So these levels if you draw them, they look like this is n equal to
zero,  n equal to one, n equal to two, n equal to three and so on, and I have argued and
showed explicitly that these levels are infinitely in principle infinitely degenerate  and the
degeneracy is only limited by the value or the magnitude of the magnetic field and it
depends upon the area of the sample.

 Now if you take an area to be large enough, they are not very large but this can be not
microscopic but macroscopic area, say a few millimeter by a few millimeter that is can be
called as macroscopic and then it only depends on the magnetic field and we have shown
that twelve to fifteen Tesla of magnetic field is being used so these are really degenerate
and they are flat of course so this is n equal to zero, n equal to one just like harmonic
oscillator there is no restriction that n equal to zero won't be available, remember that
particle in a box n equal to zero was not allowed, because in what it means is that there is
no particle there, n equal to zero means that but here of course n equal to zero is an
allowed level, and n equal to three etc and so on. So when I say they are flat which means
that they have no dispersion, so this is E and they have no dispersion that means that the
velocity of the electrons if you remember that your band theory these classes or the band
theory chapter, it tells you that v k is actually one by h cross del e del k or it depends
upon the slope of the band energies now these are completely flat so the velocities are
zero, velocity of the electrons are zero  and that means the kinetic energy of the electrons
is zero, so the kinetic energy equal to zero okay, so they have no kinetic energy and the
only energy that remains is the potential energy okay and because the number is very
high, because the degeneracy is very high it's very likely that they would be interacting at
least  moderately  to  strongly and these effects  we'll  discuss  later  when we talk  about
fractional quantum Hall effect okay but these are some of the properties of these levels
let's  talk  about  another  one the second one let's  say is  the of  course they are highly
degenerate and which I said but what are the implications of that let us see so it's the
highly degenerate and it says that we have said this that the degeneracy is determined by
the magnetic field  and A area of the sample so A is equal to the area of the sample.
Alright so this is already known and now these plateaus that I have shown you several
times  from the Hall resistivity this so the resistivities have plateaus like this and so on so
these plateaus are so this is the Hall resistivity okay, so let's call it as a rho H and this is
the scale is set by h over e square and this is n = 1 alright and so this plateaus are actually
connected to this degeneracy in the following fashion so your rho xy or rho H which is
same as rho xy which is a transverse resistivity is h over nu e square, where nu equal to 1,
2, 3 and so on okay so now this nu is related to the degeneracy in the following way that
nu is equal to n 0 divided by g by A okay where n 0 is the electronic density. Sort of
going back that is I am revising some of the things that I have already said and this is



nothing but n 0 divided by e B over h and if you remember this g over A is degeneracy
per unit area and this is I can write it as n0 divided by B and divided by you know h over
e and that is your h over e in the is nothing but h over e is equal to a flux quantum, which
has  a  value  4.13  into  10  to  the  power  -15  Weber.

 Alright so this is the value of the flux quantum  so this is really like n 0 divided by B
over phi 0 or say n 0 phi 0 divided by B okay. So this the integer that you see in the
plateaus that is related to the degeneracy in this particular fashion, now we demand or at
least the experiments dictate  that nu has values which are integer. Which means that if
you really write this as instead of this, you write this as B over phi 0, then you know this
is actually it will take integer values when the ratio of the density of carriers and this B by
phi 0 and if you do not talk about the degeneracy per unit area, then we can neglect this
and  can  in  fact  let  me  remove  this  degeneracy  per  unit  area,  and  write  it  as  only
degeneracy  in which case we will have a A here, we will have a A here, which means
that these degeneracy is equal to this is n 0 divided by phi upon phi 0 okay. So then this
plateau integers of the plateau they actually are ratio of these electron density divided by
the the flux divided by the flux quantum okay so when this becomes an integer, you see a
plateau in the resistivity and as you change your magnetic field, the phi is changed then
this deviates from being an integer, and then you see that there is a sharp increase in the
Hall resistivity, and then till it comes to the next integer, it again then shows a plateau in
the resistivity so this is how the degeneracy that we talked about of the Landau levels are
connected  to the  Hall  plateaus,  or  the quantization  of  the Hall  plateaus  okay. I  have
already partly answered this question but number three what is the conductivity of the
Landau levels, okay, and why I said that I have already or partly answered  this question
is that I told you that the velocity of the electrons is equal to zero.



  So if the velocity of the electrons equal to zero because of its completely flat feature the
E doesn't depend upon k is independent of k so del E del k is equal to zero so that's why
the  velocity  is  equal  to  zero.   If  the  electrons  have  zero  velocity  how  can  they  be
conducting okay. However, a more rigorous analysis also shows the same thing. Let's
talk about calculating the current so this is the expectation value of the current operator
which is J and which can be written as minus e and these psi and V and psi so these psi's
are the wave functions corresponding to the Landau levels.  Okay so you're taking the
expectation value of the velocity operator between them and  the velocity is nothing but
minus e by M psi and p psi and now the expectation value of  this p in presence of a
magnetic field is just not the momentum but this is equal to  p plus e A which is what we
have learnt so this has to be changed in presence of a magnetic  field by p plus e A where
A  is  the  vector  potential  and  you  have  to  take  the  expectation   value  of  that.

 Now let's say we talk about the J x that is  x component of the field that means that we
are talking about vector potential which  is in the x direction so the gauge is chosen such
that it's in the x direction and these  psi's if you remember that these psi's are actually
comprises of the Hermite polynomials  and multiplied by the Gaussians okay so and this
Hermite polynomials are actually comprised  of the Hermite polynomials of this property
that these are written by h n and this H n  being even it's an even polynomial of x that's a
special coordinate and if n is odd it's  an odd polynomial of x. Okay so which means that
if you change x to minus x for n to be  even it doesn't change sign but if you change x to
x for n equal to odd it changes sign  so we can calculate the x component of the current
and which can be written as minus  e by m l B root over pi all these factors were written
earlier and this is equal to  d y and then exponential y minus y naught square I am taking
the same gauge as I have  taken earlier and this is equal to h cross k minus e B y also
because if you remember  that we have taken a gauge in which it is minus B y and a 0 0
this is called as a Landau  gauge. Now if you try to solve this integral it's easy because it's
over this entire  minus infinity to plus infinity this is an even function and this is an odd
function  of y. Okay so an even function and odd function when they are multiplied that
gives you an  odd function so the integrand is odd and when the integrand is odd if you
integrate it over  minus infinity to plus infinity this is equal to 0. Now that makes us
wonder that if the  conductivity of the Landau levels are 0 then why how does this Hall
conductivity arise  or the Hall resistivity arise the inverse of that and that question will be
answered  but in general the Hall the Landau gauge is not equal to 0.



 So if you take the first term  Landau levels do not have any conductivity or they cannot
conduct because of their flatness.  Alright let us go to another topic which is related to
this and this topic is let's say  we want to talk about addition of spins into the problem. So
we want to add spin of the  electrons as you know these electrons intrinsically have their
spins we have not taken into account  why haven't we taken into account you could say
this or rather see this in this particular  fashion that since we are talking about a magnetic
field which is large and pointing  in the transverse direction say z direction which is
perpendicular to the plane then the  spins of all the electrons must be pointing in the
direction of the magnetic field. Okay  that's how the mean energy is minimized. Now if
all of them are pointing in the same  direction then you don't need to talk about separately
about the spin of the electrons.

  So that's why we didn't talk about the spin but electrons intrinsically have spins. So
what happens when we talk about that is there any change in the physics that we get. So
let's  say that  we want to  include spin.  So 1 is  include spin in the discussion.   What
happens when you include spin in presence of a magnetic field there's a Zeeman term
that  emerges.

 Okay and this Zeeman term can be written as so delta let's call it Zeeman  so write it with
a capital Z delta is the energy scale of the problem. So if this is  g mu B into B. Okay
where B is the magnetic field mu B is called as a Bohr magneton and  g is called as the
Lande g factor and g is almost equal to 2 let's take it as 2 and mu  B which is the Bohr
magneton for an electron it can be written as e h cross over 2 m. So  this gives you a 2



into e h cross by 2 m into B so this is equal to e h cross by m into  B. Okay if you take the
spins into account each spin will have this energy extra energy  because of they will
couple to the magnetic field and it we are just simply talking about  the Z component of
spin  so  this  is  because  the  magnetic  field  is  in  the  Z  direction.

  Okay so it just goes by so the Hamiltonian for such a thing is sigma dot B where sigma
are the Pauli matrices spin half particle we are talking about specifically about electrons
and so this gives rise to thing which is like h cross by 2 and s z and B and so on. Okay
that's how this thing comes so we are pretty much talking about a classical or a semi
classical  picture so the Zeeman energy scale is if you take this thing into account then
the energy  scale is set by this E h cross by m into B. Now the funny thing is you see that
the distance  between or the difference between the Landau levels okay let's call that as
delta  LL  just   to  remind  you  that  it's  n  plus  half  h  cross  omega  B  so  they  are  all
equidistant so the  distance between them I mean distance means I'm just talking about
the energy difference  between them is h cross omega B and omega B is nothing but
equal to h cross omega B.  So this is equal to e B over m so this is e B over m. Okay now
this  is  what  we  have   learned  so  delta  LL  is  also  e  h  cross  B  over  m.

 Okay so delta Z and delta LL which we have  already done they are exactly same what it
means is that say the spectrum the Landau  level spectrum for spin up electrons will
coincide with you know one level or one n  lower of the down spin electron so what I
mean to say is that because these two are  same and this is the energy difference between
the up and the down spin electrons so suppose  this is the n equal to 1 and n equal to 2
just taking two levels so for the spin down  particles this will correspond to the same
thing so this is spin down corresponding to  n equal to 1 will correspond to spin up for n
equal to 2. So this is n equal to 2 and  this is n equal to 1 so they will coincide and no
longer be able to call this as n equal  to 1 because this is n equal to 1 for the down spin
but it's n equal to 2 for the up  and similarly you know I mean if I call this as n equal to 2
for the down I have to call  this as n equal to 3 for the up so this one goes away. Okay so
but you see that this  is  a trivial  it's  just  that nth level of the one kind of spins they
coincide with n plus  1th level of the other kind of spins but however this is really back of
the envelope calculation  it doesn't happen so for example in gallium arsenide when these
spins are taken into account   the Zeeman energy that is delta Z is typically 70 times
smaller than the Landau level energies.  So one can conclude that even though trying to
include the effect of spin on this the  quantum Hall effect or the integer quantum Hall
effect that we are talking about is a  worthwhile exercise however it doesn't give you
anything significant or that we should  be you know really worried about it just that nth
level nth Landau level of one spin coincides  with the n plus 1th level of the other spin.



2. Let's include the electric field. Now this is important for the reason that there is indeed
an electric field in the problem which we have not talked about when we considered  the
Hamiltonian  in  presence  of  a  perpendicular  magnetic  field  B  in  the  Z  direction  and
accordingly  we have chosen vector potential to be either in the X direction or Y direction
or X and  Y directions that we have talked about but the important point is that that we
have talked  about only the magnetic field and have not talked about the electric field as
yet. If  that needs to be taken into account it enters through a scalar potential okay just
like  the magnetic field enters through a vector potential this electric field enters through
a scalar potential  and this the scalar function or the scalar potential  that it  you know
corresponds  to is Ex okay the E is equal to minus grad phi okay just that this relations
you should  keep in mind that B equal to curl A so there is a vector potential associated
with a  magnetic   field  whereas  the electric  field is  associated  with a  scalar  potential
which we write it  as phi here. So phi is equal to minus Ex so remember E is not the
energy here so we will  keep writing energy with a curly E so this is energy and this E
straight E that we you  see here is the electric field okay. So in the previous slides we of
course took the  liberty because there was no electric field there but now we have to be
careful  okay.

 So let me write down the Hamiltonian of a system in presence of both the electric and
the magnetic field and let me introduce a little bit of change there so that you get  a
practice of what we are doing. Now I will write down the gauge to be slightly different
now I take a gauge where A is not minus By but this is equal to 0 and a Bx and 0 okay.
So instead of what we have taken earlier By 0 0 okay now this is a valid gauge as well
because this gives you if you take a curl of that this gives you Bz cap okay and that  is
exactly what we want and so I take a gauge this gauge that we just said so this one and



that  is  why the y component  of p is  now affected and this  is  equal  to so that is  the
Hamiltonian  and plus e Ex because of this negative sign and the negative sign of the
electronic charge  so you have another this linear in x and this change in gauge that you
see is simply  because I have the electric field in the x direction there is another x here
and another  x here so that's why because otherwise you'll have both y and x it's not a
problem at all  but it's just that I wanted to simplify the discussion here okay. Now what
I'll do is  that instead of solving this again this problem that H psi equal to E psi instead
of again  solving this there's a simpler way out what I can do is that I can complete the
square  because this is let me do a bit of so this Py square plus E square B square x square
plus 2 eB x py and plus e Ex so you see there is a py square there is a term which is linear
in py and of course these are constant terms and if you look at it from the other way that
there is a x square and there's a x and these are constant terms as well so what we do is
that we just complete the square and write this Hamiltonian and then once when you do
that you are left with some things which are this we take it as a little example that this  is
equal to h cross omega B and minus eE this is electric field k L B square plus eE divided
by omega B square plus half m e square by B square okay. So what I do is that I entirely
open it up and then try to sort of write it in terms of a complete square so the these  term
which you see here this term is an important term this of course you have seen with only
the magnetic field even if there is no electric field you will still have this and this is  a
term which is it looks like a kinetic energy like a half mv square if you can somehow
relate  the velocity of the particle which is the ratio of the electric and the magnetic fields
this the middle term is important because this has a k which is the momentum vector  or
the wave vector this was missing and I said that the velocity of the electrons is  0 for the
reason that the Landau levels are completely flat which is no longer the case  it acquires a
k dependence and in which case the electrons are becoming dispersive now  and if they
become dispersive they will acquire a velocity that's exactly what the idea is  okay and
the electrons are actually displaced along the x axis by an amount which is m E  over e B
square we'll see that displaced along the x axis by m E over e B square okay.



  So it depends on both the electric magnitude of the electric and the magnetic fields so
this gives you something not too difficult it gives you a wave function which is again  a
two dimensional wave function which is equal to your psi n k now I had a n anyway
because  psi was a function of this quantum number n which went with you know n plus
half h cross  omega now because of this new term called k I have a psi n k as well and it
is simply  it is displaced from its original by this e B square which is what I just said and
y  okay so this is the new wave function and which is different than the earlier wave
function  however the nature or the qualitative nature of the wave functions remain same
the farther  the v y which is the y component of the velocity is equal to 1 over h cross del
E n k del k  okay and which now I'll just take a derivative with respect to k as you can see
that there  is a k term there so if I take a derivative with respect to k it's simple it just
picks  up a factor which is minus e into capital E into this L B square okay and this is
equal  to nothing but E over there is a minus sign which I should write so this is e by h
cross  E l B square and l B just to remind you that this is the magnetic length which we
have  talked about earlier which is equal to e B so v y so it acquires a velocity in the y
direction  and L in terms of this  electric  field  so it  depends upon the strength of the
electric field and it also depends upon the magnetic field inverse of the magnetic field  so
it's like E by B because L B square goes as E by B so it's a ratio of the electric  to the
magnetic field and so if you want to know that what happened to these flat Landau  levels
which were earlier completely flat and of course equidistant now let me write  it draw it
with a color so these becomes like this it becomes like this it becomes like  this okay so
this is n equal to 1 n equal to 2 and n equal to 3 so E versus k and this  is k for different
ends okay so this is the only change that happens when you include  actually an electric



field so it  doesn't have too much of change or any really qualitative  change but this
dispersion is important in the presence of the field okay and of course  if you the v y it as
I said that if you put l B this is equal to E into electric field  h cross and then h cross by e
B so this is equal to E by B okay so this energy that you  see here so this is this is the
energy not the Hamiltonian so this is the energy that  is here and this is a function of n k
and this energy is actually can be viewed as the  following so epsilon n k consists of three
terms one is of course it's that of a oscillator  so n plus half h cross omega B is that of a
harmonic oscillator which we know which  we have seen earlier number two which is
basically this is the like a potential energy of a wave  packet which is localized at x equal
to minus k L B square minus m e divided by E omega  B square.  

It is a potential energy of a wave packet  and third it's the kinetic energy of a particle
whose energy is given by half m v y square  which is half m into E square by B square
that's the so if you see this so this is the  usual harmonic oscillator energy. This is like a
wave packet that is localized because  this is like a length okay so e electric field into
charge into some distance will give rise  to a wave that is a potential energy of a wave
packet and this is that particle with  moving in the y direction okay remember that you
have taken the gauge to be in the in the  y direction which is B into x. 

So this is what happens when you take into account the spin  and the electric field into
consideration for a charged particle okay let me go and  I give you a physical picture of
the  so this physical picture that emerges is that I have this is a 2d electron gas okay  I've
taken a rectangular sample and it is put in a strong magnetic field okay let's  not talk
about electric field and spin anymore because we know how to deal with them these
electrons that are here they would undergo a cyclotron motion like this and the cyclotron



radius is inversely proportional to B which means as B increases the cyclotron radius
decreases  okay  which  can  be  you  know  easily  understood  from  the  classical
electrodynamics  equations okay now this is what happens in the bulk so the bulk is
completely insulating  because you see the electrons cannot drift from one side to another
okay or or they cannot  carry current in any of the directions because there are all these
modes or all these electronic  orbits which are closed and closed orbits cannot give rise to
such electronic transport  but we know transport occurs there are Hall conductivity at the
transverse edges of the  sample so what happens is that there are these edge modes they
cannot complete a full circle  and they skip from one edge to another which happens here
as well okay it happens on the  other sides as well let us only talk about this so you see
that these actually take part  in conduction and these are called as skipping orbits  okay so
these are skipping orbits now this is the skipping orbit in the other transverse  direction so
actually the conduction takes place via these edge modes or the conducting  modes or the
conducting channels of the material okay and this is that's why you see that the  bulk of
the system or the interior  of the system behaves  like an insulator  because it   doesn't
conduct so the bulk behaves like an insulator and the edge behaves like a conductor  okay
and they have different names so these are of course called insulator or gapped systems
where the energy level is gapped that's why it's called an insulator and this conductor  is
sometimes called a metallic edge and so on metallic because they're conducting edge  and
that's why because of this ambiguity in their behavior of the bulk and the edges they  are
called as topological insulators okay they are often written with TI okay because  the
insulator usual insulator which are not really interesting to study because like a  rubber or
a plastic is an insulator okay and plastic is an insulator means they do not  conduct okay
and if you want to stop conduction if you want a short electrical short not to  happen then
you put a you know a spacer in between you know those fuses are made up of  heavy
ceramic  material  which  are  completely  non-conducting  or  rather  insulating  material
they're  good  insulators  and  many  there  are  many  things  in  nature  which  are  good
insulators  and they're good and they are important for a variety of purpose that we see on
everyday  basis but however their electronic properties are usually not interesting okay
however these  ones because they have a difference in behavior of the bulk and the edges
their behavior is  interesting and this opened up a very you know rich field of study and
several topological  insulators are discovered if you want to know more about them there
is a review by  Zahid Hassan MZ Hassan in reviews of modern physics not sure whether
he writes with 2s  but it could be 2s so it's again I don't remember the but if you search
you will  get  it  okay  and he gives  a  very detailed  account  of the discovery and the
synthesis and the properties  of the topological insulators okay. 



Now having said this let me tell you that what physically  is happening with the Hall
plateaus okay I take this picture I just draw it by hand  but you have seen this picture a
number of times and I just draw two plateaus it's understood  so this is the Hall resistivity
which I'm plotting and in unit of h over e square and  this is the row h is actually h over
nu e square where nu is equal to 1 2 and so on  okay this is what we have told several
times and I am just showing you two new values d  equal to 1 and nu equal to 2 and let's
try to understand that what happens physically  okay mathematically of course we'll have
to see this but what happens physically.  So let's talk about the Landau levels let's go to
the Landau level this is a land I mean  this is completely flat so let me try to plot it flat
Landau level and say I just talk about  only two Landau levels n equal to 1 and n equal to
2 or n equal to 0 and n equal to  1 either is fine just any two arbitrary Landau levels. Now
these Landau levels of course  the way we have calculated they look like two sharp lines
with no extent but however  there is I've told a number of times that these are disordered
material  and we will   also learn that  how these two dimensional  materials  are  being
formed experimentally  or they are being synthesized experimentally and when you have
a large disorder you what  happens is that you have these levels to be broadened okay
each of these levels to be  broadened like this. Now the Landau levels are no longer sharp
lines but  they are slightly  broadened and the broadened is  because of the effects  of
disorder which gives additional  energy levels in the vicinity of this level just think of in
for  a  semiconductor  when   you  dope  a  semiconductor  there  are  n  type  or  p  type
semiconductors  there  are  always  additional  energy levels  that  appear  just  above the
valence band or just below the conduction  band.



 So these are these additional energy levels will make this or rather account for  this
conductivity of the semiconductor and it's exactly in the same spirit that these  Landau
levels which were sharp the degeneracy is somewhat lifted it's not completely lifted  that
is these two Landau levels will never merge n equal to 1 and n equal to 2 will never
merge and these delta LL should always be you know much greater than the let's call  the
disorder  energy  strength  or  the  disorder  present  in  the  system  or  the  energy  scale
associated with disorder okay. So they are still well separated excepting that they have
you know broadened a little and if you consider a value of the magnetic field because you
are sweeping the system with as a function of the magnetic field so when you consider
another magnetic  field which is larger in value than the present one then the Landau
levels will be farther separated because the distance is given by h cross omega which is
Eb over m and as you increase the magnetic field this will keep increasing and so on.  So
what happens is that when you sweep the magnetic field what happens okay or because
this is as a function of the magnetic field so you are increasing magnetic field. So when
you  increase  magnetic  field  the  density  of  the  charge  carriers  or  the  density  of  the
electrons increases. How it happens because suppose I want to understand that how in a
non-interacting system how we talk about the density the density is given by you know
some  Fermi distribution function multiplied by the density of states and you integrate
over  all e from 0 to mu that gives you the total number of electrons or the charges that
are  present in the system.

 This  is  the  Fermi  distribution  function  fd  distribution  which  you know from  your
elementary statistical mechanics that f of epsilon is equal to exponential beta  epsilon
minus mu plus 1 and g epsilon is the density of states okay and this will give  you the this
n which is a carrier density. Now as you have magnetic field into the problem  they are
still non-interacting the energy levels change okay. So if you still want to calculate  your
n becomes  a  function  of  B or  rather  your  mu becomes  a  function  of  b  that  is  your
chemical  potential continuously have to adjust itself such that it can accommodate more
and more electrons  into the system as B is becoming larger and larger okay. So this
chemical potential as you change  B it acquires a dependence on B and when you change
magnetic field then what happens is that  the chemical potential starts rising because of
the density starts rising and it comes to the  first Landau level and it sees that there are
number of you know conducting states and then the  conduction can happen just like
metallic states the conduction can happen without any resistance  okay. So the resistance
shows a plateau and then it crosses the first Landau level or the  lowest Landau level and
goes out of it and it finds no states that it can you know conduct.



 So  there is a very large jump in the resistivity that happens till it goes to this when it
starts  finding a number of energy levels. So let's say we start from this and then we go to
this and so on  because we are increasing magnetic field so this is in the direction of that.
So we start from here  that is when we are here okay so at this point let me point it out by
so let's say this is the point  A this is the point A this is the point B C and D so this is the
point B this  is  the point C and  this  is the point D okay so D here okay. So as the
magnetic field is increased the chemical potential   rises and as the chemical potential
rises it enters into this Landau band and why I'm calling  it a band because there are a
number of close by very close by energy levels which the electron  finds it easier to
conduct which means the resistivity kind of flattens and that's what  happens between a
and b so it gets a large number of conducting channels and then it doesn't get  anything
from b to c and hence the resistivity just rises okay and and goes to a value C and  then
again it finds a large number of energy levels and so on and then the resistivity shows  a
plateau because it gets a lot of conducting channels and so on. So this is the origin of  the
plateaus in physical terms if you like okay.

 So I think these will give you a holistic idea  that how the Landau levels are connected to
this whole discussion of plateaus being found at  integer values of these H over e square
and how the filling electron filling or the degeneracies  are related to that. We shall be
continuing  from  here  and  talk  about  other  things  which  are  like   the  experimental
realization of the two-dimensional materials is one important thing and then there  are
theoretical  understanding  or  ansatz  or  there  are  thought  experiments  one  of  them
beautiful  visualization or conceptualization of this quantum Hall effect is called as which
Laughlin saw I have  written down the name of Laughlin in the first slide when I have



referred to his work he saw  it as a quantum pump so he actually talked about a disk
geometry  and  then  flux  fading  through  that   so  there's  a  very  nice  you  know
understanding of that which is called as a Corbino disk geometry  we'll learn that and
there  are  other  things  such  as  you  know  Shubhnikov-De-Hass  oscillation.  So  what
happens  to  the  magneto  resistivity  does  it  that  is  the  direction  the  resistivity  in  the
direction  of current it shows oscillations as well with some particular you know time
period or frequency  that's called as a Shubhnikov-De-Hass oscillations etc we'll see all of
that. 


